www.binils.com Anna University | Polytechnic | Schools

Reg. No.

Question Paper Code : X10686

B.E./B.Tech. DEGREE EXAMINATIONS - NOV / DEC 2020 AND APRIL / MAY 2021

Seventh/Eighth Semester

Mechanical Engineering

ME8093 COMPUTATIONAL FLUID DYNAMICS

(Common to: Manufacturing Engineering / Aeronautical Engineering / Mechanical and Automation Engineering/Mechanical Engineering (SW))

(Regulation 2017)

Time: 3 Hours

Answer ALL Questions

Max. Marks: 100

<u>PART- A (10 x 2 = 20 Marks)</u>

- 1. Define control volume.
- 2. What are limitations of panel methods?
- 3. Distinguish between conservation and non-conservation forms of fluid flow.
- 4. Define grid point.
- 5. Define Convergence theorem.
- 6. Define Lax equivalence theorem.
- 7. Write the advantages of adaptive grid?
- 8. Define staggered grid approach?
- 9. Define finite element method?
- 10. Define Courant number?

<u>PART- B (5 x 13 = 65 Marks)</u>

11. a) Derive Navier-Stokes equation in conservation form. (13)

OR

b) Explain the behavior of PDE's on CFD. (13)

www.binils.com Anna University | Polytechnic | Schools

12.	a)	Write a note on explicit and implicit approaches and stability criteria.	(13)
OR			
	b)	Explain briefly about parabolic and hyperbolic equations.	(13)
13.	a)	Write a note on central and upwind difference schemes for one dimensional steady convection, diffusion equation.	(13)
		OR	
	b)	Explain hybrid law, power law and Quick schemes.	(13)
14.	a)	Write a note on staggered grid and pressure velocity corrections.	(13)
		OR	
	b)	Write and explain PISO algorithm.	(13)
15.	a)	Explain briefly about the turbulence flow modeling.	(13)
		OR	
	b)	Explain K-e model and RANS model.	(13)
<u>PART- C (1 x 15 = 15 Marks)</u>			
16.	a)	Derive the energy equation for a viscous flow in partial differential non-conservation form.	(15)
		OR	
	b)	Define and develop expression for substantial derivatives.	(15)