B.E./B.Tech. DEGREE EXAMINATIONS, NOV/DEC 2020 \& APRIL/MAY 2021

Fourth Semester

Computer Science and Engineering

MA8402 -PROBABILITY AND QUEUEING THEORY
(Regulations 2017)
Answer ALL Questions
Time: 3 Hours

PART-A

Maximum Marks:100
($10 \times 2=20$ Marks)

1. Let A and B be two events such that $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$ and $P(A \cap B)=\frac{1}{6}$. Compute $P(B / A)$ and $P(\bar{A} \cap B)$.
2. The p.d.f. of a random variable X is $f(x)=\frac{1}{2} e^{-|x|},-\infty<x<\infty$. Find $E(X)$.
3. The joint p.d.f. of the random variable (X, Y) is given as

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{2} x e^{-y}, & y>0,0<x<2 \\
0, & \text { otherwise }
\end{array} .\right.
$$

Calculate the marginal p.d.f. of X.
4. Show that the correlation coefficient, $\rho_{X Y}$, of the random variables X and Y lies between -1 and 1 .
5. Define (i) Markov Chain and (ii) Wide-sense stationary process.
6. Let $\left\{X_{n} ; n \geq 0\right\}$ be a Markov chain having state space $S=\{1,2\}$ and one-step TPM $P=\left[\begin{array}{cc}0 & 1 \\ 1 / 2 & 1 / 2\end{array}\right]$. Find the stationary probabilities of the Markov chain.
7. In an $M / M / 1 / \infty / F C F S$ queueing system, the arrival rate $\lambda=3$ customers/minute and utilization ratio $\rho=0.5$. Obtain L_{s} and W_{s}.
8. In an $M / M / c / N / F C F S$ queueing system, write the expressions for P_{0} and P_{N}.
9. An $M / D / 1$ queue has an arrival rate of 10 customers per second and a service rate of 15 customers per second. Calculate the mean number of customers in the system.
10. Consider a two-system random Markovian queueing network with customer arrival rate $\lambda=2 /$ minute and service rate $\mu_{1}=4 /$ minute at station 1 and service rate $\mu_{2}=5 /$ minute at station 2 . Compute the probability that both the servers are idle.

www.binils.com

Anna University | $\underset{\substack{\text { Polytechnic } \\ \text { PART-B }}}{\text { Schools }} \underset{(5 \times 16=80 \mathrm{Marks})}{ }$
11. (a) (i) Of three types of spark plugs, 6% of Type A spark plugs are defective, 4% of Type B spark plugs are defective, and 2% of Type C spark plugs are defective. A spark plug is selected at random from a batch of spark plugs containing 50 Type A plugs, 30 Type B plugs, and 20 Type C plugs. The selected plug is found to be defective. What is the probability that the selected plug was of Type A?
(ii) Let $P(X=x)=\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)^{x-1}, x=1,2,3, \ldots$, be the probability mass function of a random variable X. Obtain (A) $P(X>5)$, (B) the moment generating function, $M_{X}(t)$, of the random variable X and $(\mathrm{C}) E(X)$ and $\operatorname{Var}(X)$.

(OR)

(b) (i) The p.d.f. of a continuous random variable X is given as

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{6}, & -3 \leq x \leq 3 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find (A) $P(-2<X<0)$, (B) Cumulative distribution function, $F(x)$ and (C) $E(X)$ and $\operatorname{Var}(X)$.
(ii) Let X be an exponential random variable with $E\left(X^{2}\right)=1 / 2$. Obtain (A) $E(X)$ and $\operatorname{Var}(X),(\mathrm{B})$ Moment generating function, $M_{X}(t)$ and (C) $P(X>3 / X>1)$. (8)
12. (a) (i) The joint p.d.f. of the random variable (X, Y) is given as

$$
f(x, y)\left\{\begin{array}{cc}
k e^{-(x+y)}, & 0 \leq y \leq x \leq \infty \\
0, & \text { otherwise }
\end{array}\right.
$$

Find (A) the value of k, (B) the marginal p.d.f.s of the random variables X and Y, (C) the conditional p.d.f. $f(x / y)$ of X given $Y=y$.
(ii) The joint p.m.f. of discrete random variable (X, Y) is given as $P(X=-1, Y=0)=1 / 8, P(X=-1, Y=1)=2 / 8, P(X=1, Y=0)=3 / 8$ and $P(X=1, Y=1)=2 / 8$. Compute the correlation coefficient, $\rho_{X Y}$ of X and Y. (8)

(OR)

(b) (i) Two randon variables X and Y have joint p.d.f.

$$
f(x, y)\left\{\begin{array}{cc}
\frac{5}{16} x^{2} y, & 0<y<x<2 \\
0, & \text { otherwise }
\end{array}\right.
$$

(A) Find the marginal p.d.f.s of the random variables X and Y, (B) Obtain the conditional p.d.f. $f(x / y)$, of X given $Y=y$, (C) Are the random variables X and Y independent? Justify.

www.binils.com

Anna University | Polytechnic | Schools
(ii) The joint p.d.f. of the random variable (X, Y) is given as

$$
f(x, y)\left\{\begin{array}{cc}
e^{-(x+y)}, & x>0, y>0 \tag{8}\\
0, & \text { otherwise }
\end{array}\right.
$$

Find the p.d.f. of random variables $U=X+Y$ and $V=\frac{U}{V}$.
13. (a) (i) Consider a random process $\{X(t) ;-\infty<t<\infty\}$ defined by $X(t)=U \cos t+$ $V \sin t$, where U and V are independent random variables, each of which assumes the values -2 and 1 with probabilities $1 / 3$ and $2 / 3$, respectively. Show that $\{X(t) ;-\infty<t<\infty\}$ is wide-sense stationary.
(ii) Let $\left\{X_{n}: n \geq 0\right\}$ be a Markov chain having state space $S=\{1,2,3\}$ and one-step TPM

$$
P=\left[\begin{array}{ccc}
\frac{3}{4} & \frac{1}{4} & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & \frac{3}{4} & \frac{1}{4}
\end{array}\right]
$$

(A) Draw a transition diagram between for this chain, (B) Is the chain irreducible. Justify your answer, and (C) Is the state-3 ergodic? Explain.
(OR)
(b) (i) State the postulates of the Poisson process and obtain the probability distribution for that. Is the Poisson process stationary? Justify your answer.
(ii) Let $\left\{X_{n} ; n=0,1,2,3 \ldots\right\}$ be a Markov chain having state space $S=\{1,2,3\}$ with one-step transition probability matrix

$$
P=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & 1
\end{array}\right]
$$

and initial distribution $P\left(X_{0}=i\right)=\frac{1}{3}, 1=1,2,3$. Compute
(A) $P\left(X_{3}=1, X_{2}=1, X_{1}=1, X_{0}=2\right)$ and
(B) $P\left(X_{2}=1, X_{1}=1 / X_{0}=1\right)$.
14. (a) (i) In an $M / M / 1 / \infty / F C F S$ queueing system, if $\lambda=10$ and $\mu=15$, compute (A) L_{q}, (B) W_{s}, (C) P_{3} and(D) probability that an arriving customer has to wait in the queue.

www.binils.com

Anna University | Polytechnic | Schools
(ii) For an $M / M / 1 / \infty$ balking queue derive the steady-state probabilities of the system size by assuming that the service rate as $\mu_{n}=\mu, n=1,2,3, \ldots$, and the arrival rate of the customers as $\lambda_{n}=\frac{\lambda}{n+1}, n=, 0,1,2, \ldots$, where $n \geq 0$ is the number of customers in the system.
(OR)
(b) (i) A car servicing station has 2 bays where service can be offered simultaneously. Because of space limitation, only 4 cars can wait in the queue. The arrival pattern is Poisson with 12 cars per day. The service time in both the bays is exponentially distributed with $\mu=8$ cars per day per bay. Find the average number of cars in the service station, the average number of cars waiting for service and the average time a car spends in the system.
(ii) For an $M / M / 2 / \infty$ FCFS queueing system, derive the system of differential-difference equations for the system size probabilities. Under steady-state condition, obtain the steady-state probabilities of the system size and the mean number of customers in the system.
15. (a) Discuss an $M / G / 1 / \infty$ FCFS queueing system and derive the P-K mean value formula for the system size. Deduce also the mean number of customers in the system for an $M / M / 1 / \infty$ FCFS queueing model from the P-K mean value formula.

(OR)

(b) Derive the system of differential-difference equations for the joint probabilities of the system size of two-stations tandem queueing system. Under the steady-state conditions, determine the steady-state probabilities of the system size and hence obtain the expected number of customers in the system and the mean waiting time of a customer in the system.

