www.binils.com
 Anna University | Polytechnic | Schools

* X11213*

Reg. No. :

Question Paper Code : X 11213

B.E./B.Tech. DEGREE EXAMINATIONS, NOV./DEC. 2020
 First Semester
 Civil Engineering
 MA 8151 : ENGINEERING MATHEMATICS - I (Common to all Branches Except Marine Engineering)
 (Regulations 2017)

Time : Three Hours
Maximum : 100 Marks

Answer ALL questions.
PART - A
(10×2=20 Marks)

1. If $\lim _{x \rightarrow 1} \frac{f(x)-8}{x-1}=10$, then find $\lim _{x \rightarrow 1} f(x)$.
2. If $x e^{y}=x-y$, then find dy/dx by implicit differentiation.
3. Find $\partial u / \partial x$ and $\partial u / \partial y$ when $u(x, y)=x^{y}+y^{x}$.
4. If $z=x f\left(\frac{y}{x}\right)$, then find the value of $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$, using Euler's theorem.
5. Let A denote the area of the region that lies in the graph of $f(x)=\sqrt{\sin x}$ between 0 and π. Use right endpoints to find an expression for A as a limit. (Do not evaluate the limit).
6. Determine whether integral $\int_{1}^{\infty} \frac{\ln (\mathrm{x})}{\mathrm{x}} \mathrm{dx}$ is convergent or divergent. Evaluate it, if
it is convergent.
7. Find the area of a circle of radius 'a' by double integration in polar coordinates.
8. Evaluate $\int_{x=0}^{1} \int_{y=0}^{2} \int_{z-1}^{2} x y d x d y d z$.
9. Find the particular integral of $y^{\prime \prime}+2 y^{\prime}+y=\cosh x$.
10. Solve $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$.

www.binils.com
 Anna University | Polytechnic | Schools

11. a) i) Use the intermediate value theorem to show that there is a root of the equation $\sqrt[3]{\mathrm{x}}=1-\mathrm{x}$ in the interval $(0,1)$.
ii) Show that the function $f(x)=|x-6|$ is not differentiable at 6. Find a formula for first derivative of f and sketch its graph.
(OR)
b) i) Find the equation of the tangent line to the curve $y=x^{4}+2 x^{2}-x$ at the point (1, 2).
ii) Find the local maximum value, local minimum value, the interval of concavity and the inflection points of a function $f(x)=x^{3}-3 x^{2}-12 x$. Also sketch the graph of f that satisfies all the above conditions.
12. a) i) Let $u=3 x+2 y-z, v=x-2 y+z$ and $w=x(x+2 y-z)$. Are u, v and w functionally related? If so, find this relationship.
ii) Find the dimensions of the rectangular box, open at the top, of maximum capacity whose surface area $432 \mathrm{sq} . \mathrm{cm}$.
(OR)
b) i) If $\mathrm{z}=f(\mathrm{x}, \mathrm{y})$, where $\mathrm{x}=e^{\mathrm{u}}+e^{-\mathrm{v}}$ and $\mathrm{y}=\mathrm{e}^{-\mathrm{u}}-e^{\mathrm{v}}$, then show that

$$
\begin{equation*}
\mathrm{x} \frac{\partial \mathrm{z}}{\partial \mathrm{x}}-\mathrm{y} \frac{\partial \mathrm{z}}{\partial \mathrm{y}}=\frac{\partial \mathrm{z}}{\partial \mathrm{u}}-\frac{\partial \mathrm{z}}{\partial \mathrm{v}} \tag{8}
\end{equation*}
$$

ii) Find the Taylor's series expansion of $f(x, y)=x^{2} y^{2}+2 x^{2} y+3 x y^{2}$ in powers of $(x+2)$ and ($y-1$) up to the second degree terms.
13. a) i) Prove that $\int_{-\pi}^{\pi} \sin m x \sin n x d x=\left\{\begin{array}{ll}0 & \text { if } \\ \pi & m \neq n \\ \pi & \text { if } \\ m=n\end{array}\right.$, where m and n are positive integers.
ii) Evaluate the integral $\int \frac{x^{2}-2 x-1}{(x-1)^{2}\left(x^{2}+1\right)} d x$.
(OR)
b) i) Evaluate the integrals 1) $\int x^{3} \sqrt{x^{2}+1} d x$ and 2) $\int_{0}^{1} \frac{1}{(1+\sqrt{x})^{4}} d x$.
ii) Find the values of p for which the integral $\int^{1} x^{p} \ln (x) d x$ converges, and evaluate the integral for those values of p. ${ }^{\circ}$

www.binils.com
 Anna University | Polytechnic | Schools

X11213
14. a) i) Change the order of integration in $\int_{0}^{1} \int_{y}^{2-y} x y d x d y$ and then evaluate it.
ii) Evaluate $\iiint_{V} x y z d x d y d z$, where V is the volume of the positive octant of the sphere $x^{2}+y^{2}+z^{2}=1$ by transforming to spherical polar coordinates. (OR)
b) i) Evaluate $\iint_{D} x y \sqrt{(1-x-y)} d x d y$, where D is the region bounded by $\mathrm{x}=0, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$, using the transformation $\mathrm{x}+\mathrm{y}=\mathrm{u}, \mathrm{y}=\mathrm{uv}$.
ii) Find the volume of the cylinder bounded by $x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0$, using triple integral.
15. a) i) Solve the simultaneous differential equations

$$
\begin{equation*}
\frac{d x}{d t}+2 y+\sin t=0, \frac{d y}{d t}-2 x-\cos t=0, \text { given that } x=0, y=1 \text { when } t=0 \tag{8}
\end{equation*}
$$

ii) Use the method of undetermined coefficients to solve

$$
\begin{equation*}
y^{\prime \prime}-5 y^{\prime}+6 y=e^{3 x}+\sin x . \tag{8}
\end{equation*}
$$

(OR)
b) i) Solve $x^{2} y^{\prime \prime}+x y^{\prime}+y=x \ln (x)$.
ii) Using the method of variation of parameters, solve $y^{\prime \prime}+y=x \cos x$.

