4.4 BESSEL'S DIFFERENTIAL EOUATION AND BESSEL FUNCTION \& TM AND TE WAVES IN CIRCULAR WAVE GUIDES:

A circular waveguide is a hollow metallic tube with circular cross section for propagating the electromagnetic waves by continuous reflections from the surfaces or walls of the guide.

The circular waveguides are avoided because of the following reasons:
a) The frequency difference between the lowest frequency on the dominant mode and the next mode is smaller than in a rectangular waveguide, with $\mathrm{b} / \mathrm{a}=0.5$
b) The circular symmetry of the waveguide may reflect on the possibility of the wave not maintaining its polarization throughout the length of the guide.
c) For the same operating frequency, circular waveguide is bigger in size than a rectangular waveguide.

The possible TM modes in a circular waveguide are: TM01, TM02, TM11, TM12.

The root values for the TM modes are:

- (ha) $01=2.405$ for TM01
- (ha) $02=5.53$ for TM02
- (ha) $11=3.85$ for TM11
- (ha) $12=7.02$ for TM12

The dominant mode for a circular waveguide is defined as the lowest order mode having the lowest root value.
The possible TE modes in a circular waveguide are: TE01, TE02, TE11, and
TE12. The root values for the TE modes are:

- (ha) $01=3.85$ for TE01
- (ha) $02=7.02$ for TE02
- (ha) 11 = 1.841 for TE11
- (ha) $12=5.53$ for TE12

The dominant mode for TE waves in a circular waveguide is the TE11.v. Because it has the lowest root value of 1.841 .

Since the root value of TE11 is lower than TM01, TE11 is the dominant or the lowest order mode for a circular waveguide.

RECTANGULAR AND CIRCULAR CAVITY RESONATORS:

Resonator is a tuned circuit which resonates at a particular frequency at which the energy stored in the electric field is equal to the energy stored in the magnetic field.

Resonant frequency of microwave resonator is the frequency at which the energy in the resonator attains maximum value. i.e., twice the electric energy or magnetic energy.

At low frequencies up to VHF (300 MHz), the resonator is made up of the reactive elements or the lumped elements like the capacitance and the inductance.
The inductance and the capacitance values are too small as the frequency is increased beyond the VHF range and hence difficult to realize.

Transmission line resonator can be built using distributed elements like sections of coaxial lines. The coaxial lines are either opened or shunted at the end sections thus confining the electromagnetic energy within the section and acts as the resonant circuit having a natural resonant frequency.

At very high frequencies transmission line resonator does not give very high quality factor Q due to skin effect and radiation loss. So, transmission line resonator is not used as microwave resonator.

The performance parameters of microwave resonator are:
(i) Resonant frequency
(ii) Quality factor
(iii) Input impedance

Quality Factor of a Resonator.

- The quality factor Q is a measure of frequency selectivity of the resonator.
- It is defined as $\mathrm{Q}=2 \times$ Maximum energy stored $/$ Energy dissipated per cycle $=$ W / P

Where,
a. W is the maximum stored energy
b. P is the average power loss

The methods used for constructing a resonator:
The resonators are built by,
a) Using lumped elements like L and C
b) Using distributed elements like sections of coaxial lines
c) Using rectangular or circular waveguide there are two types of cavity resonators.
a)Rectangular cavity resonator
b) Circular cavity resonator

Rectangular or circular cavities can be used as microwave resonators because they have natural resonant frequency and behave like a LCR circuit.

Cavity resonator can be represented by a LCR circuit as:

- The electromagnetic energy is stored in the entire volume of the cavity in the form of electric and magnetic fields.
- The presence of electric field gives rise to a capacitance value and the presence of magnetic field gives rise to a inductance value and the finite

Conductivity in the walls gives rise to loss along the walls giving rise to a resistance value.

- Thus the cavity resonator can be represented by an equivalent LCR circuit and have a natural resonant frequency.
* Cavity resonators are formed by placing the perfectly conducting sheets on the rectangular or circular waveguide on the two end sections and hence all the sides are surrounded by the conducting walls thus forming a cavity.
* The electromagnetic energy is confined within this metallic enclosure and they acts as resonant circuits.

4.2 GENERAL WAVE BEHAVIOUR ALONG UNIFORM GUIDING STRUCTURES (or) APPLICATION OD MAXWELL'S EOUATIONS TO THE RECTANGULAR WAVEGUIDE:

In rectangular waveguide, the propagation of energy takes place in the Zdirection, with the length of the guide infinite in the Z-direction.

The field components of electric field and magnetic field are obtained by solving Maxwell's equation and wave equations applying appropriate boundary conditions.

The general equations for field components is determined from Maxwell's curl equations.

$$
\begin{equation*}
\nabla \times \mathrm{H}=\mathrm{j} \omega \varepsilon \mathrm{E} \tag{1}
\end{equation*}
$$

$\nabla \mathrm{xE}=-\mathrm{j} \omega \mu \mathrm{H}$
Expanding equation (1),
$\nabla \times \mathrm{H}=\left\lvert\, \begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \partial \\ H & H_{y} & H\end{array} \quad=\mathrm{j} \omega\left[\begin{array}{llll}E_{x} & \hat{x}+E_{y} & \hat{y}+E_{z} & \hat{z}\end{array}\right]\right.$

Equating $\mathrm{x}, \mathrm{y}, \mathrm{z}$ components,
$\frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}=\mathrm{j} \omega \varepsilon E_{x}$
$\frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}=\mathrm{j} \omega \varepsilon E_{y}$
$\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=\mathrm{j} \omega \varepsilon E_{z}$
Similarly Expanding equation (2),

$\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=-\mathrm{j} \omega \mu H_{x}$
$\underline{\partial E_{x}}-\frac{\partial E_{Z}}{\partial} \quad \overline{\bar{H}}-\mathrm{j} \omega \mu$
$\partial z \quad \partial x \quad y$
$\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-\mathrm{j} \omega \mu H_{z}$
The wave equations are written as,

For non-conducting in medium

$$
\begin{equation*}
\nabla^{2} \mathrm{E}=-\omega^{2} \mu \varepsilon \mathrm{E} \tag{4}
\end{equation*}
$$

$\nabla^{2} \mathrm{H}=-\omega^{2} \mu \varepsilon \mathrm{H}$
It can be written as,
$\frac{\partial^{2} H}{\partial x^{2}}+\frac{\partial^{2} H}{\partial y^{2}}+\frac{\partial^{2} H}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \mathrm{H}$
(6)
$\frac{\partial^{2} E}{\partial x^{2}}+\frac{\partial^{2} E}{\partial y^{2}}+\frac{\partial^{2} E}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \mathrm{E}$
, $H_{y=} H^{o} \mathcal{e}^{-\gamma z}$
(8) Diff w.r.to ' z '
$\frac{\partial H_{y}}{\partial z}=H^{o} e^{-\gamma z}(-\gamma)$
$\frac{\partial H_{y}}{\partial z}=-\gamma H^{o} e^{-\gamma z}$
y
$\frac{\partial H_{y}}{\partial z}=-\gamma H_{y}$
$\frac{\partial H_{x}}{\partial z}=-\gamma H_{x_{\text {And also let, }}}$
$E_{y}=E^{o} e^{-\gamma z}$ \qquad
Diff w.ryto 'z'

Sub the equ (9), (10), (12), (13) in equal (3),
$\frac{\partial H_{z}}{\partial y}+\gamma H_{y}=\mathrm{j} \omega \varepsilon E_{x}$
$-\gamma H_{x}-\frac{\partial H_{z}}{\partial x}=j \omega \varepsilon E_{y}$
$\gamma H_{x}+\frac{\partial H_{z}}{\partial x}=-\mathrm{j} \omega \varepsilon E_{y}$
$\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=\mathrm{j} \omega \varepsilon E_{z}$
$\frac{\partial E_{z}}{\partial y}+\gamma E_{y}=-\mathrm{j} \omega \mu H_{x}$
$\gamma E_{x}+\frac{\partial E_{z}}{\partial x}=\mathrm{j} \omega \mu H_{y}$
$\frac{\partial E_{y}}{\partial x}-\frac{\partial E x}{\partial y}=-\mathrm{j} \omega \mu H_{z}$

The wave equations (6) and (7) can also be written as,

$$
\begin{align*}
& \frac{\partial^{2} H_{z}}{\partial x^{2}}+\frac{\partial^{2} H_{z}+}{\partial y^{2}} \gamma H_{z}^{2}=-\omega^{2} \mu \varepsilon H_{z} \\
& \frac{\partial^{2} E_{z}}{\partial x^{2}}+\frac{\partial^{2} E_{z}}{\partial y^{2}}+\gamma^{2} E_{z}=-\omega^{2} \mu \varepsilon E_{z} \tag{15}
\end{align*}
$$

Solving Equations (14a) and (14d),
From (14d),

$$
\begin{aligned}
& \frac{\partial E_{z}}{\partial y}+\gamma E_{y}=-\mathrm{j} \omega \mu H_{x} \\
& H_{x}=\frac{1}{-\mathrm{j} \omega \mu}\left[\frac{\partial E_{z}}{\partial y}+\gamma E_{y}\right]
\end{aligned}
$$

Sub the H_{x} value in equ (14b),
From (14b),
$\gamma H_{x}+\frac{\partial H_{z}}{\partial x}=-j \omega \varepsilon E_{y}$
$\gamma\left(\frac{1}{-\mathrm{j} \omega \mu}\left[\frac{\partial E_{z}}{\partial y}+\gamma E_{y}\right]\right)+\quad \frac{\partial H_{z}}{\partial x}=-\mathrm{j} \omega \varepsilon E_{y}$
$\frac{\gamma}{-\mathrm{j} \omega \mu} \frac{\partial E_{z}}{\partial y}-\frac{\gamma^{2} E_{y}}{\mathrm{j} \omega \mu}+\frac{\partial H_{z}}{\partial x}=-\mathrm{j} \omega \varepsilon E_{y}$
$\left.\frac{\partial H_{Z}}{\partial x}-\frac{\gamma}{\mathrm{j} \omega \mu} \frac{\partial E_{Z}}{\partial y}=E_{y} \underset{\mathrm{j} \omega \mu}{{\underset{\gamma}{\omega}}^{2}}-\mathrm{j} \omega \varepsilon\right]$
Multiply throughout by $\mathrm{j} \omega \mu$,
$\mathrm{j} \omega \mu \frac{\partial H_{z}}{\partial x}-\gamma \frac{\partial E_{z}}{\partial y}=E_{y}\left[\gamma^{2}+\omega^{2} \mu \varepsilon\right]$
$\gamma^{2}+\omega^{2} \mu \varepsilon=h^{2}$
$\mathrm{j} \omega \mu \frac{\partial H_{z-}}{\partial x} \gamma \frac{\partial E_{z}}{\partial y}=E{ }_{y} h^{2}$
$E_{y}=\frac{1}{h^{2}}\left[\mathrm{j} \omega \mu \frac{\partial H_{z}}{\partial x}-\gamma \frac{\left.\partial \bar{E}_{z}\right]}{\partial y}\right.$
$E_{y}=\frac{\mathrm{j} \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial x}-{ }^{\gamma} \frac{\partial E_{z}}{h^{2}} \frac{\partial y}{}$

Similarly,
$H_{x}=-{ }^{\gamma} \overline{h^{2}} \frac{\partial H_{Z}}{\partial x}+\frac{\mathrm{j} \omega \varepsilon}{h^{2} \partial y} \frac{\partial E_{Z}}{y}$

From equal (14a),
$\frac{\partial H_{z}}{\partial y}+\gamma H_{y}^{H}=\mathrm{j} \quad x$
$E_{x}=\frac{1}{\mathrm{j} \omega \varepsilon}\left[\frac{\partial H_{z}}{\partial y}+\gamma H\right]$ Sub the E_{x} value in equ (14e),
$\gamma E_{x}+\frac{\partial E_{z}}{\partial x}=\mathrm{j} \omega \mu H_{y}$
$\gamma\left(\frac{1}{\mathrm{j} \omega \varepsilon}\left[\frac{\partial H_{z}}{\partial y}+\gamma H_{y}\right]\right)+\frac{\partial E_{z}}{\partial x}=\mathrm{j} \omega \mu H_{y}^{H}$
$\frac{\gamma}{\mathrm{j} \omega \varepsilon} \frac{\partial H_{z}}{\partial y}+\frac{\gamma^{2}}{\mathrm{j} \omega \varepsilon} H_{y}+\frac{\partial E_{z}}{\partial x}=\mathrm{j} \omega \mu H_{y}$
$\frac{\partial E_{z}}{\partial x}+\frac{\gamma}{\mathrm{j} \omega \varepsilon} \frac{\partial H_{z}}{\partial y}=H_{y}\left(\mathrm{j} \omega \mu-\frac{\gamma^{2)}}{\mathrm{j} \omega \varepsilon}\right.$
Multiply throughout by $\mathrm{j} \omega \varepsilon$
$\mathrm{j} \omega \varepsilon \frac{\partial E_{z}}{\partial x}+\frac{\gamma \partial H z}{\partial y}=-H_{y}\left(\gamma^{2}+\omega^{2} \mu \varepsilon\right)$
$\mathrm{j} \omega \varepsilon \frac{\partial E_{z}}{\partial x}+\frac{\gamma \partial H z}{\partial y}=-H_{y} h^{2}$
$H_{y}=\frac{-\mathrm{j} \omega \varepsilon}{h^{2}} \frac{\partial E_{z}}{\partial x} \gamma \overline{h^{2}} \frac{\partial H_{z}}{\partial y}$
Similarly,
$E_{x}=-r \frac{\gamma}{h^{2}} \frac{\partial E_{z}}{\partial x}-\|^{\frac{\mathrm{j} \omega \mu}{} \frac{\partial H_{z}}{h^{2} \partial y}} \quad \cap \ldots \ldots(16 \mathrm{~d})$
The above equations are in terms of E_{z} and H_{z}.
For wave propagation either E_{Z} of H_{z} should exits.
If both E_{z} and H_{z} are zero, all the fields within guide will vanish.
Wave propagation within the guide is divided into two sets, TE waves and with $E_{Z}=0$ and TM waves with $H_{z}=0$ shown in Fig 4.2.1.

Fig: 4.2.1 Rectangular waveguide
FIELD COMPONENTS OF TRANSVERSE MAGNETIC WAVES IN
RECTANGULAR WAVEGUIDE:
For TM waves, $H_{Z}=0$ and E_{Z} is to be solved from eave equations.
Wave equation for E_{Z} is given by,
$\frac{\partial^{2} E_{z}}{\partial x^{2}}+\frac{\partial^{2} E_{z}}{\partial y^{2}}+\frac{\partial^{2} E_{z=}}{\partial z^{2}}-\omega^{2} \mu \varepsilon \mathrm{E}$
$\frac{\partial^{2} E_{z}}{\partial x^{2}}+\frac{\partial^{2} E_{z}}{\partial y^{2}}+\gamma^{2} E_{z}=-\omega^{2} \mu \varepsilon \mathrm{E}$
The wave equation is a partial differential equation that can be solved by the usual technique of assuming a product solution.
$E_{Z}(x, y, z)=E_{Z}{ }^{o}(x, y) e^{-\gamma z}$
Let us assume a solution,
$E_{Z}{ }^{o}(x, y)=\mathrm{X}(x) \mathrm{Y}(y)$
(3) Where X is the function of x alone.

Y is the function y alone.
Sub equal (3) in equal(2)
$\mathrm{Y} \frac{d^{2} \mathrm{X}}{d x^{2}}+\mathrm{X} \frac{d^{2} \mathrm{Y}}{d y^{2}}+\gamma^{2} \mathrm{XY}=-\omega^{2} \mu \varepsilon \mathrm{XY}$
$\mathrm{Y} \frac{d^{2} \mathrm{X}}{d x^{2}}+\mathrm{X}_{\frac{d^{2} \mathrm{Y}}{d y^{2}}+\left[\gamma^{2}+\omega^{2} \mu \varepsilon\right] \mathrm{XY}=0}$
$\gamma^{2}+\omega^{2} \mu \varepsilon=h^{2}$
$\mathrm{Y} \frac{d^{2} \mathrm{X}}{d x^{2}}+\mathrm{X} \frac{d^{2} \mathrm{Y}}{d y^{2}}+h^{2} \mathrm{XY}=0$
Dividing by XY,
$\frac{1}{X} \frac{d^{2} \mathrm{X}}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}+h^{2}=0$
$\frac{1}{X} \frac{d^{2} \mathrm{X}}{d x^{2}}+h^{2}=-{ }^{1} \frac{d^{2} \mathrm{Y}}{Y} \frac{}{d y^{2}}$
This expression equates a function of x alone to a function of y alone and the only way for the above equation to be true is to have each of these functions equal to some constant A^{2}.
$\frac{1}{X} \frac{d^{2} \mathrm{X}}{d x^{2}}+h^{2}=\mathrm{A}^{2}$
$\frac{1}{x} \frac{d^{2} \mathrm{X}}{d x^{2}}+h^{2}-\mathrm{A}^{2}=0$
$B^{2}=h^{2}-A^{2}$
$\frac{1}{X} \frac{d^{2} \mathrm{X}}{d x^{2}}+B^{2}=0$
$-\frac{1 d^{2} \mathrm{Y}}{Y}=\mathrm{A}^{2}$
A solution of equation (7) is of the form
$\mathrm{X}=C_{1} \operatorname{Cos} \mathrm{Box}+C_{2} \operatorname{Sin} \mathrm{Box}$
Where $B^{2}=h^{2}-\mathrm{A}^{2}$
The solution of equation (8) is of the form
$\mathrm{Y}=C_{3} \operatorname{Cos} \mathrm{Ay}+C_{4} \operatorname{Sin} \mathrm{Ay}$
(9) Wit,
$E_{Z}{ }^{o}(x, y)=X Y$
$E_{z}{ }^{o}=\left(C_{1} \operatorname{Cos} \mathrm{Box}+C_{2} \sin \mathrm{Box}\right)\left(C_{3} \operatorname{Cos} \mathrm{Ay}+C_{4} \sin \mathrm{Ay} E_{z}{ }^{o}=C_{1} \operatorname{Cos} \mathrm{Ay}\right.$
$E_{z}{ }^{o}=C_{2} C_{3} \sin$ Box $\operatorname{Cos} \mathrm{Ay}+C_{2} C_{4} \sin \mathrm{Bx} \sin \mathrm{Ay}$
(12) Sub $y=o$ in equal (8)
$E_{Z}{ }^{o}=C_{2} C_{3} \sin \mathrm{Bx} \operatorname{Cos} \mathrm{Ay}=0$
X and $\mathrm{B} \neq 0$, either C_{2} or C_{3} has to zero. If $C_{2}=0$, then the equal (12)
become zero.
Since $C_{3}=0$
(13) Sub equ (13) in equ (12)
$E_{Z}{ }^{o}=C_{2} C_{4} \sin \mathrm{Bx} \sin \mathrm{Ay}$
If $\mathrm{x}=\mathrm{a}, E_{z}{ }^{o}=0, \quad \operatorname{sub}$ in (14)
$E_{z}{ }^{o}=C_{2} C_{4} \sin \mathrm{Ba} \sin \mathrm{Ay}=0$
Since $A \neq 0$
$\sin \mathrm{Ba}=0$
$\mathrm{Ba}=\mathrm{m} \pi$
$\mathrm{B}=\frac{\mathrm{m} \pi}{a} \quad$ where $\mathrm{m}=1,2,3, \ldots \ldots$
Sub equ (15) in equ (14)
$E_{Z}{ }^{o}=C_{2} \quad C_{4} \sin \left(\underset{a}{\frac{\mathrm{~m} \pi}{\longrightarrow}} x \sin \mathrm{Ay}\right.$
If $y=a, E_{z}^{o}=0, \quad \operatorname{sub}$ in (16)
$E_{Z}{ }^{o}=C_{2} \quad C_{4} \sin \left(\frac{\mathrm{~m} \pi}{a}\right) x \sin \mathrm{Ab}=0$
$\sin \mathrm{Ab}=0$
$A b=\pi$
$\mathrm{A}=\frac{\mathrm{n} \pi}{b} \quad$ where $\mathrm{n}=1,2,3$,
Sub equ (17) in equ (16)
$E_{Z}{ }^{o}=C_{2} \quad C_{4} \sin \left(\frac{\mathrm{~m} \pi}{a}\right) x \sin \left(\frac{\mathrm{n} \pi}{b}\right) y$
$\mathrm{C}=C_{2} C_{4}$
$E_{Z}{ }^{o}=C \sin \left(\frac{\mathrm{~m} \pi}{\underset{b}{)}} x \sin \quad-\right.$

The general field components with $H_{z}=0$ and $\gamma=\mathrm{j} \beta$ is given by,
$E_{x}=-\frac{\mathrm{j} \beta}{h^{2}} \frac{\partial E_{Z}}{\partial x}$
$\underset{x}{H}=\frac{\mathrm{j} \omega \varepsilon}{h^{2}} \frac{\partial E_{Z}}{\partial y}$
$E_{y}=-\frac{\mathrm{j} \beta}{h^{2}} \frac{\partial E_{z}}{\partial y}$
$H_{y}=\frac{-\mathrm{j} \omega \varepsilon}{h^{2}} \frac{\partial E_{z}}{\partial x}$

Using equ (19) and equ (20a), 20b, 20c, 20d,

$$
\begin{aligned}
& E_{x}{ }^{0}=-\frac{\mathrm{j} \beta}{h^{2}} \frac{\partial E_{z}}{\partial x} \\
& E_{x}{ }^{0}=-\frac{\mathrm{j} \beta}{h^{2}} \mathrm{C}\left(\frac{\mathrm{~m} \pi}{a}\right) \cos \left(\frac{\mathrm{m} \pi}{a}\right) x \sin \left(\frac{\mathrm{n} \pi}{b}\right) y \\
& H_{x}{ }^{o}=\frac{\mathrm{j} \omega \varepsilon}{h^{2}} \frac{\partial E_{z}}{\partial y} \\
& H_{x}{ }^{o}=\frac{\mathrm{j} \omega \varepsilon}{h^{2}} \mathrm{C}\left(\frac{\mathrm{n} \pi}{b}\right) \sin \left(\frac{\mathrm{m} \pi}{a}\right) x \cos \left(\frac{\mathrm{n} \pi}{b}\right) y \\
& E_{y}{ }^{0}=-\frac{\mathrm{j} \beta}{h^{2}} \frac{\partial E_{z}}{\partial y} \\
& E_{y}{ }^{0}=-\frac{\mathrm{j} \beta}{h^{2}} \mathrm{C}\left(\frac{\mathrm{n} \pi}{b}\right) \sin \left(\frac{\mathrm{m} \pi}{a}\right) x \cos \left(\frac{\mathrm{n} \pi}{b}\right) y \\
& H_{y}{ }^{o}=\frac{-\mathrm{j} \omega \varepsilon}{h^{2}} \frac{\partial E_{z}}{\partial x} \\
& H_{y}{ }^{o}=\frac{-\mathrm{j} \omega \varepsilon}{h^{2}} \mathrm{C}\left(\frac{\mathrm{~m} \pi}{a}\right) \cos \left(\frac{\mathrm{m} \pi}{a}\right) x \sin \left(\frac{\mathrm{n} \pi}{b}\right) y
\end{aligned}
$$

Wkt,

$\mathrm{A}=\frac{\mathrm{n} \pi}{b} \quad \& \mathrm{~B}=\frac{\mathrm{m} \pi}{a}$
$E_{Z}=E_{Z}{ }^{0} e^{-\gamma z}$
$E_{z}=E_{z}{ }^{0} e^{-\mathrm{j} \beta z}$
From equ (19) $)_{z}=C \sin B x \sin A y e^{-\mathrm{j} \beta} E_{x}=E_{x}{ }^{0} e^{-\mathrm{j} \beta z}$
$E_{x}=-\frac{\mathrm{j} \beta}{h^{2}} B C \cos B x \sin A y e^{-\mathrm{j} \beta z}$

$$
\begin{aligned}
& E_{y}=-\frac{\mathrm{j} \beta}{h^{2}} A C \sin B x \cos A y e^{-\mathrm{j} \beta z} \\
& H=\frac{\mathrm{j} \omega \varepsilon}{h^{2}} A C \sin B x \cos A y e^{-\mathrm{j} \beta z} \\
& x \\
& H_{y}=\frac{\mathrm{j} \omega \varepsilon}{h^{2}} A C \cos B x \sin A y e^{-\mathrm{j} \beta z}
\end{aligned}
$$

CHARACTERISTICS OF TE AND TM WAVES IN RECTANGULAR

WAVEGUIDE:

$A^{2}+B^{2}=h^{2}$
$\mathrm{A}=\frac{\mathrm{n} \pi}{b} \quad \& \mathrm{~B}=\frac{\mathrm{m} \pi}{a}$
$h^{2}=\gamma^{2}+\omega^{2} \mu \varepsilon$
$\mathrm{a}=$ width of guide along x
$b=$ width of guide along y
$\mathrm{m}, \mathrm{n}=$ integers
i) PROPAGATION CONSTANT AND CUT OFF FREQUENCY:
$h^{2}=\gamma^{2}+\omega^{2} \mu \varepsilon=A^{2}+B^{2}$
$\gamma=\sqrt{h^{2}-\omega^{2} \mu \varepsilon}$
$\gamma=\sqrt{ }\left(\overline{\left.A^{2}+B^{2}\right)-\omega^{2} \mu \varepsilon}\right.$
$\gamma=\sqrt{\left(\frac{\mathrm{n} \pi}{b}\right)^{2}+\left(\frac{\mathrm{m} \pi}{a}\right)^{2}-\omega^{2} \mu \varepsilon}$
This is the equation of propagation constant in a rectangular waveguide for TE and TM waves. Foe small frequencies $\gamma=\alpha, \gamma$ is real and there is no wave propagation.

As frequency increases and reaches a particular value f, γ becomes zero.
Then for all values of f greater than $f_{c} \gamma$ is imaginary, $\gamma=\mathrm{j} \beta$, wave propagation takes place.
At $\mathrm{f}=f, \gamma=0 \omega_{c}{ }^{2} \mu \varepsilon=h^{2}$
$\omega^{2} \mu \varepsilon=\left(\frac{\mathrm{n} \pi}{b}\right)^{2}+\left(\frac{\mathrm{m} \pi}{a}\right)^{2}$
$\omega_{c}^{c}{ }^{2}={ }^{1}\left[{ }^{\mu \varepsilon}\left[\begin{array}{c}\mathrm{n} \pi \\ b\end{array}\right)^{2}+\left({ }^{\mathrm{m} \pi}\right)^{2}\right]$
(or)
${ }_{c}^{\omega}=\frac{1}{\sqrt{\mu \varepsilon}} \sqrt{\left[\left(\frac{\mathrm{n} \pi}{b}\right)^{2}+\left({ }^{\mathrm{m} \pi}\right)_{a}^{2}\right]}$
$\omega=\frac{h}{\sqrt{\mu \varepsilon}}$
c
$f_{c}=\frac{1}{2 \pi \sqrt{\mu \varepsilon}} \sqrt{ }\left[\left(\frac{\mathrm{n} \pi}{b}\right)^{2}+\left({ }^{\mathrm{m} \pi}\right)_{a}^{2}\right]$
The frequency f_{c} below which there is no wave propagation (or) thefrequency above which the wave propagation exits is called cut off frequency. The propagation constant can be given by,

$$
\begin{aligned}
& \gamma=\sqrt{h^{2}-\omega^{2} \mu \varepsilon} \\
& \gamma=h \sqrt{1-\frac{\omega^{2} \mu \varepsilon}{h^{2}}} \\
& \gamma=h \sqrt{1-\frac{\omega^{2} \mu \varepsilon}{\omega_{c}^{2} \mu \varepsilon}} \\
& \gamma=h \sqrt{1-\frac{f^{2}}{f_{c}^{2}}} \\
& \gamma=\omega \sqrt{\mu \varepsilon} \sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}}
\end{aligned}
$$

ii) ATTENUATION CONSTANT:

When $\left(\frac{)^{2}}{f_{c}}<1\right.$ (i.e) $\mathrm{f}<f, \gamma_{c}=r e a l, \gamma=\alpha$ No wave propagation
$\gamma=\alpha=h \quad \sqrt{1-\left(\frac{)^{2}}{f_{c}}\right.}$
$\gamma=\alpha=\sqrt{ } h^{2-\omega^{2} \mu \varepsilon}$

iii) PHASE SHIFT:

$\gamma=\sqrt{-\left(\omega^{2} \mu \varepsilon-h^{2}\right)}$

$$
\begin{aligned}
& \gamma=\mathrm{j} \beta=\mathrm{j} \sqrt{ }\left(\overline{\omega^{2} \mu \varepsilon-h^{2}}\right) \\
& \gamma=\mathrm{j} \sqrt{ } \overline{\omega^{2} \mu \varepsilon-\left(A^{2}+B^{2}\right)} \\
& \mathrm{j} \beta=\mathrm{j} \sqrt{\omega^{2} \mu \varepsilon-\left[\left(\frac{\mathrm{n} \pi}{b}\right)^{2}+\left(\frac{\mathrm{m} \pi}{a}\right)^{2}\right]} \\
& \beta=\sqrt{\omega^{2} \mu \varepsilon-\left[\left(\frac{\mathrm{n} \pi}{b}\right)^{2}+\left({ }^{\mathrm{m} \pi}\right)_{a}^{2}\right]} \\
& \gamma=\mathrm{j} \beta \\
& \gamma=\mathrm{j} \sqrt{ }\left(\overline{\left.\omega^{2} \mu \varepsilon-h^{2}\right)}\right. \\
& \gamma=\mathrm{j} \sqrt{ }\left(\overline{\left.\omega^{2} \mu \varepsilon-\omega_{c}{ }^{2} \mu\right)}\right. \\
& \gamma=\mathrm{j} \omega \underset{\left.\sqrt{\omega_{c}}\right)^{2}}{ } \\
& \gamma=\mathrm{j} \omega \sqrt{ } \mu \bar{\varepsilon} \sqrt{1-()_{f_{c}}}{ }^{2}
\end{aligned}
$$

It is the wavelength at cut - off frequency

$$
\begin{aligned}
& \lambda_{c}=\frac{v}{f_{c}} \\
& \lambda_{c}=\frac{\text { velocity }}{\text { cut-off frequency }} \\
& \lambda_{c}=\frac{1}{\frac{1}{2 \pi \sqrt{\mu \varepsilon}} \sqrt{\left[\left(\frac{\mathrm{n} \pi}{b}\right)^{2}+\left(\frac{\mathrm{m} \pi}{a}\right)^{2}\right]}} \\
& \lambda_{c}=\frac{v 2 \pi \sqrt{\mu \varepsilon}}{\sqrt{\left[\left(\frac{\mathrm{n} \pi}{b}\right)^{2}+\left(\frac{\mathrm{m} \pi}{a}\right)^{2}\right]}} \\
& \mathrm{V}=\frac{1}{\sqrt{\mu \varepsilon}} \\
& \lambda_{c}=\frac{2 \pi}{\sqrt{\left[\left(\frac{\mathrm{n} \pi}{b}\right)^{2}+\left(\frac{\mathrm{m} \pi}{a}\right)^{2}\right]}} \\
& \lambda_{c}=\frac{2 \pi}{\pi \sqrt{\left[\left(\frac{\mathrm{n}}{b}\right)^{2}+\left(\frac{\mathrm{m}}{a}\right)^{2}\right]}}
\end{aligned}
$$

www.binils.com for Anna University | polytechnic and schools

$$
\lambda_{c}=\frac{2}{\sqrt{\left[\left(\frac{\mathrm{n}}{b}\right)^{2}+\left(\frac{\mathrm{m}}{a}\right)^{2}\right]}}
$$

v) GUIDED WAVELENGTH $\left(\lambda_{g}\right)$:

$$
\lambda_{g}=\frac{v}{f}=\frac{2 \pi}{\beta}
$$

$$
\lambda_{g}=\frac{2 \pi}{\sqrt{\omega^{2} \mu \varepsilon-\left[\left(\frac{n \pi}{b}\right) 2+\left(\frac{m \pi}{a}\right) 2\right]}}
$$

(Or)

$$
\lambda_{g}=\frac{\lambda}{\sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}}}
$$

vi) PHASE VELOCITY $\left(v_{p}\right)$:
$v_{p}=\frac{\omega}{\beta}$
$v_{p}=\frac{\omega}{\sqrt{\omega^{2} \mu \varepsilon-\left[\left(\frac{\mathrm{n} \pi}{b}\right)^{2}+\left(\frac{\mathrm{m} \pi}{a}\right)^{2}\right]}}$
At $\omega=\omega_{c}$

$$
v_{p}=\frac{\omega_{c}}{\omega_{c} \sqrt{\mu \varepsilon} \sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}}}
$$

$$
v_{p}=\frac{v}{\sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}}}
$$

vi) GROUP VELOCITY:
$v_{g}=\frac{d \omega}{d \beta}$
$\beta=\omega \sqrt{\mu \varepsilon} \sqrt{1-1-\left(\frac{f}{f_{c}}\right)^{2}}$
$\beta=\omega \sqrt{\mu \varepsilon} \sqrt{ } \overline{\omega^{2}-\omega_{c}{ }^{2}}$
$V_{g}=$
$v \sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}}$

4.1 GENERAL WAVE BEHAVIOUR ALONG UNIFORM PARALLEL PLANES (or) APPLICATION OF RESTICTIONS TO MAXWELL'S EOUATION (or) WAVES BETWEEN PARALLEL PLANES OF PERFECT CONDUCTORS:

Fig: 4.1.1 Parallel conducting planes
In Fig 4.1.1 consider an electromagnetic wave propagate between a pair of parallel perfectly conducting planes of infinite incident in the plane of Y and Z direction the Maxwell equation for long conducting rectangular region is given by,
$\nabla \mathrm{XH}=\mathrm{j} \omega \varepsilon \mathrm{E}$
$\nabla \mathrm{XE}=-\mathrm{j} \omega \mu \mathrm{H}$
$\nabla^{2} \mathrm{E}=\gamma^{2} \mathrm{E}$
$\nabla^{2} \mathrm{H}=\gamma^{2} \mathrm{H}$

Where,
$\gamma^{2}=-\omega^{2} \mu \varepsilon$
For non-conducting in medium

$$
\begin{align*}
& \nabla^{2} \mathrm{E}=-\omega^{2} \mu \varepsilon \mathrm{E} \tag{5}\\
& \nabla^{2} \mathrm{H}=-\omega^{2} \mu \varepsilon \mathrm{H}
\end{align*}
$$

It can be written as,

$$
\begin{align*}
& \frac{\partial^{2} E}{\partial x^{2}}+\frac{\partial^{2} E}{\partial y^{2}}+\frac{\partial^{2} E}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \mathrm{E} \tag{7}\\
& \frac{\partial^{2} H}{\partial x^{2}}+\frac{\partial^{2} H}{\partial y^{2}}+\frac{\partial^{2} H}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \mathrm{H} \tag{8}
\end{align*}
$$

From the properties of vector algebra,

$$
\begin{align*}
\nabla \mathrm{X} \mathrm{H} & =\left|\begin{array}{lll}
\overrightarrow{a_{x}} & \overrightarrow{a_{y}} & \overrightarrow{a_{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \\
H & H_{y} & H_{z} \\
x
\end{array}\right| \\
& \left.=\rightarrow\left[\frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}\right]-\overrightarrow{a_{y}} \frac{\partial H z}{\partial x}-\frac{\partial H_{x}}{\partial z}\right]+\rightarrow\left[\begin{array}{ll}
\partial H & \left.\frac{\partial H}{a_{z}} \frac{\partial H_{x}}{\partial x}\right]
\end{array}\right. \tag{9}
\end{align*}
$$

Equal (1) can be written
as,
$\nabla \mathrm{XH}=\mathrm{j} \omega \varepsilon\left[E_{x} \underset{a_{x}}{\vec{a}}+E_{y} \begin{array}{ll}\overrightarrow{a_{y}}+E_{z} & \overrightarrow{a_{z}}\end{array}\right]$
$\nabla \mathrm{XH}=\mathrm{j} \omega \varepsilon E_{x} \rightarrow \vec{a}_{x}+\mathrm{j} \omega \varepsilon E_{y} \overrightarrow{a_{y}}+\mathrm{j} \omega \varepsilon E_{z} \rightarrow$
Equate equal (9) and (10),

$$
\begin{align*}
& \frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}=\mathrm{j} \omega \varepsilon E_{x} \tag{11}\\
& \frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}=\mathrm{j} \omega \varepsilon E_{y} \tag{12}\\
& \frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=\mathrm{j} \omega \varepsilon E_{z}
\end{align*}
$$

$\nabla \times \mathrm{E}=\left|\begin{array}{lll}\overrightarrow{a_{x}} & \overrightarrow{a_{y}} & \overrightarrow{a_{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \\ E_{x} & E_{y} & E_{z}\end{array}\right|$

$$
\begin{equation*}
=\overrightarrow{a_{x}}\left[\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}\right]-\underset{a_{y}}{\rightarrow} \frac{\partial E_{z}}{\partial x}-\frac{\partial E_{x}}{\partial z} d E_{y}^{+} \underset{a_{z}}{\rightarrow}\left[\frac{}{\partial x}-\frac{\partial E_{x}}{\partial y}\right] \tag{14}
\end{equation*}
$$

Equal (2) can be written
as,
$\left.\nabla \mathrm{XE}=-\mathrm{j} \omega \mu\left[\begin{array}{ll}H_{x \rightarrow}+H_{y} & \overrightarrow{a_{y}}\end{array}\right]+H_{z} \quad \overrightarrow{a_{z}}\right]$
$\nabla \mathrm{XE}=-\mathrm{j} \omega \mu H_{x} \overrightarrow{a_{x}}+\mathrm{j} \omega \varepsilon H_{y} \overrightarrow{a_{y}} \quad+\mathrm{j} \omega \varepsilon H_{z} \rightarrow$
Equate equal (14) \& (15)
$\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=-\mathrm{j} \omega \mu E \quad x$
$\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}=-\mathrm{j} \omega \mu E_{y}$
$\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-\mathrm{j} \omega \mu E_{z}$
It is assumed that the propagation is in z direction.
The radiation of component in this z-direction may be expressed in terms of $e^{-\gamma z}$ Where γ is propagation constant,
$\gamma=\alpha+\mathrm{j} \beta$
If $\alpha=0$ waves propagate without attenuation.
If $\gamma=$ real then $\beta=0$, there is no wave propagation
Let, $\quad H_{y=} H^{o} e^{-\gamma z}$
Diff w.r.to ${ }^{\text {' } z}$

$\frac{\partial H_{y}}{\partial z}=-\gamma H_{y}^{o} e^{-\gamma z}$
$\frac{\partial H_{y}}{\partial z}=-\gamma H_{y}$
$\frac{\partial H_{x}}{\partial z}=-\gamma H_{x}$
And also let,

$$
\begin{equation*}
E_{y}=E_{y}^{o} e^{-\gamma z} \tag{22}
\end{equation*}
$$

Diff w.r.to ' z '

There is no attenuation in y direction. Hence the derivative of y is zero.
Let $\mathrm{E}=E_{o} e^{-\gamma z}$
Diff w. r. to ' z '
$\frac{\partial E}{\partial z}=E_{o} e^{-\gamma z}(-\gamma)$
Again diff w. r. to ' z '
$\frac{\partial^{2} E}{\partial z^{2}}=E_{o} e^{-\gamma z}(-\gamma)(-\gamma)$
$\frac{\partial^{2} E}{\partial z^{2}}=E_{o} e^{-\gamma z} \gamma^{2}$
$\frac{\partial^{2} E}{\partial z^{2}}=\gamma^{2} \mathrm{E}$
From equal (7),
$\frac{\partial^{2} E}{\partial x^{2}}+0+\frac{\partial^{2} E}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \mathrm{E}$
$\frac{\partial^{2} E}{\partial x^{2}}+\gamma^{2} \mathrm{E}=-\omega^{2} \mu \varepsilon \mathrm{E}$
From equal (8),
$\frac{\partial^{2} H}{\partial x^{2}}+0+\frac{\partial^{2} H}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \mathrm{H}$
$\frac{\partial^{2} H}{\partial x^{2}}+\gamma^{2} \mathrm{H}=-\omega^{2} \mu \varepsilon \mathrm{H}$
Sub equal (20) \& (21) in (11), (12) \& (13)
From equal (11),

$$
\begin{gathered}
-\left(-\gamma H_{y}\right)=\mathrm{j} \omega \varepsilon E_{x} \\
\gamma H_{y=}=\mathrm{j} \omega \varepsilon E_{x}
\end{gathered}
$$

(27) From equal (12),
$\gamma H_{x} \quad-\frac{\partial H_{z}}{\partial x}=\mathrm{j} \omega \varepsilon E_{y}$

From equal (13),
$\frac{\partial H_{y}}{\partial x}=\mathrm{j} \omega \varepsilon E_{z}$
Sub equal (23) \& (24) in (16), (17) \& (18)
From equal (16),
$-\left(-\gamma E_{y}\right)=-\mathrm{j} \omega \mu H_{x}$
$\gamma E_{y=-\mathrm{j}} \omega \mu H_{x}$
(30) From equal (17),
$\left(-\gamma E_{x}\right)-\frac{\partial E_{z}}{\partial x}=-\mathrm{j} \omega \mu H_{y}$
$\gamma E_{x}+\frac{\partial E_{z}}{\partial x}=\mathrm{j} \omega \mu$
From equal (18),
$\frac{\partial E_{y}}{\partial x}=-\mathrm{j} \omega \mu H_{z}$
From equal (30),
${ }_{x}^{H}=\frac{-\gamma E_{y}}{\mathrm{j} \omega \mu}$
From equal (28),

$$
E_{y}=\frac{-1}{\mathrm{j} \omega \varepsilon}\left(\gamma H_{x}+\frac{\partial H_{z}}{\partial x}\right)
$$

Sub equal (34) in equal (33)

$$
\begin{aligned}
& H_{x}=\frac{-\gamma}{j \omega \mu}\left(\frac{-1}{j \omega \varepsilon}\left(\gamma H_{x}+\frac{\partial H_{z}}{\partial x}\right)\right) \\
& H_{x}=\frac{\gamma}{j^{2} \omega^{2} \mu \varepsilon}\left(\gamma H_{x}+\frac{\partial H_{z}}{\partial x}\right) \\
& {\left[j^{2}=-1\right]} \\
& H_{x}=\frac{-\gamma}{\omega^{2} \mu \varepsilon}\left(\gamma H_{x}+\frac{\partial H_{z}}{\partial x}\right) \\
& H_{x}=\frac{-\gamma^{2}}{\omega^{2} \mu \varepsilon} H_{x}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial x} \\
& H_{x}+\frac{\gamma^{2}}{\omega^{2} \mu \varepsilon} H_{x}=\frac{-\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial x}
\end{aligned}
$$

$$
\begin{aligned}
& H_{x}\left(1+\frac{\gamma^{2}}{\omega^{2} \mu \varepsilon}\right)=\frac{-\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial x} \\
& H_{x}=\frac{\frac{-\gamma \partial H_{z}}{\omega^{2} \mu \varepsilon \partial x}}{\left(1+\frac{\gamma^{2}}{\omega^{2} \mu \varepsilon}\right)} \\
& H_{x}=\frac{\frac{-\gamma \partial H_{z}}{\omega^{2} \mu \varepsilon \partial x}}{\left(\frac{\omega^{2} \mu \varepsilon+\gamma^{2}}{\omega^{2} \mu \varepsilon}\right)} \\
& H_{x}=\left(\frac{-\gamma}{\omega^{2} \mu \varepsilon+\gamma^{2}}\right) \frac{\partial H_{z}}{\partial x}
\end{aligned}
$$

It is given that,

$$
\begin{align*}
& \omega^{2} \mu \varepsilon+\gamma^{2}=h^{2} \\
& H=\left(\epsilon_{\left.h^{2}\right)}^{-\gamma} \frac{\partial H_{Z}}{\partial x}\right. \\
& x \tag{35}\\
& H_{x}=\frac{-\gamma \partial H_{Z}}{h^{2}} \frac{H_{z}}{\partial x}
\end{align*}
$$

To find H_{y}, we need to solve equal (27) \& (31)
from equal (27),
$\gamma H_{y}=\mathrm{j} \omega \varepsilon E_{x}$
$\begin{aligned} & H \\ & y\end{aligned}=\frac{\mathrm{j} \omega \varepsilon E_{x}}{\gamma}$
From equal (31),

$$
\begin{align*}
& \gamma E_{x}+\frac{\partial E_{z}}{\partial x}=\mathrm{j} \omega \mu H_{y} \\
& \gamma E_{x}=\mathrm{j} \omega \mu H_{y}-\frac{\partial E_{z}}{\partial x} \\
& E={ }_{x}{ }^{1}\left(\mathrm{j} \omega \mu H-E_{\gamma} \quad \frac{\partial E_{z}}{\partial x}\right. \tag{37}
\end{align*}
$$

Sub equal (37) in equ (36),
$H_{y}=\frac{\mathrm{j} \omega \varepsilon}{\gamma} \frac{1}{\gamma}\left(\mathrm{j} \omega \mu H_{y}-\frac{\partial E_{z}}{\partial x}\right.$
$\begin{aligned} & H \\ & y\end{aligned}=\frac{\mathrm{j} \omega \varepsilon}{\gamma^{2}}\left(\mathrm{j} \omega \mu H_{y}\right)-\frac{\mathrm{j} \omega \varepsilon}{\gamma^{2}} \frac{\partial E_{z}}{\partial x}$
$H_{y}=\frac{-\omega^{2} \mu \varepsilon H_{y}}{\gamma^{2}} \frac{\mathrm{j} \omega \varepsilon}{\gamma^{2}} \frac{\partial E_{z}}{\partial x}$

$$
\begin{aligned}
& H_{y}+\frac{\omega^{2} \mu \varepsilon H_{y}}{\gamma^{2}}=\frac{-\mathrm{j} \omega \varepsilon}{\gamma^{2}} \frac{\partial E_{z}}{\partial x} \\
& H_{y}\left(1+\frac{\omega^{2} \mu \varepsilon}{\gamma^{2}}=-\frac{-\mathrm{j} \omega \varepsilon}{\gamma^{2}} \frac{\partial E_{z}}{\partial x}\right.
\end{aligned}
$$

$$
H_{y}=\frac{\frac{-\mathrm{j} \omega \varepsilon \partial E_{z}}{\gamma^{2} \partial x}}{\frac{\gamma^{2}+\omega^{2} \mu \varepsilon}{\gamma^{2}}}
$$

$$
\underset{y}{H}=\frac{-\mathrm{j} \omega \varepsilon}{\gamma^{2}+\omega^{2} \mu \varepsilon} \frac{\partial E_{z}}{\partial x}
$$

$$
\begin{equation*}
H_{y}^{y}=\frac{-\mathrm{j} \omega \varepsilon}{h^{2}} \frac{\partial E_{z}}{\partial x} \tag{38}
\end{equation*}
$$

To find E_{x},
Solve equal (27) \& (31),
From equal (27),
$\gamma H_{y}=\mathrm{j} \omega \varepsilon E_{x}$

$\gamma E_{x}+\frac{\partial E_{z}}{\partial x}=\mathrm{j} \omega \mu H_{y}$
Sub equal (39) in equal (31)
$\gamma E_{x}+\frac{\partial E_{Z}}{\partial x}=\mathrm{j} \omega \mu\left(\frac{\mathrm{j} \omega \varepsilon E_{x}}{\gamma}\right)$
$\gamma E_{x}+\frac{\partial E_{z}}{\partial x}=\frac{-\omega^{2} \mu \varepsilon E_{x}}{\gamma}$
$\gamma E_{x}+\frac{\omega^{2} \mu \varepsilon E_{x}}{\gamma}=-\frac{\partial E_{Z}}{\partial x}$
$E\left(\gamma+\frac{\omega^{2} \mu \varepsilon}{\gamma}\right)=-{ }^{\partial E z} \frac{\partial x}{\partial x}$
$x=\frac{-\frac{\partial E_{\underline{z}}}{\partial x}}{\gamma+\frac{\omega^{2} \mu \bar{\varepsilon}}{\gamma^{\gamma-}}}$

$$
\begin{align*}
& E_{x}=\frac{-\frac{\partial E_{\underline{z}}}{\partial x}}{\frac{h^{2}}{\gamma}} \\
& E_{x}=\frac{-\gamma}{h^{2}}\left(\frac{\left.\partial E_{z}\right)}{\partial x}\right. \tag{40}
\end{align*}
$$

To find E_{y} :
Solve equ (28) \& (30),
From equ (30),
$\gamma E_{y}=-\mathrm{j} \omega \mu H_{x}$
H
x
Sub equ (41) in equ (28),
$-\gamma H_{x}-\frac{\partial H_{z}}{\partial x}=j \omega \varepsilon E_{y}$
$-\gamma\left(\frac{-\gamma E_{y}}{\mathrm{j} \omega \mu}-{ }^{\partial H_{z}} \frac{}{\partial x}=\mathrm{j} \omega \varepsilon E_{y}\right.$
$\frac{\gamma^{2} E_{y}}{\mathrm{j} \omega \mu}-\frac{\partial H_{z}}{\partial x}=\mathrm{j} \omega \varepsilon E_{y}$
$\frac{\gamma^{2} E_{y}}{\mathrm{j} \omega \mu}-\mathrm{j} \omega \varepsilon E_{y}=\frac{\partial H_{z}}{\partial x}$

$$
E_{y}\left[\frac{2 \mathrm{j} \omega}{\mu}-\mathrm{j} \omega\right]={ }^{\partial H z} \frac{}{\partial x}
$$

$$
E_{y}\left[\frac{\gamma^{2}+\omega^{2} \mu \varepsilon}{\mathrm{j} \omega \mu}\right]=\frac{\partial H_{z}}{\partial x}
$$

$$
E_{y}\left[\frac{h^{2}}{\mathrm{j} \omega \mu}\right]=\frac{\partial H_{z}}{\partial x}
$$

$$
\begin{equation*}
E=\frac{\partial H_{z} \mathrm{j} \omega \mu}{\partial x}\left[\frac{h^{2}}{y}\right. \tag{42}
\end{equation*}
$$

The various components of electric and magnetic field strength in equ (35), (38), (40), (42) is expressed interms of $E_{z} \& H$.

There will be z component either in E or H otherwise all the components should be zero.In general both the $E_{z} \& H_{z}$ may nor present at the same time the solutions are divided into two cases.
Case (i):

If E_{z} is present and $H_{z}=0$, then the wave is called transverse magnetic wave or TM wave or \mathbf{E} wave because the magnetic field strength is completely transverse to the direction of propagation z .

Case (ii):
If H_{z} is present and $E_{z}=0$, then the wave is called transverse electric wave or TE wave or H wave, because the electric field strength is completely transverse to the direction of propagation .

Case (iii):
Transverse Magnetic Waves or TEM waves are waves that contain neither E_{z} or H_{z}. Both the electric field and magnetic field components are transverse to the direction of propagation, z-direction.

TRANSMISSION OF TRANSVERSE ELECTRIC WAVES BETWEEN

PARALLEL PLANES $\left[E_{z}=0\right]$

The general field equations of equation (35), (38), (40), (42) for $E_{z}=0$ is given By,

$$
\begin{aligned}
& H_{x}=\frac{-\gamma}{h^{2}} \frac{\partial H_{z}}{\partial x} \\
& H_{y}=\frac{-\mathrm{j} \omega \varepsilon}{h^{2}} \frac{\partial E_{z}}{\partial x}=0 \\
& \left.E_{x}=\frac{-\gamma}{h^{2}} \frac{\partial E_{z}}{\partial x}\right)=0 \\
& E_{y}=\frac{\partial H_{z}}{\partial x}\left[\frac{\lceil\omega \mu}{h^{2}}\right]
\end{aligned}
$$

The field components E_{x} and H_{y} are zero.
The field components H_{x}, E_{y} and H_{z} are too determined.
www.binils.com for Anna University | polytechnic and schools

Fig: 4.1.2 Fields in TE waves (H-waves)
In the above Fig 4.1.2, $E_{x}=E_{z}=0$ and the electric field E_{y} is made wholly transverse to the direction of propagation z .

The magnetic field components H_{x} and H_{z}, but $H_{y}=0$. The wave is called as Transverse electric wave or H-wave.

The wave equation for the field component E_{y} can be written as, from equal (25),
$\frac{\partial^{2} E}{\partial x^{2}}+\gamma^{2} \mathrm{E}=-\omega^{2} \mu \varepsilon \mathrm{E}$
$\frac{\partial^{2} E_{y}}{\partial x^{2}}+\not \vDash \quad E_{y}=\epsilon^{2} \mu \varepsilon E_{y}$
$\frac{\partial^{2} E_{y}}{\partial x^{2}}+\gamma^{2} E_{y}+\omega^{2} \mu \varepsilon E_{y}=0$
$\frac{\partial^{2} E_{y}}{\partial x^{2}}+\left(\gamma^{2}+\omega^{2} \mu \varepsilon\right) E_{y}=0$
$\omega^{2} \mu \varepsilon+\gamma^{2}=h^{2}$
$\frac{\partial^{2} E_{y}}{\partial x^{2}}+h^{2} E_{y}=0$
Let $E_{y}=E_{y o} e^{-\gamma z}$
Equal (1) is a second order differential equation and the solution of this equation is given by,
$E_{y o}=C_{1} \sin$ hex $+C_{2}$ Cos hex
(2) Where C_{1} and C_{2} are arbitrary constants.

If E_{y} is expressed in time and direction $E_{y}=E_{y o} e^{-\gamma z}$, then solution becomes $E_{y}=\left[C_{1}\right.$ Sinhex $+C_{2}$ Cash $] e^{-\gamma z}$
The tangential component of E is zero at the surface of the conductors for all values of Z .
I. $\quad E_{y=}=0$ at $\mathrm{x}=0$
ii. $\quad E_{y=} 0$ at $\mathrm{x}=\mathrm{a}$

These are the boundary conditions to be applied.
Applying the boundary conditions $E_{y}=0$ at $\mathrm{x}=0$ in equal
(3) $0=\left[C_{1} \sinh (0)+C_{2} \operatorname{Cash}(0)\right] e^{-\gamma z} C_{2}=0$

Sub equal (4) in equal (3),
$E_{y}=C_{1} \operatorname{sinhex} e^{-\gamma z}$
Applying the boundary conditions $E_{y}=0$ at $\mathrm{x}=\mathrm{a}$ in equal
(5) $0=C_{1} \sin$ ha $e^{-\gamma z}$

Sin ha $=0$
$\mathrm{Ha}=\sin ^{-1} 0$
$\mathrm{Ha}=\mathrm{m} \pi$
$\mathrm{h}=\frac{\mathrm{m} \pi}{a}$ where $\mathrm{m}=1,2,3 \ldots \ldots$.
Sub ' h ' value in equal (5),
$E_{y}=C_{1} \operatorname{Sin}\left(\frac{\mathrm{M} \pi}{a}\right) x e^{-\gamma z}$
Sub E_{y} in equal (42),

$$
\begin{align*}
& E_{y}=\frac{\partial H_{z}}{\partial x}\left[\frac{\mathrm{j} \omega \mu}{h^{2}}\right] \\
& \frac{\partial H_{z}}{\partial x}=E_{y} \cdot \frac{h^{2}}{\mathrm{j} \omega \mu} \\
& H_{z}=\int E_{y} \cdot \frac{h^{2}}{\mathrm{j} \omega \mu} \cdot \mathrm{dx} \\
& H_{z}=\int E_{y} \cdot \frac{\left(\frac{\mathrm{~m} \pi}{a}\right)^{2}}{\mathrm{j} \omega \mu} \cdot \mathrm{dx} \\
& H_{z}=\left(\frac{\mathrm{m} \pi}{a}\right)^{2} \cdot \frac{1}{\mathrm{j} \omega \mu} \int E_{y} \cdot \mathrm{dx} \\
& H_{z}=\left(\frac{\mathrm{m} \pi}{a}\right)^{2} \cdot \frac{1}{\mathrm{j} \omega \mu} \int C_{1} \sin \left(\frac{\mathrm{~mm}}{a}\right) \mathrm{x} e^{-\gamma z} \cdot \mathrm{dx} \\
& H_{z}=\left(\frac{\mathrm{m} \pi}{a}\right)^{2} \cdot \frac{-1}{\mathrm{j} \omega \mu} \cdot C_{1} \frac{\cos \left(\frac{m \pi}{a}\right) x}{\left(\frac{m \pi}{a}\right)} \cdot e^{-\gamma z} \\
& H_{z}=\frac{-1}{\mathrm{j} \omega \mu}\left(\frac{\mathrm{~m} \pi}{a}\right) C_{1} \cos \left(\frac{\mathrm{~m} \pi}{a}\right) x e^{-\gamma z}
\end{align*}
$$

Sub equ (8) in equ (35),
$\operatorname{Cos} a x=(-\sin a x) a$

$$
\begin{aligned}
& H_{x}=\frac{-\gamma}{h^{2}} \frac{\partial H_{z}}{\partial x} \\
& H_{x}=\frac{-\gamma}{h^{2}} \frac{\partial}{\partial x}\left(\frac{-1}{j \omega \mu}\left(\frac{\mathrm{~m} \mathrm{\pi}}{a}\right) C_{1} \cos \left(\frac{\mathrm{~m} \pi}{a}\right) x e^{-\gamma z}\right) \\
& H_{x}=\frac{-\gamma}{\left(\frac{m \pi}{a}\right)^{2}} \frac{-1}{j \omega \mu}\left(\frac{\mathrm{~m} \mathrm{\pi}}{a}\right) C_{1}\left(-\sin \left(\frac{\mathrm{m} \mathrm{\pi}}{a}\right) x\right) \cdot \frac{\mathrm{mm}}{a} e^{-\gamma z} \\
& H_{x}=\frac{-\gamma}{\mathrm{j} \omega \mu} C_{1} \sin \left(\frac{\mathrm{~m} \pi}{a}\right) x e^{-\gamma z}
\end{aligned}
$$

Each value of m specifies a particular field of configuration or mode and is designated as $T E_{m o}$ mode.

The second subscript refers to another factor which varies with y, which is found in rectangular waveguides.
The smallest value of $\mathrm{m}=1$, because $\mathrm{m}=0$ makes all fields identically zero.
Therefore lowest order mode is $T E_{10}$. This is also called as the dominant mode in TE waves.

The propagation constant $\gamma=\alpha+\mathrm{j} \beta$. If the wave propagates without attenuation , $\alpha=0$ then $\gamma=\mathrm{j} \beta$.

Sub $\gamma=\mathrm{j} \beta$ in equation (7), (8), (9),

$$
\begin{aligned}
& E_{y}=C_{1} \sin \left(\frac{\mathrm{~m} \pi}{a}\right) \times e^{-\mathrm{j} \beta z} \\
& H_{z}=\frac{-1}{\mathrm{j} \omega \mu}\left(\frac{\mathrm{~m} \pi}{a}\right) C_{1} \cos \left(\frac{\mathrm{~m} \pi}{a}\right) x e^{-\mathrm{j} \beta z} \\
& H_{x}=\frac{-\mathrm{j} \beta}{\mathrm{j} \omega \mu} C_{1} \sin \left(\frac{\mathrm{~m} \pi}{a}\right) x e^{-\mathrm{j} \beta z} \\
& H_{x}=\frac{-\beta}{\omega \mu} C_{1} \sin \left(\frac{\mathrm{~m} \pi}{a}\right) x e^{-\mathrm{j} \beta z}
\end{aligned}
$$

The above equations represent the field strength of TE waves between parallel conducting planes.

TRANSMISSION OF TRANSVERSE ELECTROMAGNETIC WAVE

BETWEEN PARALLEL PLANES (TEM WAVES)

Consider the electric field is totally along the x-axis (i.e., $E_{x}=E_{y}=0$) and the magnetic field along the y-axis. (i.e., $H_{x}=H_{y}=0$) shown in Fig 4.1.3.

Both the electric and magnetic field components are transverse to the direction propagation on z , and the wave is said transverse electromagnetic wave or principal wave.
TEM wave is a special case of transverse magnetic wave in which the electric field E_{Z} along the direction of propagation is zero.

The condition on E_{Z} is obtained if m is made zero in TE waves.
TEM is also called as Principal wave.

Fig: 4.1.3 Transverse Electromagnetic field vectors
Accordingly the TEM wave becomes a TM waves with $\mathrm{m}=0$, the field equations of TM waves from equation are:
$\underset{y}{H}=C_{4} \operatorname{Cos}(\underset{a}{m \pi}) x e^{-j \beta z}$
y
$E_{x}=\frac{\beta}{\omega \varepsilon} C_{4} \operatorname{Cos}\left(\frac{m \pi}{a}\right) x e^{-j \beta z}$
$E=\underset{\omega \varepsilon a}{=\frac{j m \pi}{\omega}} C \quad \operatorname{Cos} \quad(\overline{\mathrm{Putting}}) x e^{-j \beta z}$ equations of TEM waves are obtained
$H_{y}=C_{4} x e^{-j \beta z}$
$E_{x}=\frac{\beta}{\omega \varepsilon} C_{4} e^{-j \beta z}$
$E_{y}=0$
These fields are not only transverse, but they are constant in amplitude across a cross section normal to the direction of propagation.

Characteristics of TEM waves:

For $m=0$ and dielectric is air.

$$
\begin{align*}
& \gamma=\sqrt{\frac{\mathrm{i} \cdot \quad \text { Propagation Constant }}{\left(\frac{\mathrm{m} \pi}{a}\right)^{2}-\omega{ }^{2} \mu_{o} \varepsilon_{o}}} \\
& \gamma=\sqrt{-\omega^{2} \mu_{o} \varepsilon_{o}} \\
& \gamma=\mathrm{j} \omega \sqrt{\mu_{o} \varepsilon_{o}} \\
& \gamma=\alpha+\mathrm{j} \beta \\
& \gamma=\mathrm{j} \omega \sqrt{\mu_{o} \varepsilon_{o}} \tag{4}
\end{align*}
$$

Equating real and imaginary parts,
$\alpha=0$
$\beta=\omega \sqrt{\mu_{o} \varepsilon_{o}}$

ii. Guided Wavelength

$\lambda_{g}=\frac{\pi}{\beta}$
$\lambda_{g}=\frac{2 \pi}{\omega \sqrt{\mu_{o} \varepsilon_{0}}}$

$$
\begin{gather*}
\omega=2 \pi f \\
v_{o}=\frac{1}{\sqrt{\mu_{o} \varepsilon_{o}}} \tag{6}
\end{gather*}
$$

$\lambda_{g}=\frac{2 \pi v o}{2 \pi f}=\lambda=$ Wavelength of free space
iii. Velocity of Propagation
$v=\frac{\omega}{\beta}=\frac{\omega}{\omega \sqrt{\mu_{o} \varepsilon_{o}}}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{o}}}=\mathrm{C}$
Velocity of TEM is independent of frequency and has a familiar free space value, $\mathrm{C}=3 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{s}$.
iv. From equal (7), cut off frequency is given by,
$f_{c}=\frac{\mathrm{m}}{2 a \sqrt{\mu_{0} \varepsilon_{0}}}$
For $\mathrm{m}=0$
$f_{c=0} \quad \cdots . . .$. (8)
Cut off frequency of the TEM waves is zero, indicating all the frequencies down to zero can propagate along the guide.
v. The ratio of the amplitudes of E to H between planes is defined as Characteristic wave impedance given by
$\frac{E_{x}}{H_{y}}=\frac{\beta}{\omega \varepsilon}=\frac{\omega \sqrt{\overline{\mu_{o \delta}}}}{\omega \varepsilon_{0}}=\sqrt{\frac{\mu_{0}}{\bar{\mu}_{o}}}=\eta$
η is the intrinsic impedance of the dielectric medium existing between the planes.

$$
\begin{equation*}
E_{x}=\eta H_{y} \tag{8}
\end{equation*}
$$

vi. The total power propagating in the \mathbf{Z}-direction is calculated using Pointing theorem
$\gamma=\iint E X H \mathrm{~d} x d y$

$$
\begin{array}{ll}
\mathrm{P}=\frac{1}{2} E_{x} H_{y}[x]_{-\frac{a}{2}}^{+\frac{\pi}{2}}[y]_{0}^{1} \\
\mathrm{P}=\frac{1}{2} E_{x} H_{y} \mathrm{a} \\
\mathrm{P}=\frac{1}{2}\left(\mathrm{n} H_{y}\right) H_{y} \mathrm{a} & E_{x}=\eta H_{y} \\
\end{array}
$$

$$
\begin{equation*}
\mathrm{P}=\frac{1}{2} \eta \text { a } H_{y}^{2} \text { watts / meter of width. } \tag{9}
\end{equation*}
$$

CHARACTERISTICS OF TE AND TM WAVES:

The characteristics of TE and TM waves cab be studied by analyzing propagation constant γ.
$h^{2}=\omega^{2} \mu \varepsilon+\gamma^{2}$

$$
\gamma^{2}=h^{2}-\omega^{2} \mu \varepsilon
$$

i. Cut-off frequency $\left(\boldsymbol{f}_{\boldsymbol{c}}\right)$:

Sub $h=\frac{m \pi}{a}$ in equal (1),

$$
\begin{equation*}
\gamma=\sqrt{\left(\frac{m \pi}{a}\right)^{2}-\omega^{2} \mu \varepsilon=\alpha+j \beta \ldots} \tag{2}
\end{equation*}
$$

When $\omega^{2} \mu \varepsilon>\left(\frac{m \pi}{a}\right)^{2}$. (i.e) at higher frequencies, γ becomes imaginary equal to $j \beta$. Phase change for the wave occurs and hence the wave propagates at lower frequencies, $\omega^{2} \mu \varepsilon>\left(\frac{m \pi}{a}\right)^{2}$ so that, γ becomes real equal to the attenuation constant ' α ' and ' β ' is zero. The wave completely attenuated and no propagation takes place.
As the frequency is decreased a critical frequency ω_{c} is reached when $\omega^{2} \mu \varepsilon>$ $\left(\frac{m \pi}{a}\right)^{2}$ The frequency at which wave motion ceases or the frequency above which wave motion exits is called the cutoff frequency of the guide.

The system acts as a high pass filter with a cutoff frequency ' f ' and is defined as the frequency at which the attenuation condition changes to the propagation condition.

At $\boldsymbol{f}=\boldsymbol{f}_{\boldsymbol{c}, \boldsymbol{\gamma}}=\mathbf{0}$,
From equal (2),

$$
\omega_{c}=2 \pi f_{c}
$$

$\sqrt{\left(\frac{\mathrm{m} \pi}{a}\right)^{2}-\omega_{c}^{2} \mu \varepsilon}=0$

$$
\omega_{c}^{2} \mu \varepsilon=\left(\frac{\mathrm{m} \pi}{a}\right)^{2}
$$

$$
\omega_{c}^{2}=\frac{1}{\mu \varepsilon}\left(\frac{\mathrm{~m} \pi}{a}\right)^{2}
$$

$$
\omega_{c}=\sqrt{\frac{1}{\mu \varepsilon}}\left(\frac{\mathrm{~m} \pi}{a}\right)
$$

$$
f_{C}=\frac{1}{2 \pi \sqrt{\mu \varepsilon}} \cdot \frac{m \pi}{a}
$$

$$
f_{c}=\frac{\mathrm{m}}{2 a \sqrt{\mu \varepsilon}}
$$

Cutoff frequency is defined as the frequency at which propagation constant changes from being real to imaginary.

$$
\begin{aligned}
& \gamma=\sqrt{\left(\frac{\mathrm{m} \pi}{a}\right)^{2}-\omega^{2} \mu \varepsilon} \\
& \gamma=\frac{\mathrm{m} \pi}{a} \sqrt{1-\frac{\omega^{2} \mu \varepsilon}{\left(\frac{\mathrm{~m} \pi}{a}\right)^{2}}} \\
& \gamma=\frac{\mathrm{m} \pi}{a} \sqrt{1-\frac{\omega^{2} \mu \varepsilon}{\omega_{c}^{2} \mu \varepsilon}} \\
& \omega_{c}^{2} \mu \varepsilon=\left(\frac{\mathrm{m} \pi}{a}\right)^{2} \\
& \\
& \omega_{c}=2 \pi f_{c} \\
& \omega=2 \pi f
\end{aligned}
$$

$$
\begin{align*}
& \gamma=\frac{\mathrm{m} \pi}{a} \sqrt{1-\frac{f^{2}}{f_{c}^{2}}} \tag{4}\\
& \gamma=\omega_{c} \sqrt{\mu \varepsilon} \sqrt{1-\frac{f^{2}}{f_{c}^{2}}} \frac{\mathrm{~m} \pi}{a}=\omega_{c} \sqrt{\mu \varepsilon}
\end{align*}
$$

For frequencies below cutoff where $f<f_{c}$ and γ is real, $\gamma=\alpha, \beta=0$.
At frequencies above cutoff, $\boldsymbol{f}>\boldsymbol{f}_{\boldsymbol{c}}, \gamma$ is imaginary and $\alpha=0$. Thus
propagation will occur and

$$
\gamma=\mathrm{j} \beta
$$

From equal (4),

$$
\begin{aligned}
& j \beta=\frac{\mathrm{m} \pi}{a} \sqrt{1-\frac{f^{2}}{f_{c}^{2}}} \\
& j \beta=\frac{\mathrm{m} \pi}{a} \sqrt{-1\left(\frac{f^{2}}{f_{c}^{2}}-1\right)} \\
& \mathrm{j} \beta=j \frac{\mathrm{~m} \pi}{a} \sqrt{\left(\frac{f^{2}}{f_{c}^{2}}-1\right)} \\
& j \beta=j \omega_{c} \sqrt{\mu \varepsilon} \sqrt{\left(\frac{f^{2}}{f_{c}^{2}}-1\right)} \\
& \beta=\omega_{c} \sqrt{\mu \varepsilon} \sqrt{\left(\frac{f^{2}}{f_{c}^{2}}-1\right)} \\
& \beta=\omega_{c} \sqrt{\mu \varepsilon} \sqrt{\left(\frac{f^{2}-f_{c}^{2}}{f_{c}^{2}}\right)} \\
& \beta=\frac{\omega_{c} \sqrt{\mu \varepsilon}}{f_{c}} \sqrt{\left(f^{2}-f_{c}^{2}\right)} \\
& \beta=\frac{2 \pi f_{c} \sqrt{\mu \varepsilon}}{f_{c}} \sqrt{\left(f^{2}-f_{c}^{2}\right)}
\end{aligned}
$$

$$
\begin{equation*}
\beta=2 \pi \sqrt{ } \mu \bar{\varepsilon} \sqrt{ }\left(f^{2}-f_{c}^{2}\right) \tag{7}
\end{equation*}
$$

(Or)

$$
\gamma=j \beta=\sqrt{\left(\frac{\mathrm{m} \pi}{a}\right)^{2}-\omega^{2} \mu \varepsilon}
$$

$$
\begin{aligned}
& j \beta=\sqrt{-\left[\omega^{2} \mu \varepsilon-\left(\frac{\mathrm{m} \pi}{a}\right)^{2}\right]} \\
& j \beta=j \sqrt{\omega^{2} \mu \varepsilon-\left(\frac{\mathrm{m} \pi}{a}\right)^{2}} \\
& \beta=\sqrt{\omega^{2} \mu \varepsilon-\left(\frac{\mathrm{m} \pi}{a}\right)^{2}}
\end{aligned}
$$

From equal (3),
Cut off frequency $f_{C}=\frac{\mathrm{m}}{2 a \sqrt{\mu \varepsilon}}$
$f_{c}=\frac{\mathrm{mv}}{2 a .}$

$$
v=\frac{1}{\sqrt{\overline{\mu \varepsilon}}}
$$

v is the velocity of propagation $=3 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{s}$

ii. Wavelength $(\lambda) /$ Guided Wavelength $\left(\lambda_{g}\right)$:

The distance travelled by a wave to undergo a phase shift of 2π radians is called wavelength. It is the wavelength in the direction of propagation and hence also called as guided wavelength.

$$
\begin{align*}
& \lambda=\frac{2 \pi}{\beta}=\lambda_{g} \\
& \lambda_{g}=\frac{2 \pi}{\sqrt{\omega^{2} \mu \varepsilon-\left(\frac{\mathrm{m} \pi}{a}\right)^{2}}} \tag{9}
\end{align*}
$$

www.binils.com for Anna University | polytechnic and schools

iii. Cut off Wavelength $\left(\boldsymbol{\lambda}_{\boldsymbol{c}}\right)$:

Wavelength at cutoff frequency is called as cutoff wavelength.

www.binils.com

$$
\begin{align*}
& \lambda_{c}=\frac{v}{f_{c}} \\
& \lambda_{c}=\frac{v}{\frac{M v}{2 a .}} \\
& \lambda_{c}=\frac{2 a}{m} \tag{10}
\end{align*}
$$

From equal (9),
$\lambda_{g}=\frac{2 \pi}{\sqrt{\omega^{2} \mu \varepsilon-\left(\sum_{a}^{\frac{M}{2}}{ }^{2}\right.}}, \quad$ at cutoff $\left(\frac{\mathrm{M} \pi^{2}}{a}\right)=\omega_{c}{ }^{2} \mu \varepsilon$

$$
\lambda_{g}=\frac{2 \pi}{\sqrt{\omega^{2} \mu \varepsilon-\omega_{c}^{2} \mu \varepsilon}}
$$

$$
\lambda_{g}=\frac{2 \pi}{\omega \sqrt{\mu \bar{\varepsilon}} \sqrt{1-\frac{\omega_{c}^{2}}{\omega^{2}}}}
$$

$$
\omega_{c}=2 \pi f_{c}
$$

$$
\lambda_{g}=\frac{2 \pi}{2 \pi f \sqrt{\mu \tau} \sqrt{1}-\frac{2 \pi f_{c}^{2}}{2 \pi f^{2}}}
$$

$\lambda_{g}=\frac{1}{f \sqrt{\mu \varepsilon^{2} 1-\frac{f_{c}{ }^{2}}{f^{2}}}}$

$$
v=\frac{1}{\sqrt{\mu \varepsilon}}
$$

$$
\lambda_{g}=\frac{v}{f \sqrt{1-\frac{f_{c}^{2}}{f^{2}}}}
$$

$$
\lambda=\frac{v}{f}
$$

$$
\lambda_{g}=\frac{\lambda}{\sqrt{1-\frac{f_{c}^{2}}{f^{2}}}}
$$

$$
\begin{aligned}
& \lambda_{g}=\frac{\lambda}{\sqrt{1-\left(\frac{v}{\frac{\lambda}{\lambda}}\right)^{2}}} \\
& \lambda_{g}=\frac{\lambda}{\sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}
\end{aligned}
$$

Squaring on both sides,

$$
\lambda_{g}{ }^{2}=\frac{\lambda^{2}}{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}
$$

$$
1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}=\frac{\lambda^{2}}{\lambda_{g}{ }^{2}}
$$

$$
1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}=\left(\frac{\lambda}{\lambda_{g}}\right)^{2}
$$

$$
1=\left(\frac{\lambda}{\lambda_{g}}\right)^{2}+\left(\frac{\lambda}{\lambda_{c}}\right)^{2}
$$

$$
1=\lambda^{2}\left[\frac{1}{\lambda_{g}{ }^{2}}+\frac{1}{\lambda_{c}{ }^{2}}\right]
$$

$$
\frac{1}{\lambda^{2}}=\frac{1}{\lambda_{g}{ }^{2}}+\frac{1}{\lambda_{c}{ }^{2}}
$$

λ-Free space wavelength
λ_{c} - Cutoff wavelength
λ_{g} - Guide wavelength

