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2.8 EFFECTS OF P, PI, PID MODES OF FEEDBACK CONTROL 

PROPORTIONAL CONTROLLER (P-Controller) 

The proportional controller is a device that produces a control signal, u(t) proportional to 

the input error signal, e(t) 

𝑢(𝑡) ∝ 𝑒(𝑡) 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) 

where, Kp = Proportional gain or constant 

On taking Laplace transform of equation, we get, 

𝑈(𝑠) = 𝐾𝑝𝐸(𝑠) 

Transfer function, 
 
 
𝑈(𝑠) 

𝐸(𝑠) 
= 𝐾𝑝

 

The equation gives the output of the P-controller for the input E(s) and it is the transfer 

function of P-controller. The block diagram of the P-controller is shown in the figure 

2.8.1. 

 

Figure 2.8.1 Block diagram of proportional controller 

[Source: “Control Systems” by Nagoor Kani, Page: 2.79] 

From the equation, we can conclude that the proportional controller amplifies the error 

signal by an amount Kp. Also the introduction of the controller on the system increases 

the loop gain by an amount Kp. The increase in loop gain improves the steady state 

tracking accuracy, disturbance signal rejection and the relative stability and also makes 

the system less sensitive to parameter variations. But increasing the gain to very large 

values mau lead to instability of the system. The drawback in P-controller is that it leads 

to a constant steady state error. 

Example of Electronic P-controller 

The proportion controller can be realized by an amplifier with adjustable gain. 

Either the non- inverting operational amplifier or the inverting operational amplifier 
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followed by sign changer will work as a proportional controller. The op-amp proportional 

controller is shown in the figures 2.8.2. 

 

Figure 2.8.2 P-controller using non-inverting and inverting amplifier 

[Source: “Control Systems” by Nagoor Kani, Page: 2.80] 

By deriving the transfer function of the controller shown in figures and comparing 

with the transfer function of P-controller defined by equation, it can be shown that they 

work as P-controllers. 

Analysis of P-controller 

In figure 2.8.2, the input e(t) is applied to positive input. By symmetry of op-amp the 

voltage of negative input is also e(t). Also, we assume an ideal op-amp so that input 

current is zero. Based on the above assumptions the equivalent circuit of the controller is 

shown in figure 2.8.3. 

 

Figure 2.8.3 Equivalent circuit of P-controller 

[Source: “Control Systems” by Nagoor Kani, Page: 2.80] 

By voltage division rule, 

𝑒(𝑡) = 
𝑅1

 

𝑅1 + 𝑅2 

On taking Laplace transform of equation we get, 

 
𝑢(𝑡) 
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𝑈(𝑠) 
 

 

𝐸(𝑠) 

𝑅1 + 𝑅2 
= 

𝑅1 

The equation is the transfer function of op-amp P-controller. On comparing, we get, 

𝑅1 + 𝑅2 

𝐾𝑝 = 
 

 

𝑅1 

Therefore, by adjusting the values of R1 and R2 the value of gain, Kp can be varied. 

Analysis of P-controller 

The assumption made in op-amp circuit analysis are, 

1. The voltages at both inputs are equal 

2. The input current is zero 

Based on the above assumptions, the equivalent circuit of op-amp amplifier and sign 

changer are shown in figure 2.8.4. 

 

Figure 2.8.4 Equivalent circuit of amplifier and sign changer 

[Source: “Control Systems” by Nagoor Kani, Page: 2.81] 

From the circuit, 

 

 

 
Substitute for i1, 

 

𝑒(𝑡) = 𝑖1𝑅1 

𝑢1(𝑡) = −𝑖1𝑅2 

 

𝑒(𝑡) 
 
 

Also, from the circuit, 

𝑢1(𝑡) = − 
𝑅1 

𝑅2 

 

 
 
 

Substitute for i2, 

𝑢(𝑡) = −𝑖2𝑅 

𝑢1(𝑡) = 𝑖2𝑅 

 

𝑢1(𝑡) = −𝑢(𝑡) 
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On equating the equations we get,  

 
𝑢(𝑡) = 

 

𝑒(𝑡) 
 

 

𝑅1 

 

 
𝑅2 

On taking Laplace transform of equation we get, 

𝑈(𝑠) 
= 

𝐸(𝑠) 

𝑅2 
 

𝑅1 

The equation is the transfer function of op-amp P-controller. On the comparing equations, 

Proportional gain, 

𝑅2 

𝐾𝑝  = 
𝑅

 

Therefore, by adjusting the values of R1 and R2 the value of gain Kp can be varied. 

1 
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INTEGRAL CONTROLLER (I-Controller) 

The integral controller is a device that produces a control signal u(t) which is proportional 

to integral of the input error signal, e(t). 

In I-controller 

 

𝑢(𝑡) ∝ ∫ 𝑒(𝑡)𝑑𝑡 

 
𝑢(𝑡) = 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 

where Ki = integral gain or constant 

On taking Laplace transform of equation with zero initial conditions we get, 

𝑈(𝑠) 
= 

𝐸(𝑠) 

𝐾𝑖 
 

𝑠 

The equation gives the output of the I-controller for the input E(s) and equation is the 

transfer function of the I-controller, the block diagram of I-controller is shown in the 

figure 2.8.5. 

 

Figure 2.8.5 Block diagram of integral controller 

[Source: “Control Systems” by Nagoor Kani, Page: 2.82] 

The integral controller removes or reduces the steady error without the need for manual 

reset. Hence the I-controller is sometimes called automatic reset. The drawback in 

integral controller is that it may lead to oscillatory response of increasing or decreasing 

amplitude which is undesirable and the system may become unstable. 

Example of electronic I-controller 

The integral controller can be realized by an integrator using op-amp followed by 

a sign changer as shown in figure 2.8.6. 
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1 

 

 
 

Figure 2.8.6 I-controller using inverting amplifier 

[Source: “Control Systems” by Nagoor Kani, Page: 2.82] 

By deriving the transfer function of the controller shown in figure and comparing 

with the transfer function of I-controller defined by equation. 

Analysis of I-controller 

The assumptions made in op-amp circuit analysis are, 

1. The voltages of both inputs are equal 

2. The input current is zero. 

Based on the above assumptions, the equivalent circuit of op-amp amplifier and sign 

changer are shown in figure 2.8.7. 

 

Figure 2.8.7 Equivalent circuit of amplifier and sign changer 

[Source: “Control Systems” by Nagoor Kani, Page: 2.83] 

From the circuit, 

𝑒(𝑡) = 𝑖1𝑅1 

1 
𝑢1(𝑡) = − 

𝐶 
∫ 𝑖1 𝑑𝑡 
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Substitute for i1,  

1 
𝑢1(𝑡) = − 

𝑅 𝐶
 

 

 
∫ 𝑒(𝑡)𝑑𝑡 

1  1 

Also, from the circuit, 
 

 

 
 

Substitute for i2, 

 

On equating equations we get 

𝑢(𝑡) = −𝑖2𝑅 

𝑢1(𝑡) = 𝑖2𝑅 

 

𝑢1(𝑡) = −𝑢(𝑡) 

 

1 
𝑢(𝑡) =   

𝑅1𝐶1 
∫ 𝑒(𝑡)𝑑𝑡 

On taking Laplace transform of equation we get, 

𝑈(𝑠) 
= 

𝐸(𝑠) 

1 
 

 

𝑠𝑅1𝐶1 

The equation is the transfer function of op-amp P-controller. On the comparing equations, 

Integral gain, 

1 
𝐾𝑖  = 

𝑅 𝐶
 

1  1 

Therefore, by adjusting the values of R1 and C1 the value of gain Ki can be varied. 
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𝑖 

PROPORTIONAL PLUS INTEGRAL CONTROLLER (PI-CONTROLLER) 

The proportional plus integral controller (PI controller) produces and output signal 

consisting of two terms: one proportional to error signal and the other proportional to 

the integral of error signal. 

In PI controller, 

 

𝑢(𝑡) ∝ [𝑒(𝑡) + ∫ 𝑒(𝑡)𝑑𝑡] 
 

𝑢(𝑡) = 𝐾𝑝 
𝑒(𝑡) + 

𝐾𝑝 
∫ 𝑒(𝑡)𝑑𝑡 

𝑇𝑖 

On taking Laplace transform of equation with zero initial conditions, we get, 

𝑈(𝑠) 1 

𝐸(𝑠) 
= 𝐾𝑝 (1 + 

𝑇 𝑠
) 

The equation gives the output of the PI-controller for the input E(s) and it is the transfer 

function of PI-controller. The block diagram of PI-controller is shown in figure 2.8.8. 

 

Figure 2.8.8 Block diagram of PI controller 

[Source: “Control Systems” by Nagoor Kani, Page: 2.84] 

The advantages of both P-controller and I –controller is combined in PI-controller. The 

proportional action increases the loop gain and makes the system less sensitive to 

variations of system parameters. The integral action eliminates or reduces the steady state 

error. The integral control action is adjusted by varying the integral time. The change in 

value of Kp affects both the proportional and integral parts of control action. The inverse 

of the integral time Ti is called the reset rate. 

Example of Electronic PI-controller 

The PI controller can be realized by an op-amp differentiator with gain followed 

by a sign changer as shown in figure 2.8.9. 
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Figure 2.8.9 PI-controller using inverting amplifier 

[Source: “Control Systems” by Nagoor Kani, Page: 2.84] 

 

 
By deriving the transfer function of the controller shown in figure and comparing with 

the transfer function of PI-controller defined by equation, it can be proved that the circuit 

shown in figure will work as PI-controller. 

Analysis of PI-controller 

The assumptions made in op-amp circuit analysis are, 

1. The voltages of both inputs are equal 

2. The input current is zero. 

Based on the above assumptions, the equivalent circuit of op-amp amplifier and sign 

changer are shown in figure 2.8.10. 

 

Figure 2.8.10 Equivalent circuit of amplifier and sign changer 

[Source: “Control Systems” by Nagoor Kani, Page: 2.85] 

From the circuit,  

𝑒(𝑡) = 𝑖1𝑅1 

1 
𝑢1(𝑡) = −𝑖1𝑅2 − 

𝐶
 

 
 

 
∫ 𝑖1 𝑑𝑡 

2 

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship


www.binils.com for Anna University | Polytechnic and Schools 

Download Binils Android App in Playstore    Download Photoplex App 

 

 

Substitute for i1,  

 
𝑢1(𝑡) = − 

 

𝑒(𝑡) 
 

 𝑅 

 

1 
𝑅2 − 

𝑅 𝐶
 

 

 
∫ 𝑒(𝑡)𝑑𝑡 

 

Also, from the circuit, 

1 1 2 

 

 
 
 

Substitute for i2, 

 
 

On equating equations we get 

𝑢(𝑡) = −𝑖2𝑅 

𝑢1(𝑡) = 𝑖2𝑅 

 

𝑢1(𝑡) = −𝑢(𝑡) 

 
𝑢(𝑡) = 

𝑒(𝑡) 
 

 𝑅 
1 

𝑅2 + 
𝑅 𝐶

 

 
∫ 𝑒(𝑡)𝑑𝑡 

1 1  2 

On taking Laplace transform of equation we get, 

𝑈(𝑠) 
= 

𝐸(𝑠) 

𝑅2 
 

𝑅1 

 
(1 + 

1 
) 

𝑠𝑅2𝐶2 

The equation is the transfer function of op-amp P-controller. On the comparing equations, 

Proportional gain, 

 

 
Integral time, 

𝑅2 

𝐾𝑝 = 
𝑅

 

 
𝑇𝑖 = 𝑅2𝐶2 

By varying the values of R1 and R2, the value of gain Kp and Ti can be adjusted. 

1 
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PROPORTIONAL PLUS DERIVATIVE CONTROLLER (PD-CONTROLLER) 

The PD controller produces and output signal consisting of two terms: one proportional 

to error signal, the other one proportional to derivatives of error signal. 

In PD controller, 

 

𝑢(𝑡) ∝ [𝑒(𝑡) + 
𝑑 

 
 

𝑑𝑡 

 
𝑒(𝑡)] 

 
𝑑 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑝𝑇𝑑 𝑑𝑡 
𝑒(𝑡) 

On taking Laplace transform of equation with zero initial conditions, we get, 

𝑈(𝑠) 

𝐸(𝑠) 
= 𝐾𝑝(1 + 𝑇𝑑𝑠) 

The equation gives the output of the PD-controller for the input E(s) and it is the transfer 

function of PD-controller. The block diagram of PD-controller is shown in figure 2.8.11. 

 

Figure 2.8.11 Block diagram of PD controller 

[Source: “Control Systems” by Nagoor Kani, Page: 2.86] 

The derivative control acts on a rate of change of error and not on the actual error signal. 

The derivative control action is effective only during transient periods and so it does not 

produce corrective measures for any constant error. Hence the derivative controller is 

never used alone, but it is employed in association with proportional and integral 

controllers. The derivative controller does not affect the steady-state error directly but 

anticipates the error, initiates an early corrective action and tends to increase the stability 

of the system. While derivative control action has an advantage of being anticipatory it 

has the disadvantage that it amplifies noise signals and may cause a saturation effect in 

the actuator. The derivative control action is adjusting by varying the derivative time. The 

change in the value of Kp affects both the proportional and derivative parts of control 

action. The derivative control is also called rate control. 
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Example of Electronic PD-controller 

The PD controller can be realized by an op-amp amplifier with integral and 

derivative action followed by a sign changer as shown in figure 2.8.12. 

 

Figure 2.8.12 PD-controller using inverting amplifier 

[Source: “Control Systems” by Nagoor Kani, Page: 2.86] 

By deriving the transfer function of the controller shown in figure and comparing with 

the transfer function of PD-controller defined by equation, it can be proved that the circuit 

shown in figure will work as PD-controller. 

Analysis of PD-controller 

The assumptions made in op-amp circuit analysis are, 

1. The voltages of both inputs are equal 

2. The input current is zero. 

Based on the above assumptions, the equivalent circuit of op-amp amplifier and sign 

changer are shown in figure 2.8.13. 

 

Figure 2.8.13 Equivalent circuit of amplifier and sign changer 

[Source: “Control Systems” by Nagoor Kani, Page: 2.87] 
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From the circuit,  

 
𝑖1 = 

 

𝑒(𝑡) 
 

 

𝑅1 

 

 
+ 𝐶1 

 

𝑑𝑒(𝑡) 
 

 

𝑑𝑡 

 

Substitute for i1, 

𝑢1(𝑡) = −𝑖1𝑅2 

 

𝑒(𝑡) 𝑑 

 
 

Also, from the circuit, 

𝑢1(𝑡) = − 
𝑅1 

𝑅2 − 𝑅2𝐶1 𝑑𝑡 
𝑒(𝑡) 

 

 
 
 

Substitute for i2, 

 

On equating the equations, we get, 

𝑢(𝑡) = −𝑖2𝑅 

𝑢1(𝑡) = 𝑖2𝑅 

 

𝑢1(𝑡) = −𝑢(𝑡) 

 

𝑒(𝑡) 𝑑 
𝑢(𝑡) = 

𝑅1 
𝑅2 + 𝑅2𝐶1 𝑑𝑡 

𝑒(𝑡) 

On taking Laplace transform of equation we get, 
𝑈(𝑠) 

= 
𝑅2 

(1 + 𝑠𝑅 
  

 

 
𝐶 ) 

𝐸(𝑠) 𝑅1 
1 1 

The equation is the transfer function of op-amp P-controller. On the comparing equations, 

Proportional gain, 

 

 
Derivative time, 

𝑅2 

𝐾𝑝 = 
𝑅

 

 
𝑇𝑑 = 𝑅1𝐶1 

By varying the values of R1 and R2, the value of Kp and Td are adjusted. 

1 
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𝑖 

PROPORTIONAL PLUS INTEGRAL PLUS DERIVATIVE (PID) CONTROLLER 

The PID controller produces and output signal consisting of two terms: one proportional 

to error signal, another one proportional to the integral of error signal and the third one 

proportional to derivatives of error signal. 

𝑢(𝑡) ∝ [𝑒(𝑡) + ∫ 𝑒(𝑡)𝑑𝑡 + 
𝑑 

 
 

𝑑𝑡 
𝑒(𝑡)] 

𝐾𝑝 𝑢(𝑡) = 𝐾 𝑒(𝑡) + ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾 𝑇 
 

𝑑 𝑒(𝑡) 
 

𝑝 𝑇𝑖
 𝑝 𝑑 𝑑𝑡 

 

On taking Laplace transform of equation with zero initial conditions, we get, 

𝑈(𝑠) 1 

𝐸(𝑠) 
= 𝐾𝑝 (1 + 

𝑇 𝑠 
+ 𝑇𝑑𝑠) 

The equation gives the output of the PID-controller for the input E(s) and it is the transfer 

function of PID-controller. The block diagram of PID-controller is shown in figure 

2.8.14. 

 

Figure 2.8.14 Block diagram of PID controller 

[Source: “Control Systems” by Nagoor Kani, Page: 2.88] 

The combination of proportional control action, integral control action and derivative 

control action is called PID-control action. This combined action has the advantages of 

the each of the three individual control actions. The proportional controller stabilizes the 

gain but produces a steady state error. The integral controller reduces or eliminates the 

steady state error. The derivative controller reduces the rate of change of error. 

Example of Electronic PID-controller 

The PID controller can be realized by an op-amp amplifier with integral and 

derivative action followed by a sign changer as shown in figure 2.8.15. 
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Figure 2.8.15 PID-controller using inverting amplifier 

[Source: “Control Systems” by Nagoor Kani, Page: 2.88] 

By deriving the transfer function of the controller shown in figure and comparing with 

the transfer function of PID-controller defined by equation, it can be proved that the 

circuit shown in figure will work as PID-controller. 

Analysis of PID-controller 

The assumptions made in op-amp circuit analysis are, 

3. The voltages of both inputs are equal 

4. The input current is zero. 

Based on the above assumptions, the equivalent circuit of op-amp amplifier and sign 

changer are shown in figure 2.8.16. 

 

Figure 2.8.16 Equivalent circuit of amplifier and sign changer 

[Source: “Control Systems” by Nagoor Kani, Page: 2.89] 

 

From the circuit,
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1 

2 

 
𝑖1 = 

 

On taking Laplace transform of equation with zero initial conditions, we get, 

1 

 

Also, from the circuit, 

𝐼1(𝑠) = (
𝑅 

+ 𝐶1𝑠) 𝐸(𝑠) 

 
1 

𝑢1(𝑡) = −𝑖1𝑅2 −  ∫ 𝑖1 𝑑𝑡 

On taking Laplace transform of equation with zero initial conditions, we get, 

1 
𝑈1(𝑠) = −𝐼1(𝑠)𝑅2 − 

𝑠𝐶 
𝐼1(𝑠) 

Substitute for i1, from equations 

𝑈 (𝑠) = − (
𝑅2 

+ 
𝐶1 

+ 
1
 

  

 
+ 𝑅 

 
𝐶 𝑠) 𝐸(𝑠) 

1 

 

Also, from the circuit, 

𝑅1 𝐶2 𝑅1𝐶2𝑠 
2 1

 

 

 
 
 

Substitute for i2, 

 

On equating the equations, we get, 

𝑢(𝑡) = −𝑖2𝑅 

𝑢1(𝑡) = 𝑖2𝑅 

 

𝑢1(𝑡) = −𝑢(𝑡) 

𝑈(𝑠) 𝑅2 𝑅1𝐶1 + 𝑅2𝐶2 1 

= 
𝐸(𝑠) 𝑅1 

(1 + 
𝑅2 𝐶2 

+ 
𝑅2 
𝐶2 𝑠 

+ 𝑅1𝐶1𝑠)

 

The equation is the transfer function of op-amp PID-controller. On the comparing, we 

get, 

Proportional gain, 𝐾𝑝 = 
𝑅2 

𝑅1 

Derivative time, 𝑇𝑑 = 𝑅1𝐶1 

Integral time, 𝑇𝑖 = 𝑅2𝐶2 

Also, 
𝑅1𝐶1+𝑅2𝐶2 = 1 

2 
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𝑅2𝐶2 

 

By varying the values of R1 and R2, the value of Kp , Td and Ti are adjusted. 
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2.5 ERROR COEFFICIENTS 

There are two different types of error coefficient representation namely, 

a) Static error constants 

b) Generalized error coefficients 

STATIC ERROR CONSTANTS 

Positional error constant, 𝐾𝑝 = lim 𝐺(𝑠)𝐻(𝑠) 
𝑠→0 

Velocity error constant, 𝐾𝑣 = lim 𝑠𝐺(𝑠)𝐻(𝑠) 
𝑠→0 

Acceleration error constant, 𝐾𝑎 = lim 𝑠2𝐺(𝑠)𝐻(𝑠) 
𝑠→0 

GENERALIZED ERROR COEFFICIENTS 

𝐶𝑜 = lim 𝐹(𝑠) 
𝑠→0 

𝑑𝐹(𝑠) 
𝐶1 = lim 

𝑠→0 

 
 

𝑑𝑠 

where, 𝐹(𝑠) = 
1

 
1+𝐺(𝑠)𝐻(𝑠) 

𝐶2 = lim 
𝑠→0 

𝑑2𝐹(𝑠) 

𝑑𝑠2 

Relation between static error constants and generalized error coefficients 

1 
𝐶𝑜 = 

1 + 𝐾 

1 
𝐶1 = 

𝑣 

1 
𝐶2 = 

𝑎 

𝑝 

𝐾 

𝐾 
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2.4 FIRST AND SECOND ORDER SYSTEM RESPONSE 

Transfer Function 

• It is the ratio of Laplace transform of output to Laplace transform of input with 

zero initial conditions. 

• One of the types of modeling a system 

• Using first principle, differential equation is obtained 

• Laplace Transform is applied to the equation assuming zero initial conditions 

Order of a system 

✓ Order of a system is given by the order of the differential equation governing the 

system 

✓ Alternatively, order can be obtained from the transfer function 

✓ In the transfer function, the maximum power of s in the denominator polynomial 

gives the order of the system 

Dynamic Order of Systems 

▪ Order of the system is the order of the differential equation that governs the 

dynamic behaviour 

▪ Working interpretation: Number of the dynamic elements / capacitances or holdup 

elements between a manipulated variable and a controlled variable 

▪ Higher order system responses are usually very difficult to resolve from one 

another 

▪ The response generally becomes sluggish as the order increases 

SYSTEM RESPONSE 

First-order system time response 
 

-state 

Second-order system time response 
 

-state 
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FIRST ORDER SYSTEM 

Response of First Order System for Unit Step Input 

The standard form of closed loop transfer function of first order system is 

𝐶(𝑠) 
= 

𝑅(𝑠) 

1 
 

 

1 + 𝑠𝑇 

If the input is unit step, then r(t) and R(s)=1/s 

1 
𝐶(𝑠) = 𝑅(𝑠) 

1 + 𝑠𝑇 

 
 

1 1 
= × 
𝑠 1 + 𝑠𝑇 

Applying partial fraction expansion, 

 

𝐶(𝑠) = 
 

On solving, 

 

𝐴 𝐵 
+ 

𝑠 1 + 𝑠𝑇 

1 1 
𝐶(𝑠) = − 

𝑠 1 
𝑠 + 𝑇 

On taking inverse Laplace transform, the response in time domain is obtained as, 

−
 𝑡  

𝑐(𝑡) = 1 − 𝑒 𝑇 

Hence, the input and output signal of the first order system is given by, 
 

Figure 2.4.1 Response of first order system to unit step input 

[Source: “Control Systems” by Nagoor Kani, Page: 2.20] 
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𝜔 

𝑛 

𝑛 

SECOND ORDER SYSTEM 

LTI second-order system 
 

Figure 2.4.2 Closed loop for second order system 

[Source: “Control Systems” by Nagoor Kani, Page: 2.20] 

 

 

 
 𝐶(𝑠) 

𝐶(𝑠) 
 

 

𝑅(𝑠) 

2 

( 𝑛 

𝐺(𝑠) 
= 

1 + 𝐺(𝑠) 
 

) 

 
 

 
𝜔2 

= 
𝑠(𝑠 + 2𝜁𝜔𝑛 =

  𝑛  

𝑅(𝑠) 
1 + ( 

2 
𝑛 ) 

𝑠(𝑠 + 2𝜁𝜔𝑛 

𝑠2 + 2𝜁𝜔𝑛 𝑠 + 𝜔2 

where, 𝜁 is the damping ratio, ωn is the natural frequency 

DAMPING RATIO 

It is the ratio of critical damping to actual damping. 

CHARACTERISTIC EQUATION 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2 = 0 
 

𝑠 = −𝜁𝜔𝑛 ± 𝜔𝑛√𝜁
2 − 1 

The roots of characteristic equation are: 

= 0 (undamped system) 

= 1 (critically damped system) 

𝜁 > 1 (overdamped system) 

0 < 𝜁 < 1 (underdamped system) 

 

 

𝜔 
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𝜔 

𝑛 

𝑛 

𝑛 𝑛 

Response of Second Order System for Unit Step Input 

Consider the unit step signal as an input to the second order system. Laplace transform 

of the unit step signal is 

R(s) = 1/s 

Transfer function of the second order closed loop transfer function is 

 

 

 
Case 1: Undamped system 

When 𝜁 = 0, 

𝐶(𝑠) 
 

 

𝑅(𝑠) 

2 

= 
𝑛 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2 

 
 
 
For unit step input, R(s) = 1/s, 

𝐶(𝑠) 
= 

𝑅(𝑠) 

2 
𝑛 

 

𝑠2 + 𝜔2 

 
𝐶(𝑠) = 

2 
𝑛 

 

𝑠2 + 𝜔2 

1 
( ) = 
𝑠 

2 
𝑛 

 

𝑠(𝑠2 + 𝜔2) 

 

 

Taking inverse Laplace transform, 

𝑐(𝑡) = 1 − cos 𝜔𝑛𝑡 

Figure 2.4.3 Response of undamped second order system to unit step input 

[Source: “Control Systems” by Nagoor Kani, Page: 2.22] 

𝜔 

𝜔 𝜔 
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𝜔 

𝑛 

𝑛 

𝑛 

𝑛 

𝑛 

𝑛 

𝑛 

𝑛 

𝑛 

𝑛 𝑛 

Case 2: Underdamped system 

When 0 < 𝜁 < 1, 

𝐶(𝑠) 
 

 

𝑅(𝑠) 

2 

= 
𝑛 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2 = {𝑠2 + 2𝜁𝜔 𝑠 + (𝜁𝜔 )2} + 𝜔2 − (𝜁𝜔 )2 

= (𝑠 + 𝜁𝜔𝑛)
2 + 𝜔2(1 − 𝜁2) 

𝐶(𝑠) 
= 

𝑅(𝑠) 

For unit step input, R(s)=1/s, 

2 
𝑛 

 

(𝑠 + 𝜁𝜔𝑛)
2 + 𝜔2(1 − 𝜁2) 

 
𝐶(𝑠) = 

 
By applying partial fraction, 

2 
𝑛 

 

𝑠((𝑠 + 𝜁𝜔𝑛)
2 + 𝜔2(1 − 𝜁2)) 

 
 

 
On solving, we get, 

 

𝐶(𝑠) = 
𝐴 𝐵𝑠 + 𝐶 

+ 
𝑠 ((𝑠 + 𝜁𝜔𝑛)

2 + 𝜔2(1 − 𝜁2)) 

𝐶(𝑠) = 
1 

− 
𝑠 + 2𝜁𝜔𝑛 

𝑠 ((𝑠 + 𝜁𝜔𝑛)
2 + 𝜔2(1 − 𝜁2)) 

𝐶(𝑠) = 
1 

− 
𝑠 + 𝜁𝜔𝑛

 
𝜁𝜔𝑛 

− 

𝑠 ((𝑠 + 𝜁𝜔𝑛)
2 + 𝜔2(1 − 𝜁2)) ((𝑠 + 𝜁𝜔𝑛)

2 + 𝜔2(1 − 𝜁2)) 

 

 

𝐶(𝑠) = 
1 

− 
𝑠 + 𝜁𝜔𝑛

 
𝜁𝜔𝑛 

− 

𝑠 
((𝑠 + 𝜁𝜔𝑛)

2 
2 

+ (𝜔𝑛√1 − 𝜁2) ) ((𝑠 + 𝜁𝜔𝑛)
2 

2 

+ (𝜔𝑛√1 − 𝜁2) ) 

 
 
 

𝐶(𝑠) = 
1 

− 
𝑠 + 𝜁𝜔𝑛

 

𝑠 
((𝑠 + 𝜁𝜔𝑛)

2 + (𝜔𝑛√1 − 𝜁 

 
 

2 
2) ) 

 
 

𝜁 − √1 − 𝜁2 

𝜔 

𝜔 

𝑛 

𝑛 
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𝜔𝑛√1 − 𝜁2 
    2 

 

On taking inverse Laplace transform, 

((𝑠 + 𝜁𝜔𝑛)
2 + (𝜔𝑛√1 − 𝜁2) ) 

 

𝑐(𝑡) = (1 − 𝑒−𝜁𝜔𝑛𝑡 cos 𝜔𝑑 

𝜁 
𝑡 − 

√1 − 𝜁2 
𝑒−𝜁𝜔𝑛𝑡 sin 𝜔𝑑 

𝑡) 
 

𝑒−𝜁𝜔𝑛𝑡    

𝑐(𝑡) = (1 −  
 ((
√1 − 𝜁2) cos 𝜔𝑑𝑡 + 

𝜁 sin 𝜔𝑑𝑡)) 
√
1 
− 
𝜁
2 

 
We know, sin 𝜃 = 
√1 − 𝜁2, cos 𝜃 = 𝜁 

 

𝑒
−
𝜁
𝜔
𝑛
𝑡 

𝑐(𝑡) = (1 −  
 (si
n 𝜃 cos 𝜔𝑑 𝑡 + cos 𝜃 

sin 𝜔𝑑𝑡)) 
√
1 
− 
𝜁
2 

 

𝑒
−
𝜁
𝜔
𝑛
𝑡 

𝑐(𝑡) = (1 −  
 (si

n(𝜔𝑑 𝑡 + 𝜃))) 
√
1 
− 
𝜁
2 
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Figure 2.4.4 Response of 

underdamped second order system to 

unit step input 

[Source: “Control Systems” by Nagoor Kani, 

Page: 2.24] 
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𝜔 

𝑛 

𝜔 

𝑛 

𝑛 

Case 3: Critically damped system 

When 𝜁 = 1, 

𝐶(𝑠) 
 

 

𝑅(𝑠) 

2 

= 
𝑛 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2 

𝐶(𝑠) 
 

 

𝑅(𝑠) 

2 

= 
𝑛 

𝑠2 + 2𝜔𝑛𝑠 + 𝜔2 

 
 
 

For a step input, R(s)=1/s 

𝐶(𝑠) 
= 

𝑅(𝑠) 

2 
𝑛 

 

(𝑠 + 𝜔𝑛)
2 

 
𝜔2 

 

 
By applying partial fractions, 

𝐶(𝑠) = 
 

 
𝐴 

𝑛 
 

𝑠(𝑠 + 𝜔𝑛)
2 

 
𝐵 𝐶 

 
 

On solving, we get 

𝐶(𝑠) = + 
𝑠 𝑠 + 𝜔𝑛 

+ 
(𝑠 + 𝜔 )2 

1 1 
𝐶(𝑠) = − 

𝜔𝑛 
− 

𝑠 𝑠 + 𝜔𝑛 

By taking inverse Laplace transform, 

(𝑠 + 𝜔𝑛)
2 

𝑐(𝑡) = 1 − 𝑒−𝜔𝑛𝑡 − 𝜔𝑛𝑡𝑒
−𝜔𝑛𝑡 

Figure 2.4.5 Response of critically damped second order system to unit step input 

[Source: “Control Systems” by Nagoor Kani, Page: 2.25] 

𝜔 

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship


www.binils.com for Anna University | Polytechnic and Schools 

Download Binils Android App in Playstore    Download Photoplex App 

 

 

𝜔 

𝑛 

𝑛 

𝑛 

𝑛 

𝑛 

𝑛 𝑛 𝑛 

Case 4: Overdamped system 

When 𝜁 > 1, 

 

 

 
𝐶(𝑠) 

 
 

𝑅(𝑠) 

 
 
 

 
2 

= 
𝑛 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2 = {𝑠2 + 2𝜁𝜔 𝑠 + 𝜔2 + 𝜁2𝜔2 − 𝜁2𝜔2} 

= (𝑠 + 𝜁𝜔𝑛)
2 − 𝜔2(𝜁2 − 1) 

𝐶(𝑠) 
= 

𝑅(𝑠) 

For unit step input, R(s)=1/s, 

2 
𝑛 

 

(𝑠 + 𝜁𝜔𝑛)
2 − 𝜔2(𝜁2 − 1) 

 
𝐶(𝑠) = 

2 
𝑛 

 

𝑠[(𝑠 + 𝜁𝜔𝑛)
2 − 𝜔2(𝜁2 − 1)] 

 
𝐶(𝑠) = 

2 
𝑛 

 

 
  

𝑠(𝑠 + 𝜁𝜔𝑛 + 𝜔𝑛√1 − 𝜁2)(𝑠 + 𝜁𝜔𝑛 − 𝜔𝑛√1 − 𝜁2) 
 

By applying partial fraction, 

𝐴 𝐵 𝐶 
𝐶(𝑠) = +    

𝑠 (𝑠 + 𝜁𝜔𝑛 + 𝜔𝑛√1 − 𝜁2) 

+    

(𝑠 + 𝜁𝜔𝑛 − 𝜔𝑛√1 − 𝜁2) 

By applying inverse Laplace transform, 

 
1 

𝑐(𝑡) = [1 + ( 

 
 
 
 

) 𝑒−(𝜁𝜔𝑛+𝜔𝑛√𝜁2−1)𝑡 

2(𝜁 + √𝜁2 − 1)(√𝜁2 − 1) 

 
1 

− ( 
2(𝜁 − √𝜁2 − 1)(√𝜁2 − 1) 

 
 
 
 

) 𝑒−(𝜁𝜔𝑛−𝜔𝑛√𝜁2−1)𝑡] 

 

𝜔 

𝜔 

𝜔 

𝑛 
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Figure 2.4.6 Response of over damped second order system to unit step input 

[Source: “Control Systems” by Nagoor Kani, Page: 2.27] 
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2.7 ROOT LOCUS CONSTRUCTION 

The root locus is a graphical representation in s-domain and it is symmetrical about 

the real axis. Because the open loop poles and zeros exist in the s-domain having the 

values either as real or as complex conjugate pairs. 

Rules for Construction of Root Locus 

The following rule structure is followed for constructing a root locus. 

Rule 1 − Locate the open loop poles and zeros in the ‘s’ plane. 

Rule 2 − Find the number of root locus branches. 

We know that the root locus branches start at the open loop poles and end at open loop 

zeros. So, the number of root locus branches N is equal to the number of finite open loop 

poles P or the number of finite open loop zeros Z, whichever is greater. 

Mathematically, we can write the number of root locus branches N as 
 

Rule 3 − Identify and draw the real axis root locus branches. 

If the angle of the open loop transfer function at a point is an odd multiple of 1800, then 

that point is on the root locus. If odd number of the open loop poles and zeros exist to the 

left side of a point on the real axis, then that point is on the root locus branch. Therefore, 

the branch of points which satisfies this condition is the real axis of the root locus branch. 

Rule 4 − Find the centroid and the angle of asymptotes. 

▪ If P=Z 

then all the root locus branches start at finite open loop poles and end at finite open loop 

zeros. 

▪ If P>Z 

then Z number of root locus branches start at finite open loop poles and end at finite open 

loop zeros and P−Z 

number of root locus branches start at finite open loop poles and end at infinite open loop 

zeros. 

▪ If P<Z 
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then P number of root locus branches start at finite open loop poles and end at finite open 

loop zeros and Z−P number of root locus branches start at infinite open loop poles and 

end at finite open loop zeros. 

So, some of the root locus branches approach infinity, when P≠Z. Asymptotes give the 

direction of these root locus branches. The intersection point of asymptotes on the real 

axis is known as centroid. 

We can calculate the centroid α by using this formula, 
 

Angle of asymptotes, 
 

where, 

q=0,1,2, ... ,(P−Z)−1 

Rule 5 − Find the intersection points of root locus branches with an imaginary axis. 

We can calculate the point at which the root locus branch intersects the imaginary axis 

and the value of K at that point by using the Routh array method and special case (ii). 

• If all elements of any row of the Routh array are zero, then the root locus branch 

intersects the imaginary axis and vice-versa. 

• Identify the row in such a way that if we make the first element as zero, then the 

elements of the entire row are zero. Find the value of K for this combination. 

• Substitute this K value in the auxiliary equation. You will get the intersection 

point of the root locus branch with an imaginary axis. 

Rule 6 − Find Break-away and Break-in points. 

• If there exists a real axis root locus branch between two open loop poles, then 

there will be a break-away point in between these two open loop poles. 

• If there exists a real axis root locus branch between two open loop zeros, then 

there will be a break-in point in between these two open loop zeros. 

[Note − Break-away and break-in points exist only on the real axis root locus branches.] 

Follow these steps to find break-away and break-in points. 

1. Write K in terms of s from the characteristic equation 1+G(s)H(s)=0 
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2. Differentiate K with respect to s and make it equal to zero. Substitute these values 

of s in the above equation. 

3. The values of s for which the K value is positive are the break points. 

Rule 7 − Find the angle of departure and the angle of arrival. 

The Angle of departure and the angle of arrival can be calculated at complex conjugate 

open loop poles and complex conjugate open loop zeros respectively. 

Angle of departure, 
 

Angle of arrival, 
 

where, 
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2.6 STEADY STATE ERROR 

The deviation of the output of control system from desired response during steady 

state is known as steady state error. It is represented as ess. We can find steady state error 

using the final value theorem as follows. 

ess=lim 𝑒(𝑡) 
t→∞ 

ess=lim 𝑠𝐸(𝑠) 
s→0 

where, E(s) is the Laplace transform of the error signal, e(t) 
 

Figure 2.6.1 Closed loop control system 

[Source: “Control Systems Engineering” by I J Nagrath, M Gopal, Page: 213] 

𝐶(𝑠) = 𝐺(𝑠)𝐸(𝑠) 

𝐸(𝑠) = 𝑅(𝑠) − 𝐶(𝑠)𝐻(𝑠) = 𝑅(𝑠) − 𝐺(𝑠)𝐸(𝑠)𝐻(𝑠) 

𝐸(𝑠)(1 + 𝐺(𝑠)𝐻(𝑠)) = 𝑅(𝑠) 

𝑅(𝑠) 
𝐸(𝑠) = 

 
 

(1 + 𝐺(𝑠)𝐻(𝑠)) 

𝑠𝑅(𝑠) 
𝑒𝑠𝑠 = lim 𝑠𝐸(𝑠) = lim 

𝑠→0 𝑠→0 (1 + 𝐺(𝑠)𝐻(𝑠)) 

When a control system is excited with standard input signal, the steady state error may 

be zero, constant or infinity. Its value depends on the type number and input signal. 

a) Type-0 system will have a constant steady state error when the input is step signal 

b) Type-1 system will have a constant steady state error when the input is ramp signal 

c) Type-2 system will have a constant steady state error when the input is parabolic 

signal 

For unit step input, 𝑒𝑠𝑠 

 
For unit ramp input, 𝑒 

= 
1 

1+𝐾𝑝 

= 
1 

 

𝑠𝑠 

 

For unit parabolic input, 𝑒𝑠𝑠 

𝐾𝑣 

= 
1 

𝐾𝑎 
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Static error constants for various type number of systems 
 

Error constants 
Type number of system 

0 1 2 3 

Kp Constant ∞ ∞ ∞ 

Kv 0 Constant ∞ ∞ 

Ka 0 0 Constant ∞ 

Steady state error for various types of input 
 

 

Input signal 
Type number of system 

0 1 2 3 

Kp 
1 

 

1 + 𝐾𝑝 
0 0 0 

Kv ∞ 
1 

 

𝐾𝑣 
0 0 

Ka ∞ ∞ 
1 

 

𝐾𝑎 
0 
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2.2 TIME DOMAIN SPECIFICATIONS 

The desired performance characteristics of control systems are specified in terms 

of time domain specifications. Systems with energy storage elements cannot respond 

instantaneously and will exhibit transient responses, whenever they are subjected to 

inputs or disturbances. The desired performance characteristics of a system of any order 

may be specified in terms of the transient response to a unit step input signal. The 

response of a second order system for unit step input with various values of damping ratio 

is shown in figure 2.2.1. 

 

Figure 2.2.1 Time Response 

[Source: “Modern Control Engineering” by Katsuhiko Ogata, Page: 229] 

The transient response of a system to a unit step input depends on the initial conditions. 

Therefore, to compare the time response of various systems it is necessary to start with 

standard initial conditions. The most practical standard is to start with the system at rest 

and so output and all time derivatives before t=0 will be zero. The transient response of 

a practical control system often exhibits damped oscillation before reaching steady state. 

A typical damped oscillatory response of a system is shown in figure 2.2.2. 
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Figure 2.2.2 Transient and steady-state response analyses 

[Source: “Modern Control Engineering” by Katsuhiko Ogata, Page: 230] 

The transient response characteristics of a control system to a unit step input is specified 

in terms of the following time domain specifications: 

1. Delay time, td: It is the time required for the response to reach 50% of the steady state 

value for the first time. 

𝑡𝑑 = 
1 + 0.7𝜁 

 
 

𝜔𝑛 

2. Rise time, tr: It is the time required for the response to reach 100% of the steady state 

value for under damped systems. However, for over damped systems, it is taken as 

the time required for the response to rise from 10% to 90% of the steady state value. 

The unit step response of second order system for underdamped case is given by, 

𝑒−𝜁𝜔𝑛𝑡 

𝑐(𝑡) = 1 −   sin(𝜔𝑑𝑡 + 𝜃) 
√(1 − 𝜁2) 

At t = tr, c(t) = c(tr) = 1 

𝑒−𝜁𝜔𝑛𝑡𝑟 

𝑐(𝑡𝑟) = 1 −   sin(𝜔𝑑𝑡𝑟 + 𝜃) = 1 
√(1 − 𝜁2) 
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−𝑒−𝜁𝜔𝑛𝑡𝑟 

  sin(𝜔𝑑𝑡𝑟 + 𝜃) = 0 
√(1 − 𝜁2) 

Since −𝑒−𝜁𝜔𝑛𝑡𝑟 ≠ 0, the term, sin(𝜔𝑑𝑡𝑟 + 𝜃) = 0, When 

Φ = 0, π, 2π, 3π,…. sin Φ = 0 

𝜔𝑑𝑡𝑟 + 𝜃 = 𝜋 

𝜔𝑑𝑡𝑟 = 𝜋 − 𝜃 

𝜋 − 𝜃 

 

On constructing right angled triangle, 

𝑡𝑟 = 
 

 

𝜔𝑑 

 
 

tan 𝜃 = 
√(1 − 𝜁2) 

 
 

𝜁 

 
 

𝜃 = tan −1 
√(1 − 𝜁2) 

𝜁 
 

 

𝐷𝑎𝑚𝑝𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝜔𝑑 = 𝜔𝑛√(1 − 𝜁2) 
 

 

𝜋 − tan−1 
√(1 − 𝜁2) (

 𝜁 
) 

𝑡𝑟 =    
𝜔𝑛√(1 − 𝜁2) 

3. Peak time, tp: It is the time required for the response to reach the maximum or peak 

value of the response. To find the expression for peak time, tp, differentiate c(t) with 

respect to ‘t’ and equate to zero. 

𝑑 

𝑑𝑡 
𝑐(𝑡)|𝑡=𝑡𝑝 

= 0 

The unit step response of under damped second order system is given by 

𝑒−𝜁𝜔𝑛𝑡 

𝑐(𝑡) = 1 −   sin(𝜔𝑑𝑡 + 𝜃) 
√(1 − 𝜁2) 

Differentiating c(t) with respect to ‘t’, 

𝑑 −𝑒−𝜁𝜔𝑛𝑡 −𝑒−𝜁𝜔𝑛𝑡 
𝑐(𝑡) =   (−𝜁𝜔𝑛) sin( 𝜔𝑑𝑡 + 𝜃) + (   ) cos(𝜔𝑑𝑡 + 𝜃)𝜔𝑑 

𝑑𝑡 √(1 − 𝜁2) √(1 − 𝜁2) 
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Put 𝜔𝑑 = 𝜔𝑛√(1 − 𝜁2), 

𝑑 𝑒−𝜁𝜔𝑛𝑡 𝑒−𝜁𝜔𝑛𝑡 
𝑐(𝑡) =   (𝜁𝜔𝑛) sin( 𝜔𝑑𝑡 + 𝜃) − (   ) cos(𝜔𝑑𝑡 + 𝜃)𝜔𝑛√(1 − 𝜁2) 

𝑑𝑡 √(1 − 𝜁2) √(1 − 𝜁2)
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2 𝑑 

2 𝑑 

= 
𝜔𝑛𝑒

−𝜁𝜔𝑛𝑡 

[𝜁 sin( 𝜔 𝑡 + 𝜃) − (√(1 − 𝜁2))cos(𝜔 
 

𝑡 + 𝜃)] 

√(1−𝜁2) 
𝑑 𝑑

 

= 
𝜔𝑛𝑒

−𝜁𝜔𝑛𝑡 

[cos 𝜃 sin( 𝜔 
 

𝑡 + 𝜃) − sin 𝜃 cos(𝜔 𝑡 + 𝜃)] 

√(1−𝜁2) 

= 
𝜔𝑛𝑒

−𝜁𝜔𝑛𝑡 

[sin( 𝜔 
√(1−𝜁 ) 

= 
𝜔𝑛𝑒

−𝜁𝜔𝑛𝑡 

[sin( 𝜔 
√(1−𝜁 ) 

 

At t = tp, 
𝑑 𝑐(𝑡) = 0 

𝑑𝑡 

𝑑 𝑑 
 

𝑡 + 𝜃 − 𝜃)] 

 
𝑡)] 

𝜔𝑛𝑒
−𝜁𝜔𝑛𝑡𝑝 

  [sin( 𝜔𝑑𝑡𝑝)] = 0 
√(1 − 𝜁2) 

Since, 𝑒−𝜁𝜔𝑛𝑡𝑝 ≠ 0, the term, [sin( 𝜔𝑑𝑡𝑝)] = 0 

When Φ = 0, π, 2π, 3π,…. sin Φ = 0 

𝜔𝑑𝑡𝑝  = 𝜋 

𝜋 
𝑡𝑝 = 

𝑑 

On substituting, we get,  

𝜋 
𝑡𝑝 =    

𝜔𝑛√(1 − 𝜁2) 

4. Peak overshoot, Mp: It is defined as the difference between the peak value of the 

response and the steady state value. Iris usually expressed in percent of the steady 

state value. If the time for the peak is tp, percent peak overshoot is given by, 

Maximum percent overshoot = 
𝑐(𝑡𝑝)−𝑐(∞)

 
𝑐(∞) 

𝑒−𝜁𝜔𝑛∞ 

𝐴𝑡 𝑡 = ∞, 𝑐(𝑡) = 𝑐(∞) = 1 −   sin(𝜔𝑑𝑡 + 𝜃) = 1 − 0 = 1 
√(1 − 𝜁2) 

𝑒−𝜁𝜔𝑛𝑡𝑝 

𝐴𝑡 𝑡 = 𝑡𝑝, 𝑐(𝑡) = 𝑐(𝑡𝑝) = 1 −   sin(𝜔𝑑𝑡𝑝 + 𝜃) 
√(1 − 𝜁2) 

−𝜁𝜔𝑛
  𝜋 

 

𝑒 
𝜔𝑛√(1−𝜁2) 

𝜋
 

= 1 − 
√(1−𝜁2) 

sin (𝜔𝑑 𝜔 
+ 𝜃) 

 
= 1 − 

𝑒
 

−𝜁
  𝜋  

√(1−𝜁2) 

 

√(1−𝜁2) 

 
 

sin(𝜋 + 𝜃) 

𝜔 

𝑑 
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𝑛 

𝑛 

 
= 1 − 

𝑒
 

−𝜁
  𝜋  

√(1−𝜁2)  
sin(𝜃) = 1 + 

𝑒
 

      𝜁𝜋  
 

 

√(1−𝜁2) 

 

 
√(1 − 𝜁2) 

√(1−𝜁2) 
 

𝑐(𝑡𝑝) − 𝑐(∞) 

√(1−𝜁2) 

%𝑀𝑝 = 
 

 

𝑐(∞) 

  𝜋𝜁  
 

 2 

%𝑀𝑝 = 𝑒√(1−𝜁 ) × 100 

5. Settling time, ts: It is the time taken by the response to reach and stay within a specified 

error. It is usually expressed as percentage of final value. The usual tolerable error is 

2% and 5% of the final value. 

The response of second order system has two components. They are 

a. Decaying exponential component, 𝑒
−𝜁𝜔𝑛𝑡

 

√(1−𝜁2) 

b. Sinusoidal component, sin(𝜔𝑑𝑡 + 𝜃) 

In these terms, the decaying component term dampens or reduces the oscillations 

produced by sinusoidal component. Hence, the settling time is decided by the exponential 

component. The settling time can be found out by equating exponential component to 

percentage tolerance errors. 

For 2% tolerance error band, at t = t , 𝑒
−𝜁𝜔𝑛𝑡𝑠

 = 0.02 
s 

 

For least values of 𝜁, 𝑒−𝜁𝜔𝑛𝑡𝑠 = 0.02 

 

 

√(1−𝜁2) 

On taking natural logarithm on both sides, we get, 

−𝜁𝜔𝑛𝑡𝑠 = ln(0.02) = −4 4 

𝑡𝑠 = 
𝜁𝜔 

= 4𝑇 
 

For 5% tolerance error band, at t = t , 𝑒
−𝜁𝜔𝑛𝑡𝑠

 = 0.05 
s 

 

For least values of 𝜁, 𝑒−𝜁𝜔𝑛𝑡𝑠 = 0.05 

 

 

√(1−𝜁2) 

On taking natural logarithm on both sides, we get, 

−𝜁𝜔𝑛𝑡𝑠 = ln(0.02) = −3 3 

𝑡𝑠 = 
𝜁𝜔 

= 3𝑇 
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4 
𝑆𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒, 𝑡𝑠 = 

𝜁𝜔
 

 

𝑓𝑜𝑟 2% 𝑒𝑟𝑟𝑜𝑟 

3 
𝑆𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒, 𝑡𝑠 = 

𝜁𝜔
 

 
𝑓𝑜𝑟 5% 𝑒𝑟𝑟𝑜𝑟 

The performance of a system is usually evaluated in terms of the following qualities: 

▪ How fast it is able to respond to the input? 

▪ How fast it is reaching the desired output? 

▪ What is the error between the desired output and the actual output, once the 

transients die down and steady state is achieved? 

▪ Does it oscillate around the desired value? 

▪ Is the output continuously increasing with time or is it bounded? 

▪ These are the specifications to be given for the design of a controller for a given 

system. 

𝑛 

𝑛 
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2.9 TIME RESPONSE ANALYSIS 

▪ Two types of inputs can be applied to a control system 

▪ Command Input or Reference Input yr(t) 

▪ Disturbance Input w(t) 

(External disturbances w(t) are typically uncontrolled variations in the load on a 

control system). In systems controlling mechanical motions, load disturbances may 

represent forces. In voltage regulating systems, variations in electrical load area major 

source of disturbances. 

In general, the closed loop transfer function of a system is denoted as M(s). 
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2.1 TIME RESPONSE 

The time response of the system is the output of the closed loop system as a 

function of time. It describes the behavior of a system and contains much information 

about it with respect to time response specification. Time response is formed by the 

transient response and the steady state response. 

Time response = Transient response + Steady state response 

Transient time response 

Transient response (Natural response) describes the behavior of the system in its 

first short time until arrives the steady state value and this response will be our study 

focus. If the input is step function then the output or the response is called step time 

response and if the input is ramp, the response is called ramp time response, etc. 

y(t) = ytr(t) + yss(t) 

The transient response is defined as the part of the time response that goes to zero as time 

becomes very large. Thus yt(t) has the property 

Lim yt(t) = 0, t --> ∞ 

The time required to achieve the final value is called transient period. The transient 

response may be exponential or oscillatory in nature. Output response consists of the sum 

of forced response (form the input) and natural response (from the nature of the 

system).The transient response is the change in output response from the beginning of 

the response to the final state of the response and the steady state response is the output 

response as time is approaching infinity (or no more changes at the output). 

Steady State Response 

The steady state response is the part of the total response that remains after the transient 

has died out. For a position control system, the steady state response when compared to 

with the desired reference position gives an indication of the final accuracy of the system. 

If the steady state response of the output does not agree with the desired reference exactly, 

the system is said to have steady state error. 
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2.3 TYPES OF TEST INPUT 

The knowledge of input signal is required to predict the response of a system. In 

most of the systems, the input signals are not known ahead of time and also it is difficult 

to express the input signals mathematically by simple equations. The characteristics of 

actual input signals are a sudden shock, a sudden change, a constant velocity and a 

constant acceleration. Hence test signals which resembles these characteristics are used 

as input signals to predict the performance of the system. The commonly use test input 

signals are impulse, step, ramp, acceleration and sinusoidal signals. 

Standard Input Signals 

1. Step signal 2. Unit step signal 

3.  Ramp signal 4. Unit ramp signal 

5.  Parabolic signal 6. Unit parabolic signal 

7.  Impulse signal 8. Sinusoidal signal 

STEP SIGNAL 

The step signal is a signal whose value changes from zero to A at t=0 and remains 

constant at A for t>0. The step signal resembles an actual steady input to a system. A 

special case of step signal is unit step in which A is unity. 

RAMP SIGNAL 

The ramp signal is a signal whose value increases linearly with time from an initial 

value of zero at t=0. The ramp signal resembles a constant velocity input to the system. 

A special case of ramp signal is unit ramp signal in which the value of A is unity. 

PARABOLIC SIGNAL 

In parabolic signal, the instantaneous value varies as square of the time from an 

initial value of zero at t=0. The sketch of the signal with respect to time resembles a 

parabola. The parabolic signal resembles a constant acceleration input to the system. A 

special case of parabolic signal is unit parabolic signal in which A is unity. 

IMPULSE SIGNAL 

A signal of very large magnitude which is available for very short duration is called 

impulse signal. Ideal impulse signal is a signal with infinite magnitude and zero duration 

but with an area of A. The unit impulse signal is a special case, in which A is unity. Since 

perfect impulse cannot be achieved in practice, it is usually approximated by a pulse of 
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small width but with area, A. Mathematically an impulse signal is the derivative of a step 

signal. Laplace transform of the impulse function is unity. 

 
 

Figure 2.3.1 Standard test signals 

[Source: “Control Systems Engineering” by I J Nagrath, M Gopal, Page: 196] 
 

Input r(t) R(s) 

Step input A A/s 

Ramp input At A/s2 

Parabolic input At2/2 A/s3 

Impulse input δ(t) 1 
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