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4.1 CHARACTERISTIC EQUATION 

The characteristic equation is nothing more than setting the denominator of the 

closed-loop transfer function to zero. In control theory, there are two main methods of 

analyzing feedback systems: the transfer function (or frequency domain) method and the 

state space method. The characteristic equation is the equation which is solved to find a 

matrix's eigenvalues, also called the characteristic polynomial. Characteristic equation is 

used to solve linear differential equations. Characteristic equations of auxiliary 

differential equations are used to solve a partial differential equation. 

The properties of transfer function are given below: 

• The ratio of Laplace transform of output to Laplace transform of input assuming 

all initial conditions to be zero. 

• The transfer function of a system does not depend on the inputs to the system. 

• The system poles and zeros can be determined from its transfer function. 

Closed loop transfer function: 

𝐶(𝑠) 𝐺(𝑠) 
 
 

Characteristic Equation: 

𝑅(𝑠) 
= 

1 ± 𝐺(𝑠)𝐻(𝑠) 

 
1 ± 𝐺(𝑠)𝐻(𝑠) = 0 
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4.5 DESIGN OF LAG, LEAD AND LAG LEAD COMPENSATOR USING 

BODE PLOTS 

DESIGN PROCEDURE OF LAG COMPENSATOR USING BODE PLOTS 

1. Determine the compensator gain K to meet the steady state error requirement. 

2. Draw the Bode plots of KG(s). 

3. From the Bode plots, find the frequency ωg at which the phase of KG(s) is 

∠𝐾𝐺(𝜔𝑔) = 𝑃𝑀 − 180𝑜 + 5𝑜~10𝑜 

4. Calculate β to make ωg the gain crossover frequency, 

20 log 𝛽 = 20 log 𝐾 + 20 log|𝐺 (𝑗𝜔𝑔 )| 

5. Choose T to be much greater than 1/ ωg, for example, T=10/ ωg. 

6. Verify the results using MATLAB. 

DESIGN PROCEDURE OF LEAD COMPENSATOR USING BODE PLOTS 

1. Draw the Bode plot for the uncompensated system and obtain the current phase 

margin available. 

2. Calculate the phase margin required to meet the damping coefficient or percent 

overshoot requirement. Don’t forget to add some extra phase margin to compensate 

for imperfections in the controller design (approximately 10 degrees of phase is 

good). 

 

𝑃𝑀 = tan−1   
2𝜁

 

(
√−2𝜁2 + √1 + 4𝜁4

) 

𝑃𝑀 
𝜁 ≅   

100 

3. Calculate the value of alpha from the following equation. Use the phase margin 

obtained in Step (4) as the maximum phase value: 

1 − sin 𝜙𝑚𝑎𝑥 

𝛼 =   

1 + sin 𝜙𝑚𝑎𝑥 

4. Calculate the gain corresponding to the maximum phase frequency using the equation 

below. We are going to look for the new phase margin frequency that we want to 

design for by looking for places where this gain is present on the Bode plot. 
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1 
|𝐺 (𝑗𝜔𝑚𝑎𝑥 )| =    

√𝛽 

5. Find the new maximum phase margin frequency by looking for the point where the 

uncompensated system’s magnitude curve is the negative value of the gain calculated 

in Step (4). 

6. Select the break frequencies, T and beta*T using the maximum frequency equation 

given below: 

1 
𝜔𝑚𝑎𝑥 =    

𝑇√𝛽 

7. Reset the system gain to adjust for the compensator’s gain. 

8. Check that the bandwidth still meets design requirements. Simulate the system and 

repeat the design as necessary. 

DESIGN PROCEDURE OF LAG-LEAD COMPENSATOR USING BODE PLOTS 

The lag-lead compensator is the analog to the PID controller. The lag-lead compensator 

can meet multiple design requirements: the lag component reduces high frequency gain, 

stabilizes the system and meets steady state requirements, while the lead component is 

used to meet transient response design requirements. The general equation for this kind 

of compensator is given below: 

 
𝐺𝑙𝑎𝑔−𝑙𝑒𝑎𝑑 

 
(𝑠) = 𝐺𝑙𝑒𝑎𝑑 

 
(𝑠)𝐺𝑙𝑎𝑔 

 
(𝑠) = ( 

𝑠 +
 1  
𝑇1) ( 

𝑠 +
 𝛾  
𝑇1 

𝑠 +
 1  
𝑇2 ) , 𝛾 > 1 

𝑠 +
 1  
𝛾𝑇2 

(1) Calculate the required bandwidth to meet the transient performance requirement 

(usually expressed in terms of the settling time, rise time or peak time). Use the 

equation provided above. 

(2) Set the DC gain of the uncompensated system to meet the steady state requirements 

(this requires use of the Final Value Theorem). 

(3) Draw the Bode plot for the uncompensated system and obtain the current phase 

margin available. 

(4) Calculate the phase margin required to meet the damping coefficient or percent 

overshoot requirement. Don’t forget to add some extra phase margin to compensate 
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for imperfections in the controller design (approximately 10 degrees of phase is 

good). 

(5) Select a new phase margin frequency that is slightly less than the bandwidth. 

(6) At this new phase margin frequency, calculate the phase lead required to obtained 

the phase margin from Step (4). Add some additional phase to adjust for the lag 

compensator’s effects, if you have not already done so in Step (4). 

(7) Design the lag compensator. Choose the higher breakpoint frequency as the phase 

margin frequency divided by 10. A plot of the interaction between beta and the phase 

margin is used to select beta, but for our purposes, I think that spacing the pole and 

zero of the lag compensator apart by a factor of 10 is sufficient for our design 

purposes. 

(8) We can calculate gamma as the inverse of beta, so now we are ready to design the 

lead compensator. Use the equation given below to find T. 

(9) Check that the bandwidth still meets design requirements. Simulate the system and 

repeat the design as necessary. 
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4.4 EFFECT OF LAG, LEAD AND LAG-LEAD COMPENSATION ON 

FREQUENCY RESPONSE 

Every control system which has been designed for a specific application should 

meet certain performance specification. There are always some constraints which are 

imposed on the control system design in addition to the performance specification. The 

choice of a plant is not only dependent on the performance specification but also on the 

size, weight & cost. Although the designer of the control system is free to choose a new 

plant, it is generally not advised due to the cost & other constraints. Under this 

circumstance, it is possible to introduce some kind of corrective sub-systems in order to 

force the chosen plant to meet the given specification. We refer to these sub-systems as 

compensator whose job is to compensate for the deficiency in the performance of the 

plant. 

Necessary of Compensation 

1. In order to obtain the desired performance of the system, we use compensating 

networks. Compensating networks are applied to the system in the form of feed 

forward path gain adjustment. 

2. Compensate a unstable system to make it stable. 

3. A compensating network is used to minimize overshoot. 

4. These compensating networks increase the steady state accuracy of the system. An 

important point to be noted here is that the increase in the steady state accuracy 

brings instability to the system. 

5. Compensating networks also introduces poles and zeros in the system thereby 

causes changes in the transfer function of the system. Due to this, performance 

specifications of the system change. 

 

 

 

 

 

 

 

 
EFFECT OF LAG COMPENSATION ON FREQUENCY RESPONSE 
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  𝜏  
  

  𝜏  
  

The Lag Compensator is an electrical network which produces a sinusoidal output having 

the phase lag when a sinusoidal input is applied. The lag compensator circuit in the ‘s’ 

domain is shown in the following figure. 

 

Figure 4.4.1 Electrical lag compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.65] 

Here, the capacitor is in series with the resistor R2 and the output is measured across this 

combination. The transfer function of this lag compensator is 

𝑉 𝑜(𝑠) 
= 

𝑉𝑖            (𝑠) 

1 𝑠 +
 1 

( ) 
𝛽 𝑠 + 

1 
 
𝛽𝜏 

 

𝜏  = 𝑅2𝐶 

𝑅1  + 𝑅2 

𝛽 =   

𝑅2 

 
Pole, 𝑠 = − 

1
 
𝛽𝜏 

Zero, 𝑠 = − 
1
 

𝜏 

𝛽 > 1 

Let s = jω, 

 

 

 

 

Phase angle, 

 

 
𝑉  𝑜 (𝑗𝜔) 

= 
𝑉𝑖 (𝑗𝜔) 

 
1 𝑗𝜔 + 

 1
 

( ) 
𝛽 𝑗𝜔 +  

1 
 
𝛽𝜏 

𝜙 = tan−1 𝜔𝜏 − tan−1 𝛽𝜔𝜏 
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Figure 4.4.2 Pole-zero plot of lag compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.65] 

Figure 4.4.3 Bode plot of lag compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.67] 

The phase of the output sinusoidal signal is equal to the sum of the phase angles of input 

sinusoidal signal and the transfer function. So, in order to produce the phase lag at the 

output of this compensator, the phase angle of the transfer function should be negative. 

This will happen when β > 1. 
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Effect of Phase Lag Compensation 

1. Gain crossover frequency increases. 

2. Bandwidth decreases. 

3. Phase margin will be increase. 

4. Response will be slower before due to decreasing bandwidth, the rise time and the 

settling time become larger. 

Advantages of Phase Lag Compensation 

1. Phase lag network allows low frequencies and high frequencies are attenuated. 

2. Due to the presence of phase lag compensation the steady state accuracy increases. 

Disadvantages of Phase Lag Compensation 

1. Due to the presence of phase lag compensation the speed of the system decreases. 
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EFFECT OF LEAD COMPENSATION ON FREQUENCY RESPONSE 

The lead compensator is an electrical network which produces a sinusoidal output having 

phase lead when a sinusoidal input is applied. The lead compensator circuit in the ‘s’ 

domain is shown in the following figure. Lead compensator are used to improve the 

transient response of a system. 

 

Figure 4.4.4 Electrical lead compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.70] 

Taking i2=0 and applying Laplace Transform, we get, 

𝑉𝑜 (𝑠) 
= 

𝑉𝑖            (𝑠) 

𝑅2(𝑅1𝐶𝑠 + 1) 
 

𝑅1 + 𝑅2 + 𝑅2𝑅1𝐶𝑠 

 

 

𝑉𝑜 (𝑠) 
 

𝑉𝑖            (𝑠) 

 

= 𝛼 ( 
𝜏𝑠 + 1 

) 
𝛼𝜏𝑠 + 1 

𝜏 = 𝑅1𝐶 

𝑅2 

𝛼 =   

𝑅1 + 𝑅2 

 
Pole, 𝑠 = − 

1
 
𝛼𝜏 

Zero, 𝑠 = − 
1
 

𝜏 

𝛼 < 1 

Let s = jω, 

 

 
 

Phase angle, 

 

𝑉𝑜 (𝑗𝜔) 
 

𝑉𝑖 (𝑗𝜔) 

 

 
= 𝛼 ( 

 
 

𝜏𝑗𝜔 + 1 
) 

𝛼𝜏𝑗𝜔 + 1 
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𝜙 = tan−1 𝜔𝜏 − tan−1 𝛼𝜔𝜏 
 

Figure 4.4.5 Pole-zero plot of lead compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.69] 

 

 

Figure 4.4.6 Bode plot of lead compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.71] 

The phase of the output sinusoidal signal is equal to the sum of the phase angles of input 

sinusoidal signal and the transfer function. So, in order to produce the phase lead at the 

output of this compensator, the phase angle of the transfer function should be positive. 
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This will happen when 0<α<1. Therefore, zero will be nearer to origin in pole-zero 

configuration of the lead compensator. 

Bode plot of lead compensator 

Maximum phase lead occurs at 

 

 

Let Φm = maximum phase lead 

1 
𝜔𝑚 =    

𝜏√𝛼 
 
 

1 − 𝛼 sin 
𝜙𝑚 = 

1 + 𝛼
 

1 − sin 𝜙𝑚 

 
 

Magnitude at maximum phase lead 

𝛼 =  
 

1 + sin 𝜙𝑚 

 

1 
|𝐺𝑐 (𝑗𝜔)| =    

√𝛼 

Effect of Phase Lead Compensation 

1. The velocity constant Kv increases. 

2. The slope of the magnitude plot reduces at the gain crossover frequency so that 

relative stability improves and error decrease due to error is directly proportional to 

the slope. 

3. Phase margin increases. 

4. Response becomes faster. 

Advantages of Phase Lead Compensation 

1. Due to the presence of phase lead network the speed of the system increases because 

it shifts gain crossover frequency to a higher value. 

2. Due to the presence of phase lead compensation maximum overshoot of the system 

decreases. 

Disadvantages of Phase Lead Compensation 

1. Steady state error is not improved. 
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EFFECT OF LAG-LEAD COMPENSATION ON FREQUENCY RESPONSE 

Lag-Lead compensator is an electrical network which produces phase lag at one 

frequency region and phase lead at other frequency region. It is a combination of both the 

lag and the lead compensators. The lag-lead compensator circuit in the ‘s’ domain is 

shown in the following figure. 

 

Figure 4.4.7 Electrical lag-lead compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.73] 

This circuit looks like both the compensators are cascaded. So, the transfer function of 

this circuit will be the product of transfer functions of the lead and the lag compensators. 

 𝑉 (𝑠)  𝜏 𝑠 + 1 1 𝑠 +
 1  

  𝑜 = 𝛽 (
   1 

) ( 
 

𝜏2 )
 

 

 
We know, αβ=1 

𝑉𝑖 (𝑠) 

 

 

 𝑉 (𝑠) 

𝛽𝜏1𝑠 + 1 

 

 

𝑠 +
 1  

 

𝛼 𝑠 +
 1  
𝛼𝜏2 

 
 

𝑠 +
 1  

 

 

 
where, 

  𝑜 
= (

 

𝑉𝑖 (𝑠) 

𝜏1 ) ( 

𝑠 +
 1  
𝛽𝜏1 

 

𝜏1 = 𝑅1𝐶1 

𝜏2 = 𝑅2𝐶2 

𝜏2 )
 

𝑠 +
 1  
𝛼𝜏2 

Advantages of Phase Lag Lead Compensation 

1. Due to the presence of phase lag-lead network the speed of the system increases 

because it shifts gain crossover frequency to a higher value. 

2. Due to the presence of phase lag-lead network accuracy is improved. 
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Figure 4.4.8 Pole-zero plot of lag-lead compensator 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.73] 
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4.3 NYQUIST STABILITY CRITERION 

Nyquist criterion is a graphical method of determining stability of feedback control 

systems by using the Nyquist plot of their open-loop transfer functions. 

Feedback transfer function 

𝐶(𝑠) 𝐺(𝑠) 

𝑅(𝑠) 
= 

1 + 𝐺(𝑠)𝐻(𝑠) 

Poles and zeros of the open loop transfer function 

𝐺(𝑠)𝐻(𝑠) = 
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2) … (𝑠 − 𝑧𝑚 ) 

(𝑠 − 𝑝1)(𝑠 − 𝑝2) … (𝑠 − 𝑝𝑛) 

1 + 𝐺(𝑠)𝐻(𝑠) = 
(𝑠 − 𝑝1)(𝑠 − 𝑝2) … (𝑠 − 𝑝𝑛 ) + 𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2) … (𝑠 − 𝑧𝑚 ) 

(𝑠 − 𝑝1)(𝑠 − 𝑝2) … (𝑠 − 𝑝𝑛) 

Number of closed loop poles – Number of zeros of 1+GH = Number of open loop poles 

1 + 𝐺(𝑠)𝐻(𝑠) = 
(𝑠 − 𝑧𝑐1)(𝑠 − 𝑧𝑐2) … (𝑠 − 𝑧𝑐𝑚 ) 

(𝑠 − 𝑝1)(𝑠 − 𝑝2) … (𝑠 − 𝑝𝑛) 

where, zc1, zc2, ….., zcm = zeros of 1+G(s)H(s) 

These are also poles of the closed loop transfer function 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 , |1 + 𝐺(𝑠)𝐻(𝑠)| = 
|(𝑠 − 𝑧𝑐1)||(𝑠 − 𝑧𝑐2)| … |(𝑠 − 𝑧𝑐𝑚 )|

 
|(𝑠 − 𝑝1)||(𝑠 − 𝑝2 )| … |(𝑠 − 𝑝𝑛 )| 

𝐴𝑛𝑔𝑙𝑒 , ∠1 + 𝐺(𝑠)𝐻(𝑠) = 
∠(𝑠 − 𝑧𝑐1)∠(𝑠 − 𝑧𝑐2) … ∠(𝑠 − 𝑧𝑐𝑚 ) 

∠(𝑠 − 𝑝1)∠(𝑠 − 𝑝2) … ∠(𝑠 − 𝑝𝑛) 

The s-plane to 1+GH plane mapping phase angle of the 1+G(s)H(s) vector, 

corresponding to a point on the s-plane is the difference between the sum of the phase 

of all vectors drawn from zeros of 1+GH (closed loop poles) and open loops on the s 

plane. If this point s is moved along a closed contour enclosing any or all of the above 

zeros and poles, only the phase of the vector of each of the enclosed zeros or open-loop 

poles will change by 3600. The direction will be in the same sense of the contour 

enclosing zeros and in the opposite sense for the contour enclosing open-loop poles. A 

stability test for time invariant linear systems can also be derived in the frequency 

domain. It is known as Nyquist stability criterion. It is based on the complex analysis 

result known as Cauchy’s principle of argument. Note that the system transfer function 

is a complex function. By applying Cauchy’s principle of argument to the open-loop 

system transfer function, we will get information about stability of the closed-loop 
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system transfer function and arrive at the Nyquist stability criterion (Nyquist, 1932). 

The importance of Nyquist stability lies in the fact that it can also be used to determine 

the relative degree of system stability by producing the so-called phase and gain stability 

margins. These stability margins are needed for frequency domain controller design 

techniques. Only the essence of the Nyquist stability criterion is presented and the phase 

and gain stability margins are defined. The Nyquist method is used for studying the 

stability of linear systems with pure time delay. 

For a SISO feedback system the closed-loop transfer function is given by, 

𝐺(𝑠) 
𝑀(𝑠) = 

1 + 𝐺(𝑠)𝐻(𝑠) 

where, G(s) represents the system and H(s) is the feedback element. Since the system 

poles are determined as those values at which its transfer function becomes infinity, it 

follows that the closed-loop system poles are obtained by solving the following equation. 

1 + 𝐺(𝑠)𝐻(𝑠) = 0 = ∆(𝑠) which, in fact, 

represents the system characteristic equation. Principles of 

Argument 

When a closed contour in the s-plane encloses a certain number of poles and zeros of 

1+G(s)H(s) in the clockwise direction, the number of encirclements of the origin by the 

corresponding contour in the G(s)H(s) plane will encircle the point (-1,0) a number of 

times given by the difference between the number of its zeros and poles of 1+G(s)H(s) it 

enclosed on the s-plane. Let F(s) be an analytic function in a closed region of the complex 

plane given in figure 4.3.1 except at a finite number of points (namely, the poles of 

F(s)). It is  also  assumed  that F(s) is  analytic  at  everypoint on the contour. Then,  as 

s travels around the contour in the s - plane in the clockwise direction, the function 

encircles the origin in the (Re{F(s)}, Im{F(s)}) - plane in the same direction times 

(see figure 4.3.1), with given by, 

N = Z – P 

where Z and P stand for the number of zeros and poles (including their multiplicities) of 

the function F(s) inside the contour. 

𝑎𝑟𝑔{𝐹(𝑠)} = (𝑍 − 𝑃)2𝜋 = 2𝜋𝑁 
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Figure 4.3.1 s-plane and F(s) plane contours 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.27] 

Contour in the s-plane 

The Nyquist plot is a polar plot of the function D(s) = 1+G(s)H(s) when ‘s’ travels around 

the contour given in figure 4.3.2. 

 

Figure 4.3.2 Nyquist contour when the poles are on imaginary axis and at origin 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.33] 

Phase and Gain Stability Margins 

Two important notions can be derived from the Nyquist diagram: phase and gain stability 

margins. The phase and gain stability margins are presented in figure 4.3.3. 
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Figure 4.3.3 Gain and Phase margin 

[Source: “Control Systems” by A Nagoor Kani, Page: 4.33] 

They give the degree of relative stability; in other words, they tell how far the given 

system is from the instability region. Their formal definitions are given by 

𝑃𝑀 = 180𝑜 + 𝑎𝑟𝑔{𝐺 (𝑗𝜔𝑔𝑐)𝐻(𝑗𝜔𝑔𝑐)} 

1 
𝐺𝑀(𝑑𝐵) = 20 log 

 
 

|𝐺 (𝑗𝜔𝑝𝑐 )𝐻(𝑗𝜔𝑝𝑐 )| 
, (𝑑𝐵) 

where, ωgc and ωpc stand for gain and phase crossover frequency respectively. 

|𝐺(𝑗𝜔𝑔𝑐)𝐻(𝑗𝜔𝑔𝑐)| = 1 ⇒ 𝜔𝑔𝑐 

𝑎𝑟𝑔{𝐺 (𝑗𝜔𝑝𝑐 )𝐻(𝑗𝜔𝑝𝑐 )} = 180𝑜 ⇒ 𝜔𝑝𝑐 

PROCEDURE FOR INVESTIGATING STABILITY USING NYQUIST CRITERION 

The following procedure can be followed to investigate the stability of closed loop system 

from the knowledge of open loop system, using Nyquist stability criterion. 

1. Choose a Nyquist contour as shown in figure, which encloses the entire right half s- 

plane except the singular points. The Nyquist contour encloses all the right half s- 

plane poles and zeros of G(s)H(s). [The poles on imaginary axis are singular points 

and so they are avoided by taking a detour around it as shown in figures. 

2. The Nyquist contour should be mapped in the G(s)H(s)-plane using the function 

G(s)H(s) to determine the encirclement -1 + j0 point in the G(s)H(s)-plane. The 
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Nyquist contour of the figure can be divided into four sections C1.C2.C3 and C4. The 

mapping of the four sections in the G(s)H(s)-plane can be carried sectionwise and then 

combined together to get entire G(s)H(s)-contour. 

3. In section C1, the value of ω varies from 0 to + infinite. The mapping of section C1 is 

obtained by letting s = jω in G(s)H(s) and varying ω from 0 to + infinite. 

The locus of G(jω)H(jω) as ω is varied from 0 to + infinite will be the G(s)H(s)- 

contour in G(s)H(s)-plane corresponding to section C1 in s-plane. This locus is the plot 

of G(jω)H(jω). There are three ways of mapping this section of G(s)H(s)-contour, they 

are, 

(i) Calculate the values of G(jω)H(jω) for various values of ω and sketch the actual 

locus of G(jω)H(jω). 

(or) 

(ii) Separate the real part and imaginary part of G(jω)H(jω). Equate the imaginary 

part to zero, to find the frequency at which the G(jω)H(jω) locus crosses real axis 

( to find phase crossover frequency). Substitute this frequency on real part and 

find the crossing point of the locus on real axis. Sketch the approximate locus of 

G(jω)H(jω) from the knowledge of type number and order of the system (or from 

the value of G(jω)H(jω) at ω = 0 and ω = infinite). 

(or) 

(iii) Separate the magnitude and phase of G(jω)H(jω). Equate the phase of 

G(jω)H(jω) to -180º and solve for ω. This value of ω is the phase crossover 

frequency and the magnitude at this frequency is the crossing point on real axis. 

Sketch the approximate root locus as mentioned in method (ii). 

4. The section C2 of Nyquist contour has a semicircle of infinite radius. Therefore, every 

point on section C2 has infinite magnitude but the argument varies from +π/2 to - π/2. 

Consider the loop transfer function in time constant form and with y number of poles 

at origin, as shown below. Let G(s)H(s) has m zeros & n poles including poles at 

origin. For practical systems, n>m. From the above two equations we can conclude 

that the section C2 of Nyquist contour in s-plane is mapped as circles/circular are 

around origin with radius tending to zero in the G(s)H(s)-plane. 
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5. In section C3, the value of ω varies from -∞ to 0. The mapping of section C3 is 

obtained by letting s=jω in G(s)H(s) and varying ω from -∞ to 0. The locus of 

G(jω)H(jω) as ω is varied from -∞ to 0 will be the G(s)H(s)-contour in G(s)H(s)-plane 

corresponding to section C3 in s-plane. This locus is the inverse polar plot of 

G(jω)H(jω). The inverse polar plot is given by the mirror image of polar plot with 

respect to real axis. 

6. The section C4 of Nyquist contour has a semicircle of zero radius. Therefore, every 

point on semicircle has zero magnitude but the argument varies from -π/2 to π/2. 

Hence the mapping of section C4 from s-plane to G(s)H(s)-plane can be obtained by 

letting in G(s)H(s) and varying θ from -π/2 to π/2. 

PERFORMANCE CRITERIA 

For ordinary random inputs (i.e. inputs such that the error E is a stationary random 

function of time t), it is usual to adopt the mean -square- error as the performance 

criterion. This is the analogue of integral- square-error for simple transient inputs. 

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship


www.binils.com for Anna University | Polytechnic and Schools 

Download Binils Android App in Playstore     Download Photoplex App 

 

 

4.2 ROUTH HURWITZ CRITERION 

Consider a closed-loop transfer function 

𝑏0𝑠
𝑚 + 𝑏1𝑠

𝑚−1 + ⋯ + 𝑏𝑚−1𝑠 + 𝑏𝑚 

 

 

 
𝐵(𝑠) 

𝐻(𝑠) = 
𝑎0 𝑠

𝑛 + 𝑎1 𝑠𝑛−1 + ⋯ + 𝑎𝑛−1 𝑠 + 𝑎𝑛 
= 

𝐴(𝑠) 

where the ai’s and bi’s are real constants and m ≤ n. An alternative to factoring the 

denominator polynomial, Routh’s stability criterion, determines the number of closed- 

loop poles in the right-half s-plane. 

Algorithm for applying Routh’s stability criterion 

The algorithm described below, like the stability criterion, requires the order of A(s) to 

be finite. 

1. Factor out any roots at the origin to obtain the polynomial, and multiply by −1 if 

necessary, to obtain 

𝑎0𝑠
𝑛 + 𝑎1𝑠

𝑛−1 + ⋯ + 𝑎𝑛−1𝑠 + 𝑎𝑛 = 0 

𝑤ℎ𝑒𝑟𝑒 , 𝑎0  ≠ 0 𝑎𝑛𝑑 𝑎𝑛  > 0 

2. If the order of the resulting polynomial is at least two and any coefficient ai is zero or 

negative, the polynomial has at least one root with nonnegative real part. To obtain 

the precise number of roots with nonnegative real part, proceed as follows. Arrange 

the coefficients of the polynomial, and values subsequently calculated from them as 

shown below: 

sn 

sn-1 

sn-2 

sn-3 

sn-4 

⋮ 

s2 

s1 

s0 

a0 a2 a4 a6 ⋯ 

a1 a3 a5 a7 ⋯ 

b1 b2 b3 b4 ⋯ 

c1 c2 c3 c4 ⋯ 

d1 d2 d3 d4 ⋯ 

⋮ ⋮    

e1 e2    

f1 

g0 
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The array is generated until all subsequent coefficients are zero. Similarly, cross 

multiply the coefficients of the two previous rows to obtain the ci, di, etc. Until the nth 

row of the array has been completed. Missing coefficients are replaced by zeros. The 

resulting array is called the Routh array. The powers of s are not considered to be part 

of the array. We can think of them as labels. The column beginning with a0 is 

considered to be the first column of the array. The Routh array is seen to be triangular. 

It can be shown that multiplying a row by a positive number to simplify the calculation 

of the next row does not affect the outcome of the application of the Routh criterion. 

where, the coefficients bi are, 

𝑏1 = 

 
𝑏2 = 

 
𝑏3 = 

𝑎1𝑎2 − 𝑎0𝑎3 
 

 

𝑎1 

𝑎1𝑎4 − 𝑎0𝑎5 
 

𝑎1 

𝑎1𝑎6 − 𝑎0𝑎7 
 

𝑎1 

⋮ 

3. Count the number of sign changes in the first column of the array. It can be shown 

that a necessary and sufficient condition for all roots of (2) to be located in the left- 

half plane is that all the ai are positive and all of the coefficients in the first column be 

positive. 

Example: Generic Cubic Polynomial 

Consider the generic cubic polynomial: 

𝑎0𝑠
3 + 𝑎1𝑠

2 + 𝑎2𝑠 + 𝑎3 = 0 

where all the ai are positive. The Routh array is 

s3 𝑎0 𝑎2 

s2 𝑎1 𝑎3 

s1 
𝑎1𝑎2  − 𝑎0𝑎3 

𝑎0 

s0 𝑎3 

 
So, the condition that all roots have negative real parts is 

𝑎1𝑎2  > 𝑎0𝑎3 
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Example: A Quadratic Polynomial. 

Next, we consider the fourth-order polynomial: 

𝑠4 + 2𝑠3 + 3𝑠2 + 4𝑠 + 5 = 0 

Here we illustrate the fact that multiplying a row by a positive constant does not change 

the result. One possible Routh array is given at left, and an alternative is given at right, 

s4 

s3 

s2 

s1 

s0 

 

Also, 

s4 

s3 

 
s2 

s1 

s0 

 

In this example, the sign changes twice in the first column so the polynomial equation 

A(s) = 0 has two roots with positive real parts. 

Necessity of all coefficients being positive 

In stating the algorithm above, we did not justify the stated conditions. Here we show 

that all coefficients being positive is necessary for all roots to be located in the left half- 

plane. It can be shown that any polynomial ins, all of whose coefficients are real, can be 

factored into a product of a maximal number linear and quadratic factors also having real 

coefficients. Clearly a linear factor (s+a) has nonnegative real root if a is positive. For 

both roots of a quadratic factor (s2+bs+c) to have negative real parts both b and c must 

1 3 5 

2 4 0 

1 5  

-6   

5   

 
1 

 
3 

 
5 

2 4 0 

1 2 0 

1 5  

-3   

5   
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be positive. (If c is negative, the square root ofb2−4cis real and the quadratic factor can 

be factored into two linear factors so the number of factors was not maximal.) It is easy 

to see that if all coefficients of the factors are positive, those of the original polynomial 

must be as well. To see that the condition is not sufficient, we can refer to several 

examples above. 

Example: Determining Acceptable Gain Values 

Consider a system whose closed-loop transfer function is 

𝐾 
𝐻(𝑠) = 

𝑠(𝑠2 + 𝑠 + 1)(𝑠 + 2) + 𝐾 

Characteristic equation 

 
 

Routh array is 

 

𝑠4 + 3𝑠3 + 3𝑠2 + 2𝑠 + 𝐾 = 0 

 

s4 1 3 K 

s3 3 2 

s2 7/3 K 

s1 (14-9K)/7 

s0 K 
 

For the system to be stable, the elements of the first column of the Routh array should be 

positive. Based on that condition, the s1 row yields the condition that, for stability, 

(14 − 9𝐾) 
> 0 

7 

(14 − 9𝐾) > 0 

14 > 9𝐾 

14 
> 𝐾 

9 

The s0 row yields the condition that, for stability, 

K > 0 

Hence, the system is stable when the value of K lies in the range of 

0 < K < 14/9 
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Special Case: Zero First-Column Element. 

If the first term in a row is zero, but the remaining terms are not, the zero is replaced by 

a small, positive value of ϵ and the calculation continues as described above. Here’s an 

example: 

 
Routh array is 

𝑠3 + 2𝑠2 + 𝑠 + 2 = 0 

s3 1 1 

s2 2 2 

s1 0 ≅ 𝜖 

s0 2 

Special Case: Zero Row 

If all the coefficients in a row are zero, a pair of roots of equal magnitude and opposite 

sign is indicated. These could be two real roots with equal magnitudes and opposite signs 

or two conjugate imaginary roots. The zero row is replaced by taking the coefficients of 

dP(s)/ds, where P(s), called the auxiliary polynomial, is obtained from the values in the 

row above the zero row. The pair of roots can be found by solving dP(s)/ds= 0. Note that 

the auxiliary polynomial always has even degree. It can be shown that an auxiliary 

polynomial of degree 2n has n pairs of roots of equal magnitude and opposite sign. 
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