www.binils.com
 Anna University | Polytechnic | Schools

\square
Question Paper Code : X 10319
B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

Fifth Semester
Computer Science and Engineering
CS 8501 - THEORY OF COMPUTATION
(Regulations 2017)
Time : Three Hours
Maximum : 100 Marks
Answer ALL questions
PART - A
($10 \times 2=20$ Marks)

1. Define Deterministic Finite Automaton.
2. State any four types of proofs.
3. Write the regular expression for all strings that contain no more than one occurrence of aa.
4. Write a regular expression for even number of a's and even number of b's of a string $\mathrm{w}=\{\mathrm{a}, \mathrm{b}\}^{*}$.
5. Write a Context Free Grammar for the language consisting of equal number of a's and b's.
6. Define Deterministic PDA.
7. What are the two normal forms of CFG? Write their productions format.
8. Define the language recognized by any Turing Machine.
9. What are recursive languages?
10. Define the classes P and NP problem. Give example problems for both.
PART - B

$$
(5 \times 13=65 \text { Marks })
$$

11. a) Prove that for every L recognized by an NFA, there exists an equivalent DFA accepting the same language L .
(OR)
b) Prove that for every L recognized by an \in-NFA, there exists an equivalent DFA accepting the same language L .

www.binils.com Anna University | Polytechnic | Schools

X 10319 ||
12. a) Prove that the following languages are not regular using pumping lemma.
i) All unary strings of length prime.
ii) $L=\left\{u u \mid u \in\{0,1\}^{*}\right\}$.
(OR)
b) State and Prove any two closure properties of Regular Languages.
13. a) How \in-productions are eliminated from a grammar whose language doesn't have empty string? Remove \in-productions from the grammar given below.
$\mathrm{S} \rightarrow \mathrm{a}|\mathrm{aA}| \mathrm{B}|\mathrm{C} \quad \mathrm{A} \rightarrow \mathrm{aB}| \in \quad \mathrm{B} \rightarrow \mathrm{Aa}$
$\mathrm{C} \rightarrow \mathrm{aCD}$
D \rightarrow ddd
(OR)
b) Write procedure to find PDA to CFG. Give an example for PDA and its CFG.
14. a) How a CFG for L is converted into CNF accepting the same language ? Convert the following CFG into CFG in CNF.
$S \rightarrow$ b A \mid a B $\quad \mathrm{A} \rightarrow \mathrm{bAA} \mid$ a $S|\mathrm{a} \quad \mathrm{B} \rightarrow \mathrm{aB} \mathrm{B}| \mathrm{bS} \mid \mathrm{b}$
(OR)
b) Construct a Turing Machine for proper subtraction, which is defined as $m-n$ if $\mathrm{m}>\mathrm{n}$ and 0 otherwise.
15. a) Prove that Universal language is recursively enumerable but not recursive. (OR)
b) Define PCP and prove that PCP is undecidable.
PART - C

$$
(1 \times 15=15 \text { Marks })
$$

16. a) Construct a Turing Machine for multiplying two non negative integers using subroutine.
(OR)
b) How PDA is converted into CFG? Convert the following PDA into CFG.

$$
\begin{aligned}
& P=(\{p, q\},\{0,1\},\{Z, X\}, \delta, p, Z, \Phi) \\
& \delta(p, 1, Z)=\{(p, X Z)\}, \delta(p, \in, Z)=\{(p, \in)\} \delta(p, 1, X)=\{(p, X X)\} \\
& \delta(q, 1, X)=\{(q, \in)\}, \delta(p, 0, X)=\{(q, X)\}, \delta(q, 0, Z)=\{(p, Z)\}
\end{aligned}
$$

