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3.2 BODE PLOT 

The Bode plot is a frequency response plot of the sinusoidal transfer function of a 

system. One is a plot of the magnitude of a sinusoidal transfer function versus log ω. The 

other is a plot of the phase angle of a sinusoidal transfer function versus log ω. The main 

advantage of bode plot is that multiplication of magnitudes can be converted into 

addition. Also, a simple method for sketching an approximate log-magnitude curve is 

available. A Bode plot is a (semilog) plot of the transfer function magnitude and phase 

angle as a function of frequency. 

The gain magnitude is many times expressed in terms of decibels (dB) = 20 log10A. 

Semilog sheet 

Two sets of axes: gain on top, phase below (identical) 

Logarithmic frequency axes 

Gain axis is logarithmic – either explicitly or as units of decibels(dB) 

Phase axis is linear with units of degrees 

 

Figure 3.2.1 Magnitude and phase plots of Bode plot 

[Source: “Linear Control System Analysis and Design with MATLAB” by John J D’Azzo, Constantine, Stuart, Page: 318] 
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BASIC FACTORS OF G(jω) 

The basic factors that are very frequently occur in a typical transfer function G(jω) are, 

1. Constant gain, K 

2. Integral and derivative factors (𝑗𝜔)∓1 

3. First-order factors (1 + 𝑗𝜔𝑇)∓1 
 

 
4. Quadratic factors (1 + 2𝜁 (𝑗 

 
Constant Gain, K 

Let G(s)=K, 

 
𝜔 

 
 

𝜔
𝑛 

 
) + ( 

∓1 
𝜔 ) ) 
𝜔𝑛 

𝐺(𝑗𝜔) = 𝐾 = 𝐾∠0𝑜 

𝐴 = |𝐺(𝑗𝜔)|𝑖𝑛 𝑑𝑏 = 20 log 𝐾 

𝜙 = ∠𝐺(𝑗𝜔) = 0𝑜 

The magnitude plot for a constant gain K is a horizontal straight line at the magnitude of 

20log K db. The phase plot is a straight line at 0o. 

 
 

 

 

Integral Factor 

Let G(s)=K/s, 

Figure 3.2.2 Bode plot of constant gain, K 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.10] 

𝐾 
𝐺(𝑗𝜔) = 

𝑗
𝜔 

= 
𝐾 
∠ − 90𝑜 
𝜔 

2 
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𝐾 
𝐴 = |𝐺(𝑗𝜔)|𝑖𝑛 𝑑𝑏 = 20 log ( ) 

𝜔 

𝜙 = ∠𝐺(𝑗𝜔) = −90𝑜 

The magnitude plot of the integral factor is a straight line with the slope of -20db/dec and 

passing through zero db when ω=K. The phase plot is a straight line at -90o. 

 
 

 

 

Derivative factor 

Let G(s)=Ks, 

Figure 3.2.3 Bode plot of integral factor, K/jω 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.11] 

 

 

 

 
𝐺(𝑗𝜔) = 𝐾𝑗𝜔 = 𝐾𝜔∠90𝑜 

𝐴 = |𝐺(𝑗𝜔)|𝑖𝑛 𝑑𝑏 = 20 log(𝐾𝜔) 

𝜙 = ∠𝐺(𝑗𝜔) = +90𝑜 

The magnitude plot of the integral factor is a straight line with the slope of 20db/dec and 

passing through zero db when ω=K. The phase plot is a straight line at +90o. 
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Figure 3.2.4 Bode plot of derivative factor, K x jω 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.11] 

First order factor in denominator 

Let 𝐺(𝑠) = 
1

 
1+𝑠𝑇 

1 
𝐺(𝑗𝜔) = 

1 + 𝑗𝜔𝑇 

1 
= 

√1 + 𝜔2𝑇2 
∠ − tan−1 𝜔𝑇 

1 

𝐴 = |𝐺(𝑗𝜔)|𝑖𝑛 𝑑𝑏 = 20 log (     ) 
√1 + 𝜔2𝑇2 

𝜙 = ∠𝐺(𝑗𝜔) = ∠ − tan−1 𝜔𝑇 

The magnitude plot of the first order factor can be approximated by two straight lines, 

one is a straight line at zero db for the frequency range, 0<ω<1/T, and the other is a 

straight line with slope -20db/dec for the frequency range, 1/T<ω<∞. The corner 

frequency is ωc=1/T and the loss in db at the corner frequency is -3db. The phase angle 

of the first order factor varies from 0o to -90o as ω is varied from zero to infinity. The 

phase plot is a curve passing through -45o at ωc. 
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Figure 3.2.5 Bode plot of first order factor in denominator, 1/(1+jωT) 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.13] 

First order factor in numerator 

Let 𝐺(𝑠) = 1 + 𝑠𝑇 
 

𝐺(𝑗𝜔) = 1 + 𝑗𝜔𝑇 = √1 + 𝜔2𝑇2∠ tan−1 𝜔𝑇 
 

𝐴 = |𝐺(𝑗𝜔)|𝑖𝑛 𝑑𝑏 = 20 log (√1 + 𝜔2𝑇2) 

 

𝜙 = ∠𝐺(𝑗𝜔) = ∠ tan−1 𝜔𝑇 

The magnitude plot of the first order factor can be approximated by two straight lines, 

one is a straight line at zero db for the frequency range, 0<ω<1/T, and the other is a 

straight line with slope 20db/dec for the frequency range, 1/T<ω<∞. The corner 

frequency is ωc=1/T and the loss in db at the corner frequency is +3db. The phase angle 

of the first order factor varies from 0o to +90o as ω is varied from zero to infinity. The 

phase plot is a curve passing through +45o at ωc. 
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𝑛 

 

 
 

Figure 3.2.6 Bode plot of first order factor in numerator, (1+jωT) 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.14] 

Quadratic factor in denominator 

Second order closed loop transfer function is given by 

 
𝐺(𝑠) = 

2 
𝑛 

 

 𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2 
 

(
 𝑠 2 

1 
  𝑠  

𝑛 ) 
𝜔𝑛 

1 

+ 2𝜁 𝜔𝑛 
+ 1 1 

𝐺(𝑗𝜔) = 
 𝑗𝜔  2 

( ) 
𝜔𝑛 

 
+ 2𝜁 

 𝑗𝜔  

𝜔𝑛 
+ 1 

= 
 𝜔 2 

− (𝜔𝑛
) 

+ 2𝜁 
 𝑗𝜔 

+ 1 
𝜔𝑛 

𝐺(𝑗𝜔) = 
1 

∠ −tan−1 ( 

2𝜁
 𝜔  

𝜔𝑛 )
 

𝜔2 

√(1 − 
𝜔2 

) + 4𝜁2 
𝜔2

 
 

1 − 
𝜔 2

 

𝜔𝑛
2 𝜔𝑛

2 

 

At low frequencies when ω<<ωn, the magnitude is, 
 

 

 

𝐴 = −20 log √1 − 
𝜔2 

(2 − 4𝜁2) + 
𝜔𝑛 

𝜔
4 

4 
≅ −20 log 1 = 0 

𝑛 
 

At high frequencies when ω>>ωn, the magnitude is, 
 

 

 

𝐴 = −20 log √1 − 
𝜔2 

(2 − 4𝜁2) + 
𝜔𝑛 

𝜔4 
 

 

𝜔𝑛
4 

𝜔 

2 
𝜔 
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= 
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𝐴 ≅ −20 log √ 

𝜔4 

4 
= − 20 log 

𝜔2 𝜔 2 

2 
= −20 log ( ) 

𝜔𝑛 𝜔𝑛 

 
2𝜁

 𝜔  

𝜔𝑛 

𝜙 = ∠𝐺(𝑗𝜔) = − tan−1 ( 
𝜔𝑛 ) 

1 − 
𝜔2

 𝜔𝑛
2 

 

The magnitude plot of the quadratic factor in the denominator can be approximated by 

two straight lines, one is a straight line at zero db for the frequency range, 0<ω< ωn, and 

the other is a straight line with slope -40db/dec for the frequency range, ωn<ω<∞. The 

frequency at which the two asymptotes meet is called the corner frequency. For the 

quadratic factor, the frequency, ωn is the corner frequency, ωc. The phase angle of the 

quadratic factor varies from 0o to -180o as ω is varied from zero to infinity. The phase 

plot is a curve passing through -90o at ωc. At the corner frequency, phase angle is -90o 

and independent of 𝜁, but at all other frequency it depends on 𝜁. 

 

Figure 3.2.7 Bode plot of quadratic factor in denominator 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.15] 
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𝜔 

Quadratic factor in the numerator 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2 

 

 
𝑠 2 𝑠 

𝐺(𝑠) =  

 
𝑗𝜔  2 

 
2 
𝑛 

 
𝑗𝜔 

𝑛 = ( ) 
𝜔𝑛 

𝜔 

+ 2𝜁 

 
2 

 
 

𝜔
𝑛 

+ 1 

 
𝑗𝜔 

𝐺(𝑗𝜔) = ( ) 
𝜔𝑛 

+ 2𝜁 
 

 

𝜔
𝑛 

+ 1 = − ( ) 
𝜔𝑛 

+ 2𝜁 + 1 
𝜔𝑛 

 
𝜔
2 𝐺(𝑗𝜔) = √(1 − 

 
𝜔
2 

) + 4𝜁2   

 

∠ tan−1 ( 
2𝜁

 𝜔  

𝜔𝑛 )
 

𝜔𝑛
2 𝜔𝑛

2 
1 − 

𝜔2

 

𝜔𝑛2 
 

At low frequencies when ω<<ωn, the magnitude is, 
 

 

 

𝐴 = 20 log √1 − 
𝜔2 

(2 − 4𝜁2) + 
𝜔𝑛 

𝜔
4 

4 
≅ 20 log 1 = 0 

𝑛 
 

At high frequencies when ω>>ωn, the magnitude is, 
 

 

 

𝐴 = 20 log √1 − 
𝜔2 

(2 − 4𝜁2) + 
𝜔𝑛 

𝜔4 
 

 

𝜔𝑛
4 

 
 

 

𝜔4 𝜔2 𝜔 2 

𝐴 ≅ 20 log √ 
𝜔
𝑛 

4 
= 20 log 

𝑛 
2 

= 20 log ( ) 
𝑛 

 

2𝜁
 𝜔  

𝜙 = ∠𝐺(𝑗𝜔) = tan−1 ( 
𝜔𝑛 ) 

1 − 
𝜔2

 𝜔𝑛
2 

 

The magnitude plot of the quadratic factor in the denominator can be approximated by 

two straight lines, one is a straight line at zero db for the frequency range, 0<ω< ωn, and 

the other is a straight line with slope +40db/dec for the frequency range, ωn<ω<∞. The 

frequency at which the two asymptotes meet is called the corner frequency. For the 

quadratic factor, the frequency, ωn is the corner frequency, ωc. The phase angle of the 

quadratic factor varies from 0o to +180o as ω is varied from zero to infinity. The phase 

plot is a curve passing through +90o at ωc. At the corner frequency, phase angle is +90o 

and independent of 𝜁, but at all other frequency it depends on 𝜁. 

𝜔 

2 
𝜔 

2 

𝜔 
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Figure 3.2.8 Bode plot of quadratic factor in numerator 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.16] 
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PROCEDURE FOR MAGNITUDE PLOT OF BODE PLOT 

Step 1: Convert the transfer function into Bode form or time constant form. 

Step 2: List the corner frequencies in the increasing order and prepare a table as shown 
 

Term 
Corner frequency 

rad/sec 

Slope 

db/dec 

Change in Slope 

db/dec 

    

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship


www.binils.com for Anna University | Polytechnic and Schools 

Download Binils Android App in Playstore     Download Photoplex App 

 

 

In the above table, enter K or K/(jω)n or K(jω)n as the first term and the other terms in the 

increasing order of corner frequencies. Then enter the corner frequency, slope contributed 

by each term and change in slope at every corner frequency. 

Step 3: Choose an arbitrary frequency ωl which is lesser than the lowest corner frequency. 

Calculate the db magnitude of K or K/(jω)n or K(jω)n at ωl and at the lowest corner 

frequency. 

Step 4: Then calculate the gain (db magnitude) at every corner frequency one by one by 

using the formula, 

Gain at ωy = change in gain from ωx to ωy + Gain at ωx 

Ay = (Slope from ωx to ωy x log(ωy/ ωx) + Gain at ωx 

Step 5: Choose an arbitrary frequency ωh which is greater than the highest corner 

frequency. Calculate the gain at ωh by using the formula in step 4. 

Step 6: In a semilog graph sheet mark the required range of frequency on x-axis (log 

scale) and the range of db magnitude on y-axis (ordinary scale) after choosing proper 

units. 

Step 7: Mark all the points obtained in steps 3, 4, 5 on the graph and join the points by 

straight lines. Mark the slope at every part of the graph. 

PROCEDURE FOR PHASE PLOT OF BODE PLOT 

The phase plot is an exact plot obtained with exact phase angles of G(jω) computed 

for various values of ω and is then tabulated. The choice of frequencies are preferably the 

frequencies chosen for magnitude plot. Usually the magnitude plot and phase plot are 

drawn in a single semilog sheet on a common frequency scale. Take another y-axis in the 

graph where the magnitude plot is drawn and, in this y-axis, mark the desired range of 

phase angles after choosing proper units. From the tabulated values of ω and phase angles, 

mark all the points on the graph. Join the points by a smooth curve. 

DETERMINATION OF GAIN MARGIN AND PHASE MARGIN FROM BODE PLOT 

The gain margin in db is given by the negative of db magnitude of G(jω) at the 

phase crossover frequency, ωpc. The ωpc is the frequency at which phase of G(jω) is 180o. 

if the db magnitude of G(jω) at ωpc is negative then gain margin is positive and vice versa. 

Let Φgc be the phase angle of G(jω) at gain cross over frequency, ωgc. The ωgc is 

the frequency at which the db magnitude of G(jω) is zero. Now the phase margin, γ is 
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given by, γ = 180o+ Φgc. If Φgc is less negative than -180o, then phase margin is positive 

and vice versa. The positive and negative gain margins and phase margins are illustrated 

in figure 3.2.9. 

 

Figure 3.2.9 Gain margin and Phase margin in Bode plot 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.20] 
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𝜔 

𝑛 

𝜔 

𝑛 

2 

3.5 CORRELATION BETWEEN FREQUENCY DOMAIN AND TIME DOMAIN 

SPECIFICATIONS 

For a second order system, 

 

 

 
Put s=jω 

𝐶(𝑠) 
 

 

𝑅(𝑠) 

2 

= 
𝑛 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2 

𝐶(𝑗𝜔) 
 

 

𝑅(𝑗𝜔) 

2 

= 
𝑛 

−𝜔2 + 2𝜁𝜔𝑛𝑗𝜔 + 𝜔2 

𝐶(𝑗𝜔) 
= 𝑅(𝑗𝜔) 

1 
 

 

𝜔2  𝜔  
 

 

 
Let 𝑢 = 

𝜔 
, then 

𝜔𝑛 

− 
𝜔2 + 2𝜁𝑗 𝜔𝑛 

+ 1 

 

𝐶(𝑗𝜔) 1 

 

 
We know, 

 

 

 

 

 

 
 
Now, 

𝑅(𝑗𝜔) 
= 

(1 − 𝑢2) + 2𝜁𝑗𝑢 

 

𝑀(𝑗𝜔) = |𝑀(𝑗𝜔)|∠𝑀(𝑗𝜔) 

1 
|𝑀(𝑗𝜔)| =    

√(1 − 𝑢2)2 + (2𝜁𝑢)2 

  2𝜁𝑢  
𝜃 = − tan−1 ( ) 

1 − 𝑢 
 

 
1 

𝑀𝑟 =    

2𝜁√1 − 𝜁2 

 
 

𝜔𝑟 = 𝜔𝑛 √1 − 2𝜁2 

 
 

 
 

𝜔𝑏 = 𝜔𝑛 √1 − 2𝜁2 + √4𝜁4 − 4𝜁2 + 2 

 

𝑃𝑀 = −180𝑜 + 𝜙 

where, 
 
 

  
2𝜁 

𝑛 
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𝜙 = tan−1   
  

 
( 

    

  
√√4𝜁2 + 1 − 2𝜁2 

) 
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( 

) 

3.4 DETERMINATION OF CLOSED LOOP RESPONSE FROM OPEN LOOP 

RESPONSE 

M and N circles 

Peak magnitude 

𝐶(𝑗𝜔) 
𝑀𝑟  = 20 log |

𝑅(𝑗𝜔)
| 𝑑𝐵 

where, 3 dB is considered good. 

M-CIRCLES 

 
𝑀(𝑗𝜔) = 

𝐺(𝑗𝜔) 
 

 

1 + 𝐺(𝑗𝜔) 
 

𝐺(𝑗𝜔) = 𝑋 + 𝑗𝑌 

 

 
𝑀(𝑗𝜔) 

= 

 
𝑋 + 𝑗𝑌 

 
 

1 + 𝑋 + 𝑗𝑌 

√𝑋2 + 𝑌2∠ tan−1 𝑌 

= 𝑋  

√(1 + 𝑋)2 + 𝑌2∠ tan−1 (
 𝑌 

 
1 + 𝑋 

 
 

√𝑋2 + 𝑌2 
=   ∠ tan−1 

√(1 + 𝑋)2 + 𝑌2 

Let, M = Magnitude of M(jω) 

𝑌 
( ) − tan−1 
𝑋 

𝑌 
( ) 

1 + 𝑋 

 
 

√𝑋2 + 𝑌2 
|𝑀(𝑗𝜔)| =    

√(1 + 𝑋)2 + 𝑌2 

𝑀2(1 + 𝑋)2 + 𝑀2𝑌2 = 𝑋2 + 𝑌2 

𝑋2(1 − 𝑀2) + (1 − 𝑀2)𝑌2 − 2𝑀2𝑋 = 𝑀2 

 
𝑋2 + 𝑌2 − 2 

𝑀2 
 

 

(1 − 𝑀2) 

 

𝑋 = 
𝑀2 

 
 

(1 − 𝑀2) 

 
Adding ( 

 
𝑀
2 

2 

2 ) on both sides, we get, 

(1−𝑀 )  

 
(𝑋 − 

 
𝑀
2 

 
2 

𝑀 
2 

) + 𝑌2 = ( ) 

(1 − 𝑀2) (1 − 𝑀2) 

The above equation represents a family of circles with its 

) 
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centre at ( 
𝑀2

 

(1−𝑀2) 

, 0) and radius 𝑀 
(1−𝑀2) 

Family of M-circles corresponding to the closed loop magnitudes, M of a unit feedback 

system is given by the figure 3.4.1. 
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N-CIRCLES 

Figure 3.4.1 Constant M-circles in the polar co-ordinates 

[Source: “Automatic Control Systems” by Benjamin C. Kuo, Page: 487] 

 

 
∠𝐺(𝑗𝜔) 

∠𝑀(𝑗𝜔) = 𝛼 = 
∠(1 + 𝐺(𝑗𝜔)) 

𝛼 = tan−1 
𝑌 

− tan−1 
𝑌

 
𝑋 1 + 𝑋 

tan 𝛼 = 𝑁 = tan (tan−1 
𝑌 

− tan−1 
𝑌 

) 

 
We know, 

𝑋 1 + 𝑋 

 
tan(𝐴 − 𝐵) = 

tan 𝐴 − tan 𝐵 1 

+ tan 𝐴 tan 𝐵 

𝑌 
N = (

𝑋2 + 𝑋 + 𝑌2
)
 

1 2 

(𝑋 +  ) 
2 

 
+ (𝑌 − 

1 2 

) 
2𝑁 

1 
=  + ( 

4 

1 2 

) 
2𝑁 

The above equation represents the family of circles with its 
 

Centre at (− 
1 
, 

1 
) and radius √

1 
+ ( 

1 
) 

2  2𝑁 4 2𝑁 

2 
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Figure 3.4.2 Constant N-circles in the polar co-ordinates 

[Source: “Automatic Control Systems” by Benjamin C. Kuo, Page: 490] 
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3.1 FREQUENCY RESPONSE 

The response of a system for the sinusoidal input is called sinusoidal response. The 

ratio of sinusoidal response to sinusoidal input is called sinusoidal transfer function of 

the system and in general, it is denoted by, T(jω). The sinusoidal transfer function is the 

frequency domain representation of the system and so it is also called frequency domain 

transfer function. 

The frequency domain transfer function T(jω) is a complex function of ω. Hence, 

it can be separated into magnitude function and phase function. Now, the magnitude and 

phase functions will be real functions of ω and they are called frequency response. 

The frequency response can be evaluated for open loop system and closed loop 

system. The frequency domain transfer function of open loop and closed loop systems 

can be obtained from the s-domain transfer function by replacing ‘s’ by jω as shown: 

Open loop transfer function: 𝑮(𝒋𝝎) = |𝑮(𝒋𝝎)|∠𝑮(𝒋𝝎) 

Loop transfer function: 𝑮(𝒋𝝎)𝑯(𝒋𝝎) = |𝑮(𝒋𝝎)𝑯(𝒋𝝎)|∠𝑮(𝒋𝝎)𝑯(𝒋𝝎) 

Closed loop transfer function: 𝑴(𝒋𝝎) = |𝑴(𝒋𝝎)|∠𝑴(𝒋𝝎) 

The advantages of frequency response analysis are the following: 

1. The absolute and relative stability of the closed loop system can be estimated 

from the knowledge of their open loop frequency response. 

2. The practical testing of systems can be easily carried with available sinusoidal 

signal generators and precise measurement equipments. 

3. The transfer function of complicated systems can be determined experimentally 

by frequency response tests. 

4. The design and parameter adjustment of the open loop transfer function of a 

system for specified closed loop performance is carried out more easily in 

frequency domain. 

5. When the system is designed by the use of frequency response analysis, the 

effects of noise disturbance and parameter variations are relatively easy to 

visualize and incorporate corrective measures. 

6. The frequency response analysis and designs can be extended to certain non- 

linear control systems. 
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The frequency response of a system is a frequency dependent function which expresses 

how a sinusoidal signal of a given frequency on the system input is transferred through 

the system. Time-varying signals at least periodical signals – which excite systems, as 

the reference (set point) signal or a disturbance in a control system or measurement 

signals which are inputs signals to signal filters, can be regarded as consisting of a sum 

of frequency components. Each frequency component is a sinusoidal signal having 

certain amplitude and a certain frequency. (The Fourier series expansion or the Fourier 

transform can be used to express these frequency components quantitatively.) The 

frequency response expresses how each of these frequency components is transferred 

through the system. Some components may be amplified, others may be attenuated, and 

there will be some phase lag through the system. The frequency response is an important 

tool for analysis and design of signal filters (as low pass filters and high pass filters), and 

for analysis, and to some extent, design, of control systems. Both signal filtering and 

control systems applications are described (briefly) later in this chapter. The definition of 

the frequency response – which will be given in the next section – applies only to linear 

models, but this linear model may very well be the local linear model about some 

operating point of a non-linear model. The frequency response can be found 

experimentally or from a transfer function model. It can be presented graphically or as a 

mathematical function. 

FREQUENCY DOMAIN SPECIFICATIONS 

The performance and characteristics of a system in frequency domain are measured 

in terms of frequency domain specifications. The requirements of a system to be designed 

are usually specified in terms of these specifications. 

The frequency domain specifications are, 

a) Resonant peak, Mr 

b) Resonant frequency, ωr 

c) Bandwidth, ωb 

d) Cut-off rate 

e) Gain margin, Kg 

f) Phase margin, γ 
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𝑛 

𝑛 

𝜔 

𝑛 

𝜔 

𝜔 

− 

FREQUENCY DOMAIN SPECIFICATIONS OF SECOND OREDER SYSTEM 

Resonant peak, Mr 

The maximum value of the magnitude of closed loop transfer function is called the 

resonant peak, Mr. A large resonant peak corresponds to a large overshoot in transient 

response. Consider the closed loop transfer function of second order system, 

𝐶(𝑠) 
 

 

𝑅(𝑠) 

 

= 𝑀(𝑠) = 

2 
𝑛 

 
 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2 

The sinusoidal transfer function M(jω) is obtained by letting s=jω. 

𝜔2 

𝑀(𝑗𝜔) = 
𝑛 

 

 

(𝑗𝜔)2 + 2𝜁𝜔𝑛(𝑗𝜔) + 𝜔2 

2 

= 
𝑛 

−𝜔2 + 2𝜁𝜔𝑛(𝑗𝜔) + 𝜔2 

2 

= 
𝑛 

𝜔2 (− 
𝜔2 

+ 2𝑗𝜁
 𝜔  

+ 1) 
 

𝑛 2 
𝑛 

1 

𝜔𝑛 

1 − (
 𝜔 

 
𝜔𝑛 

2 + 2𝑗𝜁
 𝜔 

 
𝜔𝑛

Let normalized frequency, 𝑢 = ( 
𝜔 

), 
𝜔𝑛 

1 

𝑀(𝑗𝜔) = 
1 − 𝑢2 + 2𝑗𝜁𝑢 

Let, M – Magnitude of closed loop transfer function 

α – Phase of closed loop transfer function 

𝑀 = |𝑀(𝑗𝜔)| = [(1 − 

𝑢2)2 

+ 4𝜁2 
 1 

𝑢2] 2 

𝛼 = ∠𝑀(𝑗𝜔) = − tan−1 
2𝜁𝑢

 

1 − 𝑢2 

The resonant peak is the maximum value of M. The condition for maximum value of M 

can be obtained by differentiating the equation of M with respect to u and letting 

(dM/du=0) when (u=ur) with normalized frequency, 𝑢𝑟 = 
𝜔𝑟. 
𝜔 

𝜔 

) 

= 
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− 

On differentiating ‘M’ with respect to ‘u’, we get, 

𝑑𝑀 
 

 

𝑑𝑢 

𝑑 
= 
𝑑𝑢 

 
[1 − 𝑢2 

 
 1 

+ 2𝑗𝜁𝑢] 2 
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1 
= − [1 − 𝑢2 

2 

 
+ 2𝑗𝜁𝑢] 

 3 

2[2(1 − 𝑢2  
)(−2𝑢) + 8𝜁2 

 
𝑢] 

[−4𝑢(1 − 𝑢2) + 8𝜁2𝑢] 
= −  3 

2[(1 − 𝑢2)2 + 4𝜁2𝑢2]2 

[4𝑢(1 − 𝑢2) − 8𝜁2𝑢] 
= −  3 

2[(1 − 𝑢2)2 + 4𝜁2𝑢2]2 

Replacing u by ur and equating dM/du to zero, 

[4𝑢𝑟(1 − 𝑢𝑟 
2) − 8𝜁2𝑢𝑟] 

 3  = 0 

2[(1 − 𝑢𝑟 
2)2 + 4𝜁2𝑢𝑟 

2]2 

4𝑢𝑟(1 − 𝑢𝑟 
2) − 8𝜁2𝑢𝑟 = 0 

4𝑢𝑟 − 4𝑢𝑟 
3 − 8𝜁2𝑢𝑟  = 0 

4𝑢𝑟 − 4𝑢𝑟 
3  = 8𝜁2𝑢𝑟 

4𝑢𝑟 
3  = 4𝑢𝑟 − 8𝜁2𝑢𝑟 

𝑢𝑟 
2 = 1 − 2𝜁2 

 

𝑢𝑟  = √1 − 2𝜁2 
 

Therefore, the resonant peak occurs when 𝑢𝑟 = √1 − 2𝜁2 

On substituting for M with M=Mr and u=ur, 

1 1 
𝑀𝑟 =  1 

= 

[(1 − 𝑢𝑟 
2)2 + 4𝜁2𝑢𝑟 

2]2 

 

[(1 − 

 

(1 − 2𝜁 

 
2)) 

 

+ 4𝜁 

 
2(1 − 2𝜁 

 1 

2)]
2

 

 

1 
=  1 = 

1 
 1 

= 
1 1 

 1 
= 

2𝜁√1 − 𝜁2 

[4𝜁4 + 4𝜁2 − 8𝜁4]2 [4𝜁2 − 4𝜁4]2 

1 

[4𝜁2(1 − 𝜁2)]2 

 

 
Resonant frequency, ωr 

𝑀𝑟  =    
2𝜁√1 − 𝜁2 

The frequency at which the resonant peak occurs is called resonant frequency, ωr. 

This is related to the frequency of oscillation in the step response and thus it is indicative 

− 

2 
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of the speed of transient response. 

Normalized resonant frequency, 

 

𝑢𝑟 

𝜔
𝑟 

= 
𝜔
𝑛 

 
 

= √1 − 2𝜁2 
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Bandwidth, ωb 

𝜔𝑟 = 𝜔𝑛√1 − 2𝜁2 

The bandwidth is the range of frequencies for which the system normalized gain is 

more than -3db. The frequency at which the gain is -3db is called cut-off frequency. 

Bandwidth is usually defined for closed loop system and it transmits the signals whose 

frequencies are less than the cut-off frequency. The bandwidth is a measure of the ability 

of a feedback system to reproduce the input signal, noise rejection characteristics and rise 

time. A large bandwidth corresponds to a small rise time or fast response. 

Let, normalized bandwidth, 

𝜔𝑏 

𝑢𝑏 = 
𝑛 

When u=ub, the magnitude M, of the closed loop system is 1/√2 or (-3db) On 

substituting for M with u=ub and equating it to 1/√2 

𝑀 = 
1 1 

 1  
= 

√2
 

[(1 − 𝑢𝑏2)2 + 4𝜁2𝑢𝑏2]2 

On squaring and cross multiplying, we get, 

(1 − 𝑢𝑏
2)2 + 4𝜁2𝑢𝑏

2 = 2 

1 + 𝑢𝑏
4 − 2𝑢𝑏

2 + 4𝜁2𝑢𝑏
2 = 2 

𝑢𝑏
4 − 2𝑢𝑏

2(1 − 2𝜁2) − 1 = 0 

Let 𝑥 = 𝑢𝑏
2, 

 
Hence, 

 
 

𝑥2 − 2𝑥(1 − 2𝜁2) − 1 = 0 

 
  

𝑥 = 
2(1 − 2𝜁2) ± √4(1 − 2𝜁2)2 + 4 

= 
2 

2(1 − 2𝜁2) ± 2√(1 + 4𝜁4 − 4𝜁2) + 1 
 

 

2 

Let us take only the positive sign, 
 

𝑥 = 1 − 2𝜁2 + √(2 + 4𝜁4 − 4𝜁2) 
 

But, 𝑢𝑏 = √𝑥 
 

 

 1 
 

 

𝑢𝑏 = [1 − 2𝜁2 + √(2 + 4𝜁4 − 4𝜁2)]2 

Also, 𝑢𝑏 = 
𝜔𝑏 

𝜔𝑛 

𝜔 
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𝑝𝑐 

𝑝𝑐 

 

 

 
Cut-off rate 

 1 
 

 

𝜔𝑏 = 𝜔𝑛 [1 − 2𝜁2 + √(2 + 4𝜁4 − 4𝜁2)]2 

The slope of the log-magnitude curve near the cut-off frequency is called cut-off 

rate. The cut-off rate indicates the ability of the system to distinguish the signal from 

noise. 

Gain margin, Kg 

The gain margin, Kg is defined as the value of gain, to be added to system, in order 

to bring the system to the verge of instability. The gain margin is given by the reciprocal 

of the magnitude of open loop transfer function at phase crossover frequency. 

The frequency at which the phase of open loop transfer function is 180o is called 

the phase crossover frequency, ωpc. 

1 
𝐾𝑔  = 

|𝐺(𝑗𝜔 )| 

1 
𝐾𝑔𝑖𝑛 𝑑𝑏 = 20 log 𝐾𝑔  = 20 log 

|𝐺(𝑗𝜔 )|
 

 

The gain margin in db is given by the negative of the db magnitude of G(jω) at 

phase crossover frequency. The gain margin indicates the additional gain that can be 

provided to system without affecting the stability of the system. 

[Note: The gain margin of second order system is infinite]. 

Phase margin, γ 

The phase margin, γ is defined as the additional phase lag to be added at the gain 

crossover frequency in order to bring the system to the verge of instability. 

The gain crossover frequency, ωgc is the frequency at which the magnitude of the 

open loop transfer function is unity (or it is the frequency at which the db magnitude is 

zero). 

The phase margin is obtained by adding 180o to the phase angle, 𝜙 of the open loop 

transfer function at the gain crossover frequency. The phase margin indicates the 

additional phase lag that can be provided to the system without affecting stability. 

𝜔2 

𝐺(𝑠) = 
𝑛 

 

 

𝑠(𝑠 + 2𝜁𝜔𝑛) 
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Put s=jω,  

𝜔2 

 

 
𝜔2 1 

𝐺(𝑗𝜔) = 
  𝑛   

=  𝜔  𝑛  𝜔  =  𝜔   𝜔  

𝑗𝜔(𝑗𝜔 + 2𝜁𝜔𝑛) 

 

Let normalized frequency, 𝑢 = 
𝜔

 
𝜔𝑛 

𝜔𝑛(𝑗 𝜔𝑛
 )𝜔𝑛(𝑗 

𝜔𝑛
 

 

1 

+ 2𝜁) (𝑗 𝜔𝑛
 )(𝑗 𝜔𝑛

 + 2𝜁) 

 

 
Magnitude of G(jω), 

𝐺(𝑗𝜔) = 

 

 

 
1 

 
 

(𝑗𝑢)(𝑗𝑢 + 2𝜁) 

 

 
1 

|𝐺(𝑗𝜔)| =   =    

 
Phase of G(jω), 

(𝑢)√(𝑢2 + 4𝜁2) √(𝑢4 + 4𝑢2𝜁2) 

∠𝐺(𝑗𝜔) = −90𝑜 − tan−1  
𝑢

 
2𝜁 

At the gain crossover frequency ωgc, the magnitude is unity. 

Hence, at u=ugc, 

 

 

 

 

 

 
Let x= ugc

2 

1 
|𝐺(𝑗𝜔𝑔𝑐)| = = 1 

√(𝑢𝑔𝑐
4 + 4𝑢𝑔𝑐

2𝜁2) 

(𝑢𝑔𝑐
4 + 4𝑢𝑔𝑐

2𝜁2) = 1 

(𝑢𝑔𝑐
4 + 4𝑢𝑔𝑐

2𝜁2) − 1 = 0 

 
 

𝑥2 + 4𝑥𝜁2 − 1 = 0 
 

−4𝜁2 ± √16𝜁4 + 4 
 

𝑥 = 
2 

Let us take only the positive sign, 

= −2𝜁2 ± √4𝜁4 + 1 

 
 

 

Hence, 

𝑥 = −2𝜁2 + √4𝜁4 + 1 

 

 

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship


www.binils.com for Anna University | Polytechnic and Schools 

Download Binils Android App in Playstore     Download Photoplex App 

 

 

 1 

 

 
Phase margin, 

 
 

𝑢𝑔𝑐 = [−2𝜁2 + √4𝜁4 + 1]2 

 

𝛾 = 180𝑜 + 𝜙𝑔𝑐 
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𝛾 = 180𝑜 + ∠𝐺(𝑗𝜔𝑔𝑐 
) = 180𝑜 + (−90𝑜 − tan−1 

𝑢𝑔𝑐
) 
2𝜁 

1 
 

 

[−2𝜁2 + √4𝜁4 + 1]2 
𝛾 = 90𝑜 − tan−1    

2𝜁 
 

Figure 3.1.1 Typical magnification curve of a feedback control system 

[Source: “Automatic Control Systems” by Benjamin C. Kuo, Page: 463] 
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3.3 POLAR PLOT 

The polar plot of a sinusoidal transfer function G(jω) is a plot of the magnitude 

G(jω) versus the phase angle of G(jω) on polar coordinates as ω is varied from zero to 

infinity. Thus, the polar plot is the locus of vectors |G(jω)| < as ω is varied from zero to 

infinity. The polar plot is also called Nyquist plot. It is a graphical method of determining 

stability of feedback control systems by using the polar plot of their open-loop transfer 

functions. Polar plot is a plot to be drawn between magnitude and phase. Polar plot is a 

plot of magnitude of G(jω) versus the phase of G(jω) in polar co-ordinates. But the 

magnitudes are presented with normal values only. The Polar plot is a plot, which can be 

drawn between the magnitude and the phase angle of G(jω) H(jω) by differentiating g ω 

from zero to ∞. The polar graph sheet is described in below mentioned image. This graph 

sheet includes various concentric circles and radial lines. The concentric circles and the 

radial lines are considered as the magnitudes and phase angles. 

• Angles are highlighted with positive values in anti-clock wise direction. 

• Mark angles with negative values in clockwise direction. 

The polar plot is usually plotted on a polar graph sheet. The polar graph sheet has 

concentric circles and radial lines. The circles represent the magnitude and the radial lines 

represent the phase angles. Each point on the polar graph has a magnitude and phase 

angle. The magnitude of a point is given by the value of the circle passing through that 

point and the phase angle is given by the radial line passing through that point. In polar 

graph sheet a positive phase angle is measured in anticlockwise from the reference axis 

(0º) and a negative angle is measured clockwise from the reference axis (0º). In order to 

plot the polar plot, magnitude and phase of G(jω) are computed for various values of ω 

and tabulated. Usually the choice of frequencies are corner frequencies and frequencies 

around corner frequencies. Choose proper scale for the magnitude circles. Fix all the 

points on polar graph sheet and join the points by smooth curve, write the frequency 

corresponding to each point of the plot. Alternatively, if G(jω) can be expressed in 

rectangular coordinates as, 

G(jω) = GR(jω) + jGi(jω) 

where, GR(jω) = Real part of G(jω), Gi(jω) = Imaginary part of G(jω) 
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Then the polar plot can be plotted in ordinary graph sheet between GR(jω) and Gi(jω) by 

varying ω from 0 to infinity. In order to plot the polar plot on ordinary graph sheet, the 

magnitude and phase if G(jω) are computed for various values of ω. Then convert the 

polar coordinates to rectangular coordinates using P → R conversion (polar to rectangular 

conversion) in the calculator. Sketch the polar plot using rectangular coordinates. For 

minimum phase transfer function with only poles, type number of the system determines 

the quadrant at which the polar plot starts and the order of the system determines quadrant 

at which the polar plot ends. The minimum phase systems are systems with all poles and 

zeros on left half of s-plane. The start and end of polar plot of all pole minimum phase 

system are shown in figures respectively. Some typical sketches of polar plot are shown 

in table. The change in shape of polar plot can be predicted due to addition of a pole or 

zero. 

1. When a pole is added to s system, the polar plot end point will shift by -90º. 

2. When a zero is added to s system, the polar plot end point will shift by +90º. 
 

Figure 3.3.1 Start and end of polar plot of all pole minimum phase system 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.38] 

RULES FOR DRAWING POLAR PLOT 

✓ Substitute, s=jω in the open loop transfer function. 

✓ Write the expressions for magnitude and the phase of G(jω) H(jω). 

✓ Find the starting magnitude and the phase of G(jω) H(jω) by substituting 

ω=0. So, the polar plot starts with this magnitude and the phase angle. 

✓ Find the ending magnitude and the phase of G(jω) H(jω) by substituting 

ω=∞. So, the polar plot ends with this magnitude and the phase angle. 

✓ Check whether the polar plot intersects the real axis, by making the 

imaginary term of G(jω) H(jω) equal to zero and find the value(s) of ω. 
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✓ Check whether the polar plot intersects the imaginary axis, by making real 

term of G(jω) H(jω) equal to zero and find the value(s) of ω. 

✓ For drawing polar plot more clearly, find the magnitude and phase of G(jω) 

H(jω) by considering the other value(s) of ω. 

DETERMINATION OF GAIN MARGIN AND PHASE MARGIN FROM POLAR 

PLOT 

The gain margin is defined as the inverse of the magnitude of G(jω) at phase 

crossover frequency. The phase crossover frequency is the frequency at which the phase 

of G(jω) is 180º. Let the polar plot cut the 180º axis at point B and the magnitude circle 

passing through the point B be GB. Now the gain margin, Kg = 1/ GB. If the point B lies 

within unity circle, the gain margin is positive otherwise negative. If the polar plot is 

drawn in ordinary graph sheet using rectangular coordinates then the point B is the cutting 

point of G(jω) locus with negative real axis and Kg = 1/|GB| where GB is the magnitude 

corresponding to point B). The phase margin is defined as, phase margin, γ = 180o+ Φgc 

is the phase angle of G(jω) at gain crossover frequency. The gain crossover frequency is 

the frequency at which the magnitude of G(jω) is unity. Let the polar plot cut the unity 

circle at point A as shown in figures. Now the phase margin, γ is given by ∠AOP, i.e., 

∠AOP is below -180º axis then the phase margin is positive and if it is above -180º axis 

then the phase margin is negative. 

 

Figure 3.3.2 Polar plot with positive and negative gain and phase margins 

[Source: “Control Systems” by A Nagoor Kani, Page: 3.41] 
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GAIN ADJUSTMENT USING POLAR PLOT 

To determine K for specified GM 

Draw G(jω) locus with K = 1. Let it cut the -180º axis at point B corresponding to gain 

of GB. Let the specified gain margin be x db. For this gain margin, the G(jω) locus will 

cut -180º at point A whose magnitude is GA. 
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Now the value of K is given by, K = GA/GB 

 
 

 𝑥  

1020 

If, K>1, then the system gain should be increased. 

If K<1, then the system gain should be reduced. 

To determine K for specified PM 

Draw G(jω) locus with K = 1. Let it cut the unity circle at point B. (The gain at point B 

is GB and equal to unity). Let the specified phase margin be xº. For a phase margin of xº, 

let Φgcx be the phase angle of G(jω) at gain crossover frequency. 

𝑥𝑜 = 180𝑜 + ϕ𝑔𝑐𝑥 

ϕ𝑔𝑐𝑥 = 𝑥𝑜 − 180𝑜 

In the polar plot, the radial line corresponding to will cut the locus of G(jω) with K = 1 

at point A and the magnitude corresponding to that point be GA. 

Now, K = GB/GA = 1/GA (since GB = 1) 
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