B.E. / B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020
 Third Semester
 Electronics and Communication Engineering
 MA8352 -LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONS
 (Common to Biomedical Engineering, Computer and Communication Engineering, Electronics and Telecommunication Engineering and Medical Electronics)

(Regulations 2017)
Answer ALL Questions
Maximum Marks:100
PART A $(10 \times 2=20$ Marks $)$

1. Determine whether the subset $S=\{(x, y, 0) \mid x$ and y are real numbers $\}$ of the vector space $V=R^{3}$ is a subspace or not.
2. For which values of k will the vector $v=(1,-2, k)$ in R^{3} be a linear combination of the vectors $u=(3,0,-2)$ and $w=(2,-1,-5)$.
3. Find the matrix representation of a linear transformation $T: P_{3}(R) \rightarrow P_{2}(R)$ defined by $T(f(x))=f^{\prime}(x)$ with respect to the standard ordered bases for $P_{3}(R)$ and $P_{2}(R)$.
4. Is there a linear transformation $T: R^{3} \rightarrow R^{2}$ such that $T(1,0,3)=(1,1)$ and $T(-2,0,-6)=(2,1)$? Justify.
5. Prove that $\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\|$ for any two vectors α, β belong to the standard inner product space.
6. Find the orthogonal complement of $S=(0,0,1)$ in an inner product space R^{3}.
7. Obtain the partial differential equation by eliminating the arbitrary function from $z=f\left(x^{2}+y^{2}\right)$.
8. Find the complete solution of $p^{2}+q^{2}=4$.
9. State Dirichlet's conditions for a function $f(x)$ to be expressed as a Fourier series.
10. Solve $x^{2} \frac{\partial z}{\partial x}+y^{3} \frac{\partial z}{\partial y}=0$ by method of separation of variables.

> PART-B
11. (a) (i) Let $V=R^{3}$ and $S_{1}=\{(1,0,0),(2,2,0),(5,7,2)\}$. Show that S_{1} is a minimal generating set.
(ii) Verify whether the set $S=\left\{\left(\begin{array}{ccc}1 & -3 & 2 \\ -4 & 0 & 5\end{array}\right),\left(\begin{array}{ccc}-3 & 7 & 4 \\ 6 & -2 & -7\end{array}\right),\left(\begin{array}{ccc}-2 & 3 & 11 \\ -1 & -3 & 2\end{array}\right)\right\}$ in $M_{2 \times 3}(R)$ is linearly dependent or not.

www.binils.com

Anna University | $\underset{\substack{\text { (OR) } \\ \text { Polytechnic }}}{ }$ Schools
(b) (i) Let $V=R^{3}$ and $S_{1}=\{(1,0,0),(2,2,0),(5,7,2)\}$. Show that S_{1} is a minimal generating set.
(ii) Let $V=R^{3}, W_{1}=\{(x, x, x) / x \in R\}$ and $W_{2}=\{(0, y, z) / y, z \in R\}$ are two subspaces of V, then prove that $V=W_{1} \oplus W_{2}$.
12. (a) Let $T: R^{2} \rightarrow R^{3}$ and $U: R^{2} \rightarrow R^{3}$ be the linear transformations defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2}, 0,2 a_{1}-4 a_{2}\right)$ and $U\left(a_{1}, a_{2}\right)=\left(a_{1}-a_{2}, 2 a_{1}, 3 a_{1}+2 a_{2}\right)$ respectively. Then prove that $[T+U]_{B}^{\gamma}=[T]_{B}^{\gamma}+[U]_{B}^{\gamma}$.
(OR)
(b) Let T be a linear operator on $P_{2}(R)$ defined by $T[f(x)]=f(1)+f^{\prime}(0) x\left[f^{\prime}(0)+f^{\prime \prime}(0)\right] x^{2}$. Test for diagonalizability.
13. (a) Let $V=P(R)$ with the inner product $\langle f(x), g(x)\rangle=\int_{-1}^{1} f(t) g(t) d t$. Consider the sub space $P_{2}(R)$ with standard ordered basis B. Use the Gram-Schmidt process to replace B by an orthogonal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for $P_{2}(R)$ and use that orthogonal basis to obtain an orthonormal basis for $P_{2}(R)$.

(OR)

(b) (i) Let $V=C^{3}$ where C is the set of complex numbers. Define $\langle x, y\rangle=a_{1} \overline{b_{1}}+$ $a_{2} \overline{b_{2}}+a_{3} \overline{b_{3}}$ where $x=\left(a_{1}, a_{2}, a_{3}\right)$ and $y=\left(b_{1}, b_{2}, b_{3}\right)$. Verify whether V is an inner product space or not.
(ii) Let V be a finite dimensional inner product space, and let T be a linear operator on V. Then show that there exists a unique linear function $T^{*}: V \rightarrow V$ such that $<T(x), y>=<x, T^{*}(y)>$ for all $x, y \in V$.
14. (a) (i) Solve: $\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=y \cos x$.
(ii) Find the singular integral of $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$.

(OR)

(b) (i) Find the integral surface of the equation $2 y(z-3) p+(2 x-z) q=y(2 x-3)$ that passes through the circle $x^{2}+y^{2}=2 x$ and $z=0$.
(ii) Find the complete solution of $x^{2} p^{2}+y^{2} q^{2}=z^{2}$.
15. (a) A rectangular plate $0 \leq x \leq 20,0 \leq y \leq 10$ has the edges $x=0, x=20, y=0$ maintained at zero temperature and the edge $y=10$ has the temperature $u=20 x-x^{2}$. Find the steady state temperature at any point (x, y) on the plate.
(OR)
(b) (i) Obtain the Fourier series for the function $f(x)=|x|,-\pi<x<\pi$.
(ii) Express $f(x)=x(\pi-x), 0<x<\pi$, as a Fourier series of periodicity 2π containing cosine terms only.

