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1.5. Classical Free Electron theory 

After the discovery of electron, Drude and Lorentz proposed classical free electron 

theory in 1900. It is a macroscopic theory and explains electrical and thermal properties 

of solids based on classical laws. 

1.5.1. Postulates of classical free electron theory 

In the absence of electrical field 

❖ The electrons are moves freely in the boundaries of the metal, similar to the gas 

molecules moving in a vessel. 

❖ The forces between the conduction electrons and ion core in neglected. 

❖ The electrons possess kinetic energy only. 

❖ Free electrons are elastically collides with each. 

In the presence of field 

❖ The free electrons move in the opposite direction to the applied electrical field 

direction. 

❖ It is obey the classical Maxwell-Boltzmann distribution of velocities. 

❖ All free electrons gain equal amount of thermal energy and involved for thermal 

conduction. 

Mean free path
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The average distance travelled by a free electron in any two successive collisions is known 

as mean free path. 

 

 
Collision time 

𝜆 = 𝑉𝑑𝑟𝑐

The average time taken by a free electron in any two successive collisions is called 

collision time.

 
 

Relaxation time 

𝑟𝑐 = 𝜆⁄ 
𝑑 

Average time taken by a free electron to reach its equilibrium state from disturbed 

state due to the application of an electrical field is known relaxation time.It is 

approximately equal to 10-14 s. 

Mobility 

The drift velocity acquired by the electron per unit applied electrical field to it. 

 

 

1.5.2. Electrical Conductivity 

𝜇 = 
𝑉𝑑

 

𝐸 

 

𝑚2𝑉−1𝑆−1)

The amount of electrical charges conducted per unit time across unit area per unit applied 

electrical field is known as electrical conductivity. 

𝜎 = 𝑄 
𝑡𝐴𝐸 

𝜎 = 𝐼 
𝐴𝐸 

(∵ 𝑄⁄𝑡 = 𝐼) 

𝜎 = 
𝐽
 
𝐸 

(∵ 𝐼⁄𝐴 = 𝐽) 

𝐽 = 𝜎𝐸 

Derivation of Electrical Conductivity of metals 

Consider a metal conductor of ‘XY’ and ‘E’ is the applied electric field to it. The 

electron moves in opposite directions to the applied field with a velocity𝑉𝑑. 

Let ‘n’ be the number of free electrons per unit volume. 

𝑉 
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𝑑 

 

 
 

Fig 1.5.1 Movement of free electrons in a metal rod 
 

Current density of a conducting material is given by, 

𝐽 = −𝑒𝑛𝑉𝑑 … … … … . . . (1) 

Force experienced by the electron is 

𝐹 = −𝑒𝐸 … … … … (2) 

This force accelerates the electron 

𝑎 = 
𝐷𝑟𝑖𝑓𝑡 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝐶𝑜𝑙𝑙𝑖𝑠𝑜𝑛 𝑡𝑖𝑚𝑒 

𝑎 = 𝑉𝑑 
𝑐 

𝑉𝑑 = 𝑎𝑟 … … … … . (3) 

From the Newton’s second law of motion, the force on the electron, 

𝐹 = 𝑚𝑎 … … … … … . (4) 

Equate equations (2) and (4) we have, 

−𝑒𝐸 = 𝑚𝑎 

𝑎 = 
−𝑒𝐸 

𝑚 

Substitute Eqn. (5) in Eqn. (3) we get, 

𝑉 = 
−𝑒𝐸𝑐 

𝑚 

Substituting eqn. (6) in eqn. (1) we have, 

 

… … … … … (5) 

 

 
… … … … … . . (6) 

𝐽 = 
(−𝑒)𝑛(−𝑒𝐸𝑐) 

𝑚 

𝑛𝐸𝑒2𝑟 
𝐽 = 

 
𝐽 

=
 

𝐸 

𝑚 

𝑛𝑒2𝑟 
 

 

𝑚 

𝜎 = 
𝑛𝑒2𝑐 

𝑚 
… … … … . (7) (∵ 𝜎 = 𝐽⁄𝐸) 
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We find that with increase of electron concentration ‘n’, the conductivity ‘σ’ is 

increases. As ‘m’ increases the motion of the electron becomes slow and hence the 

conductivity ‘σ’ decreases. 

Co-efficient of electrical conductivity 

The quantity of electricity flowing per unit area per unit time maintained at unit 

potential gradient. 

𝐽 = 𝜎𝐸 
 
 

If A=1; E=1, then, 

𝐼 
= 𝜎𝐸 

𝐴 

𝐼 = 𝜎 

1.5.3. Thermal Conductivity 

The amount of heat conducted by the conductor is 

𝑄 = 𝐾𝐴 
𝑑𝑇 

𝑡 
𝑑𝑥 

𝐾 = 
𝑄

 
𝐴 (𝑑𝑇) 𝑡 

𝑑𝑥 

 
 
 

 
… … … … … (1) 

Where,  

K → is the thermal conductivity 

A → is the area of cross section 

t → is the time of flow of heat 

𝑑𝑇 → Temperature gradient 
𝑑𝑥 

The amount of heat conducted per unit time per unit area of cross section per unit 

temperature gradient. 

If A = 1; t = 1, then eqn. (1) becomes 

𝑄 
 

 

𝑑𝑇 
 

𝑑𝑥 

𝑄 = 𝐾 𝑑𝑇 
𝑑𝑥 

 
 

 
… … … … … . . (2) 

𝐾 = 
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Expression for thermal conductivity of a metal 

Consider a metal rod ‘AB’ with the length of ‘λ’. Let ‘A’ be at higher temperature 

and ‘B’ at al low temperature. Now, heat flows from A to B by the free electrons. 

 

Fig 1.5.2 Thermal conductivity of a metal 

Free electron per unit volume = n 

Average velocity of the electrons = v 

Average kinetic energy of electron at ‘A’ is 

= 3⁄2 𝐾𝐵𝑇 … … … … … . (3) 

Where,  

KB → is the Boltzmann constant 

T → is the temperature at A 

Average kinetic energy of an electron at ‘B’ is 

= 3⁄2 𝐾𝐵(𝑇 − 𝑑𝑇) … … … … (4) 

The excess of kinetic energy carried by the electron from A to B is, 

= 3 𝐾𝐵𝑇 − 3 𝐾𝐵(𝑇 − 𝑑𝑇) 
2 2 

= 3 𝐾𝐵𝑇 − 3 𝐾𝐵𝑇 + 3 𝐾𝐵𝑑𝑇 
2 2 2 

= 3 𝐾𝐵𝑑𝑇 … … … … … . . (5) 

Let us assume that, there is an equal probability for the electrons to move in all 

six directions shown in given figure.
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2 

2 

2 

2 

 

Each electrons travels with thermal velocity ‘v’ and ‘n’ is the free electrons per 

unit volume. Then 1/6 nv electrons travel in any one of the directions per unit area per 

unit time. 

Number of electrons crossing per unit area per unit time A to B is 

= 1 𝑛𝑣 
6 

The excess of energy carried from A to B per unit area in unit time is 

1 3 
= 

6 
𝑛𝑣 × 

2 
𝐾𝐵𝑑𝑇 

1 = 𝑛𝑣𝐾 
 

 

𝑑𝑇 … … … … . . (6) 

4 𝐵 
 

 
 
 
 
 

time. 

Similarly, the deficient of energy carried from B to A per unit area per unit time 

= − 1 𝑛𝑣𝐾𝐵𝑑𝑇 … … … … … . (7) 

Hence, the net amount of energy transferred from A to B per unit area per unit 

 

 
𝑄 = 1 𝑛𝑣𝐾𝐵𝑑𝑇 − (− 1 𝑛𝑣𝐾𝐵𝑑𝑇) 

4 4 

 

 
Compare eqn. (2) and (8), we get 

𝑄 = 1 𝑛𝑣𝐾𝐵𝑑𝑇 … … … … … . (8) 

𝐾 
𝑑𝑇 1 

 

𝑑𝑥 
= 

2 
𝑛𝑣𝐾𝐵𝑑𝑇 

𝐾 = 1 𝑛𝑣𝐾𝐵𝑑𝑥 

𝐾 = 1 𝑛𝑣𝐾𝐵𝜆 … … . (9) (∵ 𝜆 = 𝑑𝑥) 

We know that for the metals, the collision time is equal to the relaxation time. 

𝜆 = 𝑣𝑟 … … … … … . (10) 

Substitute eqn. (10) in eqn. (9) we have, 

1 
𝐾 = 

2 
𝑛𝑣𝐾𝐵𝑣𝑟 

1 𝐾 = 𝑛𝑣 𝐾 
 

 

𝑟 … … … … … (11) 

2 
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2 

𝐵  

= 

This is the expression of thermal conductivity and it is directly proportional to the square of 

the velocity of the electrons. 

1.5.4. Wiedemann – Franz Law 

The ratio between the thermal conductivity and electrical conductivity of a metal is 

directly proportional to the absolute temperature of the metal. This ratio is a constant 

for all metals at given temperature. 

𝐾 
𝖺 𝑇 

𝜎 

𝐾 
= 𝐿𝑇 

𝜎 

Where,‘L’ is proportionality constant. It is known as Lorentz number. Its value 

is2.44 x 10-8WΩK-2 at T=293 K. 

 
From classical theory, the electrical thermal conductivity of a metal is given as 

𝜎 = 
𝑛𝑒2𝑐 

𝑚 

… … … … … … . . (1) 

𝐾 = 1 𝑛𝑣2𝐾𝐵𝑟 … … … … … … … (2) 
 

𝐾 (
1
𝑛𝑣2𝐾𝐵𝑐) 

𝜎 
= 2 

𝑛𝑒2𝑟 
 

𝑚 

𝐾 
1
𝑚𝑣2𝐾𝐵 

2 
 

𝜎 𝑒 2 − (3) 

We know that the kinetic energy of the electron is 

1 𝑚𝑣2 = 3 𝐾𝐵𝑇 … … … … … … . . (4) 
2 2 

Substituting eqn. (4) in eqn.(3), we have 

𝐾 
= 

3𝐾𝐵𝑇𝐾𝐵 
  

𝜎 2𝑒2 

𝐾 3 𝐾2𝑇 
= 

𝜎 𝑒2 

𝐾 3 𝐾𝐵   
2 
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𝜎 
= 

2 
( 
𝑒 

) 𝑇 

𝐾 3 𝐾𝐵  2 

𝜎 
= 𝐿𝑇 … … … … … … (5) (∵ 𝐿 = 

2 
( 
𝑒
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𝑣 

Where ‘L’is a constant and it is known as Lorentz number.According to this law it can be 

conclude that if a metal has high thermal conductivity, it will also have high electrical 

conductivity. 

1.5.5. Lorentz number 

The ratio between the thermal conductivity (K) to the product electrical 

conductivity (σ) and absolute temperature (T) of the metal is a constant. The constant 

value is known as Lorentz number. 

𝐿 = 
𝐾

 
𝜎𝑇 

 
… … … … … … . . (1) 

 

According to classical theory, 

 

𝐿 = 

 
3 

(
𝐾𝐵

)
 

2 𝑒 

 
 

… … … … … … … . (2) 

 

Substitute the values of KB = 1.38 x 10-23 JK-1and e = 1.602 x 10-19 C in equation 

(2), we have, 

3 1.38 × 10−23 2 
𝐿 = ( 

2 1.602 × 10 
−19

) 

 

𝐿 = 1.12 × 10−8𝑊𝛺𝐾−2 … … … … . . (3) 
 

Hence, it was found that the classical value of Lorentz number is only half of the 

experimental value, i.e., L = 2.44×10-8 WΩK-2. This discrepancy in the experimental and 

theoretical value of Lorentz number is the failure of classical theory. This was rectified 

by quantum theory. 

According to the quantum theory, electrons near the Fermi level alone contribute 

towards thermal and noble conductions. Using quantum free electron theory model, the 

electronic specific heat value is given by 

 

𝑛𝜋2𝐾2𝑇 
 
 
Thermal conductivity is 

𝐶   = 𝐵  

𝑚𝑣2 
… … … … … . (4 

 

 

2 
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= 

1  
 
 
 `𝐾 
= 𝐶 

 
 

𝑣2𝑟 … … … … … … (5) 

3   𝑣 
 

Substitute equation (4) in (5) we get, 

𝑛𝜋2𝐾2𝑇𝑣2𝑟 

𝐾 = 𝐵  

3𝑚𝑣2 

𝑛𝜋2𝐾2𝑇𝑟 
 
 
The electrical conductivity is 

𝐾 = 𝐵  

3𝑚 

 

𝑛𝑒2𝑟 

… … … … . (6) 

𝜎 = 

From equations (6) and (7) we get, 

𝑚 
… … … … … … . . (7) 

 
𝑛𝜋2𝐾2𝑇𝑐 
  𝐵  

  3𝑚  
 

𝜎 𝑛𝑒2𝑐 
𝑚 

𝐾 𝑚𝑛𝜋2𝐾2𝑇𝑟 

= 𝐵  

𝜎 3𝑚𝑛𝑒2𝑟 
𝐾 𝜋2 𝐾𝐵  

2 

𝜎 
= 

3 
( 
𝑒 

)  𝑇 

𝐾 𝜋2 𝐾𝐵  
2 

𝜎𝑇 
=

 3 
( 
𝑒 

) 

𝐾 
 

 

𝜎𝑇 
= 𝐿 … … … … … … . (8) 

𝜋2 𝐾𝐵  2 
𝐿 = 

3 
( 
𝑒 

) 

Substitute the values of KB = 1.38 × 10-23 JK-1and e = 1.602 × 10-19 C in equation 

(2), we have, 

(3.14)2 1.38 × 10−23 2 

𝐿 = ( 
1.602 × 10 −19

) 3 

𝐾 
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𝐿 = 2.44 × 10−8𝑊𝛺𝐾−2 … … … … . . (9) 
 

This value is in good agreement with the experimental value. The Widemann Franz 

law is not appreciable at very low temperature. 

1.5.6. Success of classical free electron theory 
 

1. It verifies ohm’s law 

2. It explains the electron and thermal conductivity. 

3. It derives Widemann – Franz law. 

4. It explains optical properties of metals. 

1.5.7. Drawbacks of classical free electron theory 

 
1. It is failed to explain photoelectric effect, Compton Effect, Para magnetism, 

ferromagnetism and black body radiation. 

2. It is a macroscopic theory. 

3. It cannot explain the electrical conductivity of semiconductors or insulators using 

this model. 

4. It states that all the free electrons will absorb energy, but quantum theory states 

that only free electrons will absorb energy. 

5. In classical free electron theory, theoretical and experimental value of Lorentz 

number is not matched. It is rectified by quantum theory. 

6. Theoretical and experimental value of specific heat (4.5𝑅 ≠ 3𝑅) and electronic 

specific heat (3⁄2 𝑅 ≠ 0.01𝑅) is not matched. 
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ELECTRICAL PROPERTIES OF MATERIALS 
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1.9. Density of Energy States 

1.9.1. Calculation of Carrier Concentration at 0 K 

 
1.9.2. Calculation of Fermi Energy 

1.9. Density of Energy States 

 

A parameter of interest in the study of conductivity of metals and semiconductors is the 

density of states. The Fermi function F(E) gives only the probability of filling up of electrons in a 

given energy state. It does not give the information about the number of electrons that can be filled 

in a given energy state, to know that we should know the number of available energy states called 

density of state 

Density of states Z(E)dE is defined as the number of states per unit volume in an energy 

interval E and E+dE. 

 

                               

 
Fig 1.9.1-Density of States 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 𝑍(𝐸) 𝑑𝐸 = 
𝑁(𝐸)𝑑𝐸

 
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑡𝑎𝑙 𝑝𝑖𝑒𝑐𝑒 (𝑉) 

The number of available energy levels can be obtained for various combinations of quantum 

numbers nx,ny and nz.𝑖. 𝑒. 𝑛2 = 𝑛2 + 𝑛2 + 𝑛2 

𝑥 𝑦 z 

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship


 

Download Binils Android App in playstore       Download Photoplex 

www.binils.com for Anna University | Polytechnic and School  

 

Let us construct a three dimensional space of points which represents the quantum numbers 

nx,ny and nz as shown in above figure. Each point in this space represents an energy level.Let us 

consider a cubical sample with side ‘a’. A sphere is constructed with the quantum numbers nx,ny 

and nz as three coordinate axes in three dimensional space, as shown in above figure.A radius 

‘n’ is drawn from the origin ‘O’ to a point nx,ny and nz in space and all the 

points on the surface of the sphere will have the same energy ‘E’. Thus,𝑛2 = 𝑛2 + 𝑛2 + 𝑛2denotes 
𝑥 𝑦 𝑧 

the radius ‘n’. Any change in nx,ny and nzwill change ‘E’ and hence the radius ‘n’. 

Therefore, the number of energy states with in a sphere of radius ‘n’ 

4 
𝑛 = 

3 
𝜋𝑛3 … … … … … . (1) 

Since the quantum numbers nx,ny and nzcan have only positive integer value, we have totake only 

one of the sphere, (i.e) (1⁄8)thof the spherical volume. 

Number of available energy states within one octant of sphere of radius ‘n’ corresponding to 

energy ‘E’ 

𝑛 = 
1 

(
4 
𝜋𝑛3) … … … . . (2) 

  

8  3 

Hence, the number of available energy states between the spheres of radius n+dn 

corresponding to energy E+dE is 

= 
1 

(
4 
𝜋(𝑛 + 𝑑𝑛)3) 3) 

  

8  3 

The number of available energy states between the shell of radius ‘n’ and ‘n+dn’ corresponding 

energy between ‘E’ and ‘E+dE’ is determined by subtracting equation (2) from equation (3), we 

have 

𝑁(𝐸)𝑑𝐸 = 1 (4 𝜋(𝑛 + 𝑑𝑛)3) − 1 (4 𝜋𝑛3) 
8  3 8  3 

 

 

= 1 (4 𝜋) [(𝑛 + 𝑑𝑛)3 − 𝑛3] 
8  3 

𝑁(𝐸) 𝑑𝐸 = 1 (4 𝜋) (𝑑𝑛3 + 3𝑛2𝑑𝑛 + 3𝑛𝑑𝑛2) … … . (4) 
8  3 

Sincedn is very small, the higher powers dn2and dn3 terms are neglected. Equation (4) becomes, 

𝑁(𝐸)𝑑𝐸 = 1 (4 𝜋) 3𝑛2𝑑𝑛 … . . (5) 
8  3 

Number of available energy states between interval E and E+dE is given by 

𝑁(𝐸) 𝑑𝐸 = 𝜋 𝑛2𝑑𝑛 
2 
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2 

2 

2 

𝑁(𝐸) 𝑑𝐸 = 𝜋 𝑛(𝑛𝑑𝑛) … … … … … … (6) 
2 

From the application of Schrodinger wave equation, the energy of the electron in a cubical 

metal piece of side ‘a’ is given by 

𝐸 = 
𝑛2ℎ2 

 

8𝑚𝑎 

𝑛2 = 
8𝑚𝐸𝑎2 

ℎ 

Take the square root of the above equation we get, 

… … … … … . (7) 

𝑛 = (
8𝑚𝑎2𝐸 

 
 

1/2 … … … … … … (8) 

 
Differentiate the equation (7), we get, 

ℎ2 ) 

2𝑛𝑑𝑛 = 8𝑚𝑎
2 

𝑑𝐸 
ℎ 

𝑛𝑑𝑛 = 8𝑚𝑎
2 

𝑑𝐸 … … … … … … (9) 
2ℎ 

Substitute eqn. (8) and(9) in eqn. (6) we have 

1 

𝑁(𝐸) 𝑑𝐸 = 
𝜋 

(
8𝑚𝑎2𝐸

)
2  

(
8𝑚𝑎2𝑑𝐸

)
 

   

2 ℎ2 

3 

2ℎ2 

 
 

𝑁(𝐸)𝑑𝐸 = 𝜋 (8𝑚𝑎
2

)2 𝐸1⁄2𝑑𝐸 … … … . (10) 
  

4 ℎ2 

Pauli’s exclusion principle states that the two electrons of opposite spins can occupy each state. 

Hence, the number of energy states available for electron occupancy is given by, 

3 

𝜋 8𝑚𝑎2  2  1 

𝑁(𝐸) 𝑑𝐸 = 2 × 
4 

( 
ℎ2 ) 𝐸2𝑑𝐸 

𝜋 3   𝑎3 1 

= (8𝑚)2 ( 
2 ℎ 3

) 𝐸2𝑑𝐸 

𝜋 3   𝑎3 1 3 3 

= 
2 
8(2𝑚)2 (

ℎ3) 𝐸2𝑑𝐸 (∵ (8𝑚)2 = 8(2𝑚)2) 

4𝜋 3 
 

 

3  1 

𝑁(𝐸) 𝑑𝐸 = 
ℎ3 𝑎 

(2𝑚)2𝐸2𝑑𝐸 … … … … . (11) 

The density of states is equal to the number of states per unit volume in the energy range in E 

and E+dE 

𝑍(𝐸) 𝑑𝐸 = 
𝑁(𝐸) 𝑑𝐸

 
𝑉 

4𝜋 
𝑎3(2𝑚)3/2𝐸1/2𝑑𝐸 

= ℎ
3 

 

𝑎3 

2 
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3 

3ℎ3 

𝑍(𝐸) 𝑑𝐸 = 4𝜋 (2𝑚)3/2𝐸1/2𝑑𝐸 … … … … (12) 
ℎ 

 

 

This is the expression for the density of states and it is used to calculate the carrier 

concentration of metals and semiconductors. 

1.9.1. Calculation of Carrier Concentration at 0 K 

 
The number of electrons per unit volume is called carrier concentration. It is calculated by 

summing up the product of the density of states Z(E) and Fermi distribution function F(E). 

Carrier concentration𝑛𝑐 = ∫ 𝑍(𝐸) 𝐹(𝐸) 𝑑𝐸 

 
Substituting Z(E) and F(E) in the above equation, we get, 

 

𝑛  = ∫ 
4𝜋 

(2𝑚)3/2𝐸1/2 
1
  𝑑𝐸 … (1) 

𝑐 ℎ3 1 + 𝑒(𝐸−𝐸𝐹)⁄𝐾𝑇 

For metals at T = 0 K, the upper most occupied level is EF and F(E) = 1. Now the equation (1) 

becomes, 

 
𝑛𝑐 

𝐸𝐹 

= ∫ 
4𝜋 

(2𝑚)3/2𝐸1/2 𝑑𝐸 ℎ3 

0 

𝐸𝐹 

= 
4𝜋 

(2𝑚)3/2 ∫ 𝐸1/2 𝑑𝐸 ℎ3 

 
4𝜋 

0 

𝐸3⁄2 

 
𝐸𝐹 

𝑛𝑐 = 
ℎ3 

(2𝑚)3/2 [ 
3⁄2 

] 
 

𝑛𝑐 = 
8𝜋 

(2𝑚𝐸𝐹)3/2 … … … . . (2) 
 

This equation is the carrier concentration or density of charge carrier at 0 K in terms of Fermi 

energy. 

1.9.2. Calculation of Fermi Energy 

Fermi energy is calculated from the expression of carrier concentration. 
 

𝑛𝑐 = 
8𝜋 

3ℎ3 
(2𝑚𝐸
𝐹 

)3/2 

(𝐸𝐹 

 

)3/2 
3ℎ3𝑛𝑐 

= 
8𝜋(2𝑚)3/2 

Multiply the power of 2/3 on both sides of the above equation, we have 

0 
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𝐸𝐹 = [ 

3ℎ3𝑛𝑐 
2 

 

3 

 3] 

8𝜋(2𝑚)2 

 

2 
 

3ℎ3𝑛𝑐 
3
 

 
 

 

3  3 

𝐸𝐹 = [  3] 
𝜋(8𝑚)2 

(∵ (8𝑚)2 = 8(2𝑚)2) 

 

Rearrange the above equation, we get  

 

𝐸𝐹 = 

 

 
ℎ2 

8

𝑚 

 
(
3𝑛𝑐 

𝜋 

 
 
 
2/3 

) 

 

This is the expression for Fermi energy of electrons in solids at absolute zero temperature. It is 

depends only on the density of electrons of metals. 
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𝑔 
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1.14. Effective mass of Electron and Hole 

1.14.1Effective mass of Electron 

1.14.2. Concept of hole (or) Effective or Negative mass of electron: 

 

1.14.1. Effective mass of Electron 

 

The mass acquired by an electron when it is accelerated in a periodic potential is 

called effective mass of an electron. It is denoted by 𝑚∗. 

Explanation: 

 

When an electron is accelerated the mass of the electron is not constant, but it varies. 

This varying mass is called effective mass (𝑚∗). 
 

Derivation of effective mass of electron: 

 

When electric field is applied to a crystal the electron gains velocity described by 

wave vector k. 

Group velocity 𝑣  = 
𝑑𝑤 

𝑑𝑘 

---------------------(1) 

 

Where ω – angular frequency of the electron. 

k- wave vector 

we know that E = Hƴ 
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Substituting (2) in(1) 
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𝑚 
= 

𝑑2

𝐸 

2 

2 

2 

2 

2 

F = 𝑚∗𝑎  (8) 
 

Comparing (7 ) & (8)  

𝑚∗𝑎 =[  Ђ
2  

] a 
𝑑𝑘2 

 
∗ Ђ2 

𝑑2𝐸 

𝑑𝑘2 

 

From (9) effective mass is not constant but depends on   𝑑
2𝐸

 
𝑑𝑘 

Special Cases: 

Case i : 

If 
𝑑2𝐸 

𝑑𝑘 

Case ii : 

is positive then 𝑚∗ is also positive. 

If 
𝑑2𝐸 

𝑑𝑘 
is negative  then 𝑚∗ is also negative. 

Case iii : 

If 
𝑑2𝐸 

𝑑𝑘 

 

is more then electrons behave as light particles. 

Case iv : 

If 
𝑑2𝐸 

𝑑𝑘 

 

is very small,then the electrons behave as heavy particles. 

1.14.2. Concept of hole (or) Effective or Negative mass of electron: 

 

The effective mass 𝑚⋆ is negative near the zone edges of filled valence bands.The 

electrons in these regions are accelerated in a direction opposite to the direction of the 

applied field. This is called the negative mass behavior of the electrons. 

The electrons with negative effective mass is considered as the same positive mass of 

that of an electron, but with positive charge. This new entity is given the name “hole”.
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The positive hole conduction and effective negative electron mass conduction are in 

equilibrium. The calculation made on the hole appear to be more convenient and hence the 

hole concept is retained. 

Several phenomena like Hall effect, Thomson Effect etc find explanation on the basis of 

the hole concept. 

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/


www.binils.com for Anna University | Polytechnic and Schools 
 

Download Binils Android App in playstore   Download Photoplex 

 

 

 
 

 
CONTENTS 
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1.1 Introduction 

1.2 Basic Definitions 

1.3. Relationship between Current Density and Drift velocity 

1.4. Electron theory of solids 

1.1 Introduction 

 
Conductors are nothing but a material having ability to conduct electricity (or) 

conduct free electrons. It has high thermal and electrical conductivity. 

Examples: Al, Ag, Cu, Alloys etc. 

The resistance of the conductor is the order of 10-8Ω. This conductivity is mainly 

based on the available free or valence electrons in the material. 

Valence electrons 

The electrons in the outer most orbit of an atom in the material are known as 

valence electrons. It is loosely bounded with the nucleus. 

In band theory, the conduction and valence bands are overlap with each other, 

and there is no band gap. 

 

 

 

 

 

 

 
Fig 1.1-Band gap of metal 

Classification of conducting materials 

The conducting materials based on their conductivity, are classified into the 

major categories. 

➢ Zero resistivity materials 

➢ Low resistivity materials and 

➢ High resistivity materials. 
 

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship


 

 

Download Binils Android App in playstore   Download Photoplex 

 

www.binils.com for Anna University | Polytechnic and School  

 

(i) Zero resistivity materials 

Superconductors like alloys of aluminum, zinc, gallium, nichrome, niobium, etc., are a special 

class of materials that conduct electricity almost with zero resistance 

below transition temperature. These materials are known as zero resistivity materials. 

They are used for saving energy in the power systems, super conducting 

magnetism memory storage elements etc., 

(ii) Low Resistivity Materials 

The metals like silver, aluminum and alloys have very high electrical 

conductivity. These materials are known as low resistivity materials. 

They are used as conductors, electrical contact, in electrical devices, electrical 

power transmission distribution, winding wires in motors and transformers. 

(iii) High Resistivity Materials 

The materials like tungsten, platinum, nichrome etc., have resistivity and low 

temperature co-efficient of resistance. These materials are known as high resistivity 

materials. 

Such metals and alloys are used in the manufacturing of resistors, heating 

elements, resistance thermometers etc. The conducting properties of a solid are not a 

function of the total number of the electrons of the atoms can take part in conduction. 

These valence electrons are called free electrons or conduction electrons. 

1.2. Basic Definitions 

1.2.1.Current 

The rate of flow of charges across any cross sectional area of a conductor is 

called current. The rate of flow of charges is not uniform and it varies with respect to 

time. 

𝑞 𝑑𝑞 
 

1.2.2. Ohm’s Law 

𝐼 = 
𝑡 
⟹ 𝐼 = 

𝑑𝑡
 

 
 

At constant temperature, the steady current flowing through a conductor is directly 

proportional to the potential difference (voltage) between its ends. 

𝑉 ∝ 𝐼 

𝑉 = 𝐼𝑅 
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1.2.3. Resistivity 

Resistance of a conductor (metal) is directly proportional to the length and inversely 

proportional to the area of cross section. 

𝑅 ∝ 
𝐿

 
𝐴 

𝑅 = 𝜌 
𝐿

 
𝐴 

𝜌 = 
𝑅𝐴 

(Ω𝑚) 
𝐿 

Where, ρ is the electrical resistivity and it’s inversely proportional is called 

electrical conductivity. 

 

 
1.2.4. Current Density 

𝜎 = 
1
 
𝜌 

(Ω−1𝑚−1) 

The current per unit area of cross section of a current carrying conductor is 

known as current density. It is perpendicular to the flow of charges. 

𝐽 =  
𝐼 

(𝐴𝑚−2) 
𝐴 

1.2.5. Drift Velocity 

The average velocity is required to drift the free electrons in the conductor 

towards the application of an electrical field is called drift velocity. 

 

 
1.2.6. Electrical Field 

𝑉𝑑 = 
𝜆 

𝜏𝑐 

In a uniform cross section of a conductor, potential drop per unit length is known 

as electrical field. 

𝐸 = 
𝑉 

(𝑉𝑚−1) 
𝐿 
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𝑉 

1.3. Relationship between Current Density and Drift velocity 

 

 
 

Fig 1.3.1- Movement of free electrons in a metal rod 

Consider a conductor ‘XY’ of length (l) and area of cross section ‘A’. An 

electric field ‘E’ is applied between its ends. Let ‘n’ be the number of free electrons per 

unit volume and 𝑉𝑑 is the drift velocity. 

The number of free electrons in the conductor is = nAl 

The charge of an electron = e 

Total charges passing through the conductor is 

𝑞 = (𝑛𝐴𝑙)𝑒 … … … . . (1) 

The time taken by the charges pass through the conductor is 

𝑡 = 𝑙 
𝑉
𝑑 

∴ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼 = 𝑞 
𝑡 

… … … … . . (2) 
 

… … … … . . (3) 

Substitute equations (1) and (2) in equation (3), we get, 

 
 

𝐼 = 
𝑛𝐴𝑙𝑒 

𝑙⁄ 
𝑑 

= 
𝑛𝐴𝑙𝑒𝑉𝑑 

𝑙 

𝐼 = 𝑛𝐴𝑒𝑉𝑑 

𝐼 

𝐴 
= 𝑛𝑒𝑉𝑑 

𝐽 = 𝑛𝑒𝑉𝑑 . . (4)(∵  𝐽 = 𝐼⁄𝐴) 

From this expression we obtained, the current density is directly proportional to 

the drift velocity and number of free electrons in the conductor. 

 Electron theory of solids
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The electron theory of solids aims to explain the structures and properties of solids through their 

electronic structures. The electron theory is applicable to all solids both metals and non-metals. The 

electron theory of solids explains the following concepts, 

❖ Structural, electrical and thermal properties of solids. 

❖ Elasticity, cohesive force and binding in solids. 

❖ Behavior of conductors, semiconductors and insulators etc., 

There are three types of electron theories have been proposed. They are, 

❖ Classical Free Electron theory 

❖ Quantum Free Electron theory 

❖ Brillouin Zone theory (or) Band theory. 
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UNIT – 1 

ELECTRICAL PROPERTIES OF MATERIALS 

CONTENTS 
 

1.8. Fermi - Dirac Distribution Function 

1.8.1. Effect of Temperature on Fermi Function 

1.8. Fermi - Dirac Distribution Function 

In a metal at zero Kelvin temperature, the highest filled energy level is called the Fermi 

level and the energy possessed by the electrons in that level is known as Fermi energy. 

Fermi-Dirac statistics deals with the particles having half integral spin like electron. Fermi 

distribution function gives information about the distribution of electrons among the various 

energy levels as a function of temperature. It is given by, 

𝑭(𝑬) = 
𝟏

 
𝟏 + 𝒆(𝑬−𝑬𝑭)⁄𝑲𝑩𝑻 

Where, 

F(E) - is the Fermi distribution function. 

EF– is the Fermi energy. 

KB - is the Boltzmann constant. 

T - is the temperature. 

E - is the total energy. 

The probability value F(E) lies between 0 and 1. 

❖ If F(E) = 1, the energy level is occupied by an electron. 

❖ If F(E) = 0, the energy level is vacant. 

❖ If F(E) = 0.5, then there is a 50% chance for finding the electron in the energy level. 

Significance of Fermi energy 

➢ It gives information about the velocities of the electrons which participate in ordinary 

electrical conduction. 

➢ Fermi velocity of conduction electron is can be calculated from it. 

➢ It is used to understand the specific heat capacity of solids at ordinary temperature. 

1.8.1. Effect of Temperature on Fermi Function 

The Fermi level varies with respect to temperature as given below 
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At ‘T’ is equal to zero Kelvin temperature (T = 0 K) 

At T=0 K, the electrons are filled up to a maximum energy level called Fermi energy level 

EF. All the energy levels above the Fermi energy levels are empty. 

Case (i) 

At T = 0 k and E < EF 

 

Therefore 100% chance for the electron to be filled with in the Fermi energy level. 

Case (ii) 

At T = 0 K and E >EF 

𝐹(𝐸) = 
1
 

1 + 𝑒∞ 

= 
1 

= 0 
∞ 

Therefore 0% chance for the electron not to 

be filled within the Fermi energy level. 

Case (iii) 

At T = 0 K and E= EF

 

 

Therefore 50% chance for the electron to be filled and not to be filled with in the Fermi 

energy level. The Fermi function at ‘0’ Kelvin can also be graphically represented in given figure. 

The graph clearly shows that the curve has step like character at ‘0’ Kelvin. Electrons with Fermi 

energy move with Fermi velocity and the same is related to the Fermi temperature by the relation. 

 

Fig 1.8.1Fermi level variation with temperature at T=0K 

At any temperature other than zero 

When temperature is raised slowly from absolute zero, the Fermi distribution function 

smoothly decreases to zero. The electrons lose their quantum mechanical character and it reduces 

to classical Boltzmann distribution. 
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Fig 1.8.2 Fermi level variation with temperature at T 
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UNIT – 1 

ELECTRICAL PROPERTIES OF MATERIALS 

1.10 Electron in Periodic Potential: 

1.10.1 Bloch Theorem 

1.11. Tight Binding approximation 

1.10 Electron in Periodic Potential: 

 

 

 

 

 

 

 

 

 

Fig 1.10.1-One dimensional periodic potential distribution for a crystal 

Therefore, the potential energy of the electron near by the Centre of positive ion 

is maximum and will not be able to move freely, but the electrons which are above 

these potential peaks are free to move inside the metal and hence they are termed as free 

electrons. 

1.10.1 Bloch Theorem 

Bloch theorem is a mathematical statement of an electron wave function 

moving in a perfectly periodic potential. These functions are called Bloch 

functions.Let us consider an electron moving in a periodic potential. The 

Schrodinger equation 

The free electron theory fails to explain why some solids are conductors, insulators and 

others are semiconductors. 

A solution to this problem was given by band theory of solids and is called 

Zone Theory. 

Postulates: 

Potential energy of electron within the crystal is periodic that is free electrons move 

inside periodic lattice field. 
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is 
𝑑2Ψ 

+ 2𝑚 (𝐸 − 𝑉)Ψ = 0 --------- (1) 
  

𝑑𝑥2 ℏ2 

Solution for this equation is  
Ψ(x) = 𝑒±𝑖𝑘𝑥𝑢𝑘(𝑥) ---------(2) 

𝑢𝑘(𝑥) = 𝑢𝑘(𝑥 + 𝑎) 

The solutions are plane waves modulated by the function 𝑈𝑘 (𝑥). This theorem is 

known as the Bloch Theorem or Floquet’s theorem. 

The functions (2) are known as Bloch function and can be decomposed into sum of 

travelling waves. 

1.11 Tight Binding approximation: 

 
In solids, there exist the ionic core which are tightly bounded to the lattice location 

while the electrons are free to move here and there. This is called free electron 

approximation. 

In free electron approximation 

 

1.The potential of the electron is assumed to be lesser than its total energy. 

2.The width of the forbidden bands are smaller than the allowed bands as in fig. 

3.Therefore the interaction between the neighboring atoms will be very strong. 

4.As the atoms are closer to each other, the inter atomic distance decreases and hence 

the wave function overlap with each other. 
 

 
Fig 1.11.1-Tight binding approximation 

 

 

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship


www.binils.com for Anna University | Polytechnic and School 
 

Download Binils Android App in playstore       Download Photoplex 

 

  

 

 
 

CONTENTS 

UNIT – 1 

ELECTRICAL PROPERTIES OF MATERIALS 

1.6. Quantum Free Electron Theory 

1.6.1. Basic assumptions of Quantum free electron 

 
1.6.2. Merits of Quantum theory 

1.6.3. Demerits of Quantum theory 

1.6. Quantum Free Electron Theory 

The drawbacks of classical free electron theories were removed by Sommerfeld in 1928. 

Quantum concepts are used in classical theory and hence it is known as quantum free electron 

theory. 

He applied Schrodinger’s wave equation and De-Broglie’s concept of matter waves to obtain 

the expression for electron energies. He substituted the quantum statistics of Fermi-Dirac in place of 

the classical statistics and hence, it is known as the quantum free electron theory. 

1.6.1. Basic assumptions of Quantum free electron theory 

 

• The electrons are considered as free electron gas. 

• The electrons possess wave nature. 

• Free electrons obey Fermi-Dirac statistics and Pauli’s exclusion principle. 

• The free electron is fully responsible for electrical conduction. 

• The allowed energy levels of an electron are quantized. 

• The correct values of electrical conductivity, thermal conductivity, specific heat, optical 

absorption, ferromagnetic susceptibility are determined by quantum free electron theory of 

solids. 

1.6.2. Merits of Quantum theory 

❖ In this theory, the electrons are treated quantum mechanically rather than classically. 

❖ Quantum theory successfully explains the ohm’s law. 

❖ It explains the electrical conductivity, thermal conductivity, photoelectric effect, Compton 

effect and specific heat capacity of metals. 
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numbers(𝑛𝑥,𝑛𝑦,𝑛𝑧) lead to different energy eigen values and eigen function. 

1.6.3. Demerits of Quantum theory 

❖ It fails to explain the classification between metals, semiconductors and insulators. 

❖ It fails to give the reason for positive value of Hall coefficient. 

❖ It can’t be able to explain the transport properties of metals. 

1.7.1. Particle in a Three dimension box: 

The solution of one dimension potential well is extended for a three dimensional potential 

box. 

In a three dimensional potential box the particle can move in any direction .so we use three 

quantum numbers 𝑛𝑥,𝑛𝑦 𝑎𝑛𝑑 𝑛𝑧 𝑡𝑜 𝑡ℎ𝑒 three coordinate axes namely x,y and z respectively. If 

a,b,c are the lengths of the box along x,y and z axes then, 

 

From the equations (1), (2 )we understand that several combinations of the three quantum 
 

1.7.2. Degenerate states: 

For several combinations of quantum numbers,we have the same energy eigen value but 

different eigen function.Such a state of energy levels is called degenerate state. 

The three combinations of quantum numbers (1,1,2),(1,2,1) and (2,1,1) which give the 

same Eigen value but different Eigen functions are called 3- fold degenerate state. 

Example: 

 

 
Then 

If (𝑛𝑥,𝑛𝑦, 𝑛𝑧) is (1,1,2) ,(1,2,1) and ( 2,1,1) 

𝐸112 

ℎ2 

8𝑚𝑎 
( 12 +12 + 22 )= 6ℎ

2

 

8𝑚𝑎 

= 

= 
2 
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The corresponding wave functions are 

6ℎ2 
𝐸121 = 

8𝑚𝑎2 

6ℎ2 
𝐸211 = 

8𝑚𝑎2 

𝛙𝟏𝟏𝟐 =√( 𝟖 )𝒔𝒊𝒏 𝜋𝑥sin𝜋𝑦 sin2𝜋𝑧--- 
    

𝒂𝟑 𝒂 𝒂 𝒂 
 

𝛙𝟏𝟐𝟏=√( 
𝟖 

)𝒔𝒊𝒏 
𝜋𝑥

sin
2𝜋𝑦 

sin
𝜋𝑧

--- 
    

𝒂𝟑 𝒂 𝒂 𝒂 
 

 𝛙𝟐𝟏𝟏 =√( 𝟖 )𝒔𝒊𝒏 2𝜋𝑥sin𝜋𝑦 sin𝜋𝑧--- 
   

𝒂𝟑 𝒂 𝒂 𝒂 
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