www.binils.com
 Anna University | Polytechnic | Schools

Reg. No. : \square

Question Paper Code : X10038

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2021

Sixth Semester
Aeronautical Engineering
AE 8601 - FINITE ELEMENT METHODS
(Common to Aerospace Engineering)
(Regulations 2017)
Time : Three Hours
Maximum : 100 Marks

Abstract

Answer ALL questions PART - A (10×2=20 Marks)

1. List any two advantages and limitations of finite element methods.
2. Define degree of freedom.
3. Why are polynomial functions generally used as approximation functions in FEM?
4. Differentiate between local coordinate system and global coordinate system.
5. State the conditions for a problem to be axi-symmetric.
6. Differentiate between CST and LST elements.
7. What are isoparametric elements?
8. Write any two properties of stiffness matrix.
9. List any four types of errors that can occur in FEM.
10. Write the expression of shape function for one dimensional heat conduction.
PART - B
(5×13=65 Marks)
11. a) The following differential equation is available for a physical phenomenon.
$d^{2} y / d x^{2}+500 x^{2}=0,0 \leq x \leq 1$
Trial function is, $y=a_{1}\left(x-x^{3}\right)+a^{2}\left(x-x^{5}\right)$
Boundary conditions are $y(0)=1$ and $Y(1)=0$
Find the value of the parameters a_{1} and a_{2} by the Galerkin method.
(OR)
b) Describe the following :
i) Factors to be considered during discretization.
ii) Convergence criteria of finite element method.

www.binils.com
 Anna University | Polytechnic | Schools

12. a) Determine the nodal displacement and element stresses for the bar shown in figure 1.

Figure 1

Portion	Material	E(GPa)	Area($\mathbf{m m}^{\mathbf{2}}$)
A	Bronze	8.3	2400
B	Aluminium	70	1200
C	Steel	200	600

(OR)
b) For the beam and loading as shown in figure 2, calculate the slopes at nodes 2 and 3 . Take $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{I}=4 \times 10^{-6} \mathrm{~m}^{4}$. Assume that each element is 1 m long.

Figure 2
13. a) Derive the shape function for an axi-symmertric triangular element.
(OR)
b) Calculate the element stiffness matrix for the plane stress element shown in figure 3. Take Young's modulus $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, Poisson's ratio v $=0.25$, thickness of the plate $t=5 \mathrm{~mm}$.

Figure 3
14. a) Determine the Jacobian matrix for the quadrilateral element whose Cartesian coordinates of the corner nodes are given by $(0,-1),(-2,3),(2,4)$ and $(5,3)$. Evaluate the Jacobian matrix at the point (0.5, 0.5).
(OR)
b) Derive the shape functions for an eight noded quadrilateral element using natural coordinate system.

www.binils.com
 Anna University | Polytechnic | Schools

15. a) A metallic fin 20 mm wide and 4 mm thick is attached to a furnace whose wall temperature is $180^{\circ} \mathrm{C}$. The length of the fin is 120 mm . If the thermal conductivity of the material of the fin is $350 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ and convective heat transfer coefficient is $9 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$, determine the temperature distribution assuming that the tip of the fin is open to the atmosphere and that the ambient temperature is $25^{\circ} \mathrm{C}$.

(OR)

b) A wall of 0.6 m thickness having thermal conductivity of $1.2 \mathrm{~W} / \mathrm{mK}$ is to be insulated with a material of thickness 0.06 m having an average thermal conductivity of $0.3 \mathrm{~W} / \mathrm{mK}$. The inner surface temperature is $1000^{\circ} \mathrm{C}$ and outside of the insulation is exposed to atmospheric air at $30^{\circ} \mathrm{C}$ with heat transfer coefficient of $35 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Calculate the nodal temperatures.
PART - C
16. a) A beam AB span ' l ' is simply supported at the ends carrying a concentrated load 'W' at the centre ' C ' as shown in figure 4 . Determine the deflection at the mid span by using Rayleigh-Ritz method.

Figure 4
(OR)
b) A plane truss is composed of three joints and three elements as shown in figure 5. Determine nodal displacements and stress in each element.

Take area of cross section of each element as $2000 \mathrm{~m}^{2}$ and Young's modulus of the materials as 200 GPa .

Figure 5

