www.binils.com

Anna University | Polytechnic | Schools

Reg. No.:

Question Paper Code : X 10350

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 AND APRIL/MAY 2021 Second Semester **Electronics and Communication Engineering** EC 8252– ELECTRONIC DEVICES (Common to Electronics and Telecommunication Engineering/Medical Electronics) (Regulations 2017)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. Mention any two applications of a PN junction diode.
- 2. What happens when a reverse-bias voltage is applied across the pn-junction ?
- 3. The common-base current gain of a Bipolar junction transistor is given as $\alpha = 0.884$, determine the common emitter current gain β .
- 4. In a common base transistor circuit the emitter current I_{E} is 10 mA and the base current $I_{B} = 0.2$ mA. Find the value of the collector current.
- 5. Justify the name "Field effect transistor".
- 6. "FET is less noisy than BJT". Justify this statement.
- 7. What is a Schottky diode ?
- 8. What is meant by an LDR?
- 9. Draw the basic structure and circuit symbol of a DIAC.
- 10. What is the advantage of TRIAC over SCR?

www.binils.com Anna University | Polytechnic | Schools

X 10350

		PART – B (5×13=65 Marks	s)
11.	a)	Derive the expression for Transition Capacitance C_T and Diffusion Capacitance C_D of a PN junction diode. (13)	3)
		(OR)	
	b)	 i) The reverse saturation current I_o in a germanium diode is 6 µA. Calculate the current flowing through the diode when the applied forward bias voltage is 0.4 V at room temperature. ii) Describe the action of a PN junction diode under forward and reverse bias 	6)
			7)
12.	a)	The reverse leakage current of the transistor when connected in CB configuration is 0.2 μ A and it is 18 μ A when the transistor is connected in CE configuration. Calculate α_{dc} and β_{dc} of the transistor assuming $I_B = 30$ mA. (13)	3)
		(OR)	
	b)	With neat sketches, explain the operation and characteristics of a transistor in CE configuration. (13)	3)
13.	a)	Explain the operation of N-channel JFET with the help of neat sketches and characteristic curves. (13)	3)
		(OR)	
	b)	i) Compare MOSFET with JFET. (§	5)
			8)
14.	a)	Draw the equivalent circuit of a tunnel diode and explain. Also from the energy band diagram explain the VI characteristic of a tunnel diode. (13	3)
	1.)	(OR)	-
	(ט		7) 6)
15.	a)	Draw the basic structure, circuit symbol, equivalent circuit and characteristics of a unijunction transistor and explain. (13)	3)
		(OR)	
	b)	ii) Explain the basic construction of a PN junction solar cell and its principle	6) 7)
		of operation. ("	7)
		PART – C (1×15=15 Marks	s)
16.	a)	A CE amplifier is drawn by a voltage source of internal resistance $r_s = 1000 \Omega$ and the load impedance of $R_L = 1200 \Omega$. The h-parameters are $h_{ie} = 1.2 k\Omega$, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 60$, $h_{oe} = 25 \mu A/V$. Compute Current gain A_I , Input resistance R_i , Voltage gain A_V and Output resistance R_o . (18)	5)

(OR)

b) With neat sketches and relevant expressions, briefly explain the Ebers Moll model of a transistor. (15)