www.binils.com Anna University Polytechnic Schools

Question Paper Code : X10348

B.E./B.Tech. DEGREE EXAMINATIONS NOVEMBER/ DECEMBER 2020 AND APRIL / MAY 2021

Sixth /Seventh Semester

Electronics and Communication Engineering

EC8095- VLSI DESIGN

(Common to: Electronics and Telecommunication Engineering/ Electrical and Electronics Engineering/ Electronics and Instrumentation Engineering)

(Regulations 2017)

Time: 3 Hours

Answer ALL Questions

Max. Marks 100

PART- A (10 x 2 = 20 Marks)

- 1. Sketch a complementary CMOS gate computing Y = (AB + BC)'.
- 2. What is body effect?
- 3. What is the logical effort for two input NOR gate? (Assume the required values)
- 4. What is the use of transmission gates?
- 5. List the timing classification of Digital system.
- 6. Differentiate latches and flip-flops.
- 7. Draw the dot diagram for Wallace tree multiplier.
- 8. List the categories of memory arrays.
- 9. What is the significance of field programmable gate arrays?
- 10. Identify the ways to optimize the manufacturability, to increase yield.

<u>PART- B (5 x 13 = 65 Marks)</u>

11.	a)	i) Differentiate static and dynamic latches and registers.	6
		ii) Obtain the first-order model relating the current and voltage for an nMOS	7
		transistor in three regions of MOS operation.	
		OR	
	b)	i) Explain the DC transfer characteristics of CMOS inverter.	6
		ii) Estimate the delay of CMOS logic gates as the RC product of the effective driver resistance and the load capacitance.	7
12.	a)	Sketch a combinational function $Y = (A(B+C+D)+E.F.G)'$ using	
	,	i. Pseudo-nMOS logic	4
		ii. Domino logic	4
		iii. Cascode voltage switch logic.	5
		OR	
	b)	Explain the pass transistor logic and show how complementary pass	13
		transistor logic and double pass transistor logic are applied for 2: 1 multiplexer.	

		www.binils.com	
13.	a)	i. Illustrate the circuit designs for basic latches, then build the flip-flops and pulsed latches.	7
		ii. Design the pulse registers suitable for sequential CMOS circuits.	6
	b)	OR i) Describe the concept of pipelining in sequential circuits with a suitable example.	7
		ii) Sketch and explain the Monostable sequential circuits based on CMOS logic.	6
14.	a)	i) Explain the carry-propagate adder and show how the generation and propagation signals are framed.	6
		ii) List the several commonly used shifters. Design the shifter that can perform all the commonly used shifters.	7
	b)	OR Illustrate the building blocks of Memory architectures and memory peripheral circuitry adapted to operate for non-volatile memory.	13
15.	a)	i) Show how routing is performed in FPGA interconnect.	6
		ii) Illustrate the basic building block architectures of FPGA. OR	7
	b)	Explain the three main approaches commonly used for design for testability (DFT).	13

<u>PART- C (1 x 15 = 15 Marks)</u>

16.	a)	i) Differentiate static and dynamic power in CMOS circuits.ii) Sketch the 4:1 multiplexer using transmission gates.	7 8
		OR	
	b)	Generate the partial products using radix-4 booth encoded multiplier to compute $01110_2 \times 01101_2$. For the same multiplier apply radix-8 booth encoding and justify the advantages between radix-4 and radix-8 booth multiplier.	15