
www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

COMPLEX SYSTEMS AND MICROPROCESSORS

What is an embedded computer system? Loosely defined, it is any device that includes

a programmable computer but is not itself intended to be a general-purpose computer. Thus, a

PC is not itself an embedded computing system, although PCs are often used to build

embedded computing systems. But a fax machine or a clock built from a microprocessor is an

embedded computing system.

This means that embedded computing system design is a useful skill for many types of

product design. Automobiles, cell phones, and even household appliances make extensive use

of microprocessors. Designers in many fields must be able to identify where microprocessors

can be used, design a hardware platform with I/O devices that can support the required tasks,

and implement software that performs the required processing.

Computer engineering, like mechanical design or thermodynamics, is a fundamental

discipline that can be applied in many different domains. But of course, embedded computing

system design does not stand alone.

Many of the challenges encountered in the design of an embedded computing system

are not computer engineering for example, they may be mechanical or analog electrical

problems. In this book we are primarily interested in the embedded computer itself, so we will

concentrate on the hardware and software that enable the desired functions in the final product.

Embedding Computers

Computers have been embedded into applications since the earliest days of computing.

One example is the Whirlwind, a computer designed at MIT in the late 1940s and early 1950s.

Whirlwind was also the first computer designed to support real-time operation and was

originally conceived as a mechanism for controlling an aircraft simulator.

Even though it was extremely large physically compared to today’s computers (e.g., it

contained over 4,000 vacuum tubes), its complete design from components to system was

attuned to the needs of real-time embedded computing.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The utility of computers in replacing mechanical or human controllers was evident from

the very beginning of the computer era for example, computers were proposed to control

chemical processes in the late 1940s.

A microprocessor is a single-chip CPU. Very large scale integration (VLSI) stet the

acronym is the name technology has allowed us to put a complete CPU on a single chip since

1970s, but those CPUs were very simple.

The first microprocessor, the Intel 4004, was designed for an embedded application,

namely, a calculator. The calculator was not a general-purpose computer it merely provided

basic arithmetic functions. However, Ted Hoff of Intel realized that a general-purpose

computer programmed properly could implement the required function, and that the computer-

on-a-chip could then be reprogrammed for use in other products as well.

Since integrated circuit design was (and still is) an expensive and time consuming

process, the ability to reuse the hardware design by changing the software was a key

breakthrough.

The HP-35 was the first handheld calculator to perform transcendental functions. It was

introduced in 1972, so it used several chips to implement the CPU, rather than a single-chip

microprocessor.

However, the ability to write programs to perform math rather than having to design

digital circuits to perform operations like trigonometric functions was critical to the successful

design of the calculator. Automobile designers started making use of the microprocessor soon

after single-chip CPUs became available.

The most important and sophisticated use of microprocessors in automobiles was to

control the engine: determining when spark plugs fire, controlling the fuel/air mixture, and so

on. There was a trend toward electronics in automobiles in general electronic devices could be

used to replace the mechanical distributor. But the big push toward microprocessor-based

engine control came from two nearly simultaneous developments: The oil shock of the 1970s

caused consumers to place much higher value on fuel economy, and fears of pollution resulted

in laws restricting automobile engine emissions.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The combination of low fuel consumption and low emissions is very difficult to achieve;

to meet these goals without compromising engine performance, automobile manufacturers

turned to sophisticated control algorithms that could be implemented only with

microprocessors.

Microprocessors come in many different levels of sophistication; they are usually

classified by their word size. An 8-bit microcontroller is designed for low-cost applications

and includes on-board memory and I/O devices; a 16-bit microcontroller is often used for more

sophisticated applications that may require either longer word lengths or off-chip I/O and

memory; and a 32-bit RISC microprocessor offers very high performance for computation-

intensive applications.

Given the wide variety of microprocessor types available, it should be no surprise that

microprocessors are used in many ways. There are many household uses of microprocessors.

The typical microwave oven has at least one microprocessor to control oven operation. Many

houses have advanced thermostat systems, which change the temperature level at various times

during the day. The modern camera is a prime example of the powerful features that can be

added under microprocessor control.

Digital television makes extensive use of embedded processors. In some cases,

specialized CPUs are designed to execute important algorithms an example is the CPU

designed for audio processing in the SGS Thomson chip set for DirecTV [Lie98]. This

processor is designed to efficiently implement programs for digital audio decoding. A

programmable CPU was used rather than a hardwired unit for two reasons: First, it made the

system easier to design and debug; and second, it allowed the possibility of upgrades and using

the CPU for other purposes.

A high-end automobile may have 100 microprocessors, but even inexpensive cars today

use 40 microprocessors. Some of these microprocessors do very simple things such as detect

whether seat belts are in use. Others control critical functions such as the ignition and braking

systems.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

BMW 850i Brake and Stability Control System:

The BMW 850i was introduced with a sophisticated system for controlling the wheels

of the car. An antilock brake system (ABS) reduces skidding by pumping the brakes.

Figure 1.1.1 shows the function of an Antilock Brake System. An automatic stability

control (ASC +T) system intervenes with the engine during maneuvering to improve the car’s

stability. These systems actively control critical systems of the car; as control systems, they

require inputs from and output to the automobile.

Let’s first look at the ABS. The purpose of an ABS is to temporarily release the brake

on a wheel when it rotates too slowly when a wheel stops turning, the car starts skidding and

becomes hard to control. It sits between the hydraulic pump, which provides power to the

brakes, and the brakes themselves as seen in the following diagram. This hookup allows the

ABS system to modulate the brakes in order to keep the wheels from locking.

The ABS system uses sensors on each wheel to measure the speed of the wheel. The

wheel speeds are used by the ABS system to determine how to vary the hydraulic fluid pressure

to prevent the wheels from skidding.

Figure 1.1.1 Antilock Brake System (ABS)

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

The ASC + T system’s job is to control the engine power and the brake to improve the

car’s stability during maneuvers. The ASC+T controls four different systems: throttle, ignition

timing, differential brake, and (on automatic transmission cars) gear shifting. The ASC + T

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

can be turned off by the driver, which can be important when operating with tire snow chains.

The ABS and ASC+ T must clearly communicate because the ASC + T interacts with the brake

system. Since the ABS was introduced several years earlier than the ASC + T, it was important

to be able to interface ASC + T to the existing ABS module, as well as to other existing

electronic modules.

The engine and control management units include the electronically controlled throttle,

digital engine management, and electronic transmission control. The ASC + T control unit has

two microprocessors on two printed circuit boards, one of which concentrates on logic-relevant

components and the other on performance-specific components.

Characteristics of Embedded Computing Applications

Embedded computing is in many ways much more demanding than the sort of programs

that you may have written for PCs or workstations. Functionality is important in both general-

purpose computing and embedded computing, but embedded applications must meet many

other constraints as well.

On the one hand, embedded computing systems have to provide sophisticated functionality:

Complex algorithms: The operations performed by the microprocessor may be very

sophisticated. For example, the microprocessor that controls an automobile engine must

perform complicated filtering functions to optimize the performance of the car while

minimizing pollution and fuel utilization.

User interface: Microprocessors are frequently used to control complex user interfaces that

may include multiple menus and many options. The moving maps in Global Positioning

System (GPS) navigation are good examples of sophisticated user interfaces. To make things

more difficult, embedded computing operations must often be performed to meet deadlines:

Real time: Many embedded computing systems have to perform in real time if the data is not

ready by a certain deadline, the system breaks. In some cases, failure to meet a deadline is

unsafe and can even endanger lives. In other cases, missing a deadline does not create safety

problems but does create unhappy customers missed deadlines in printers, for example, can

result in scrambled pages.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Multirate: Not only must operations be completed by deadlines, but many embedded

computing systems have several real-time activities going on at the same time. They may

simultaneously control some operations that run at slow rates and others that run at high rates.

Multimedia applications are prime examples of multirate behavior. The audio and video

portions of a multimedia stream run at very different rates, but they must remain closely

synchronized. Failure to meet a deadline on either the audio or video portions spoils the

perception of the entire presentation.

Costs of various sorts are also very important:

Manufacturing cost: The total cost of building the system is very important in many

cases. Manufacturing cost is determined by many factors, including the type of microprocessor

used, the amount of memory required, and the types of I/O devices.

Power and energy: Power consumption directly affects the cost of the hardware, since a larger

power supply may be necessary. Energy consumption affects battery life, which is important

in many applications, as well as heat consumption, which can be important even in desktop

applications.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

CONSUMER ELECTRONICS ARCHITECTURE

Although some predict the complete convergence of all consumer electronic functions

into a single device, much as the personal computer now relies on a common platform, we still

have a variety of devices with different functions. However, consumer electronics devices

have converged over the past decade around a set of common features that are supported by

common architectural features. Not all devices have all features, depending on the way the

device is to be used, but most devices select features from a common menu. Similarly, there

is no single platform for consumer electronics devices, but the architectures in use are

organized around some common themes. This convergence is possible because these devices

implement a few basic types of functions in various combinations: multimedia,

communications, and data storage and management. The style of multimedia or

communications may vary, and different devices may use different formats, but this causes

variations in hardware and software components within the basic architectural templates. In

this section we will look at general features of consumer electronics devices; in the following

sections we will study a few devices in more detail.

Use Cases and Requirements

Consumer electronics devices provide several types of services in different combinations:

• Multimedia: The media may be audio, still images, or video (which includes both

motion pictures and audio). These multimedia objects are generally stored in

compressed form and must be uncompressed to be played (audio playback, video

viewing, etc.). A large and growing number of standards have been developed for

multimedia compression:MP3, Dolby Digital(TM), etc. for audio; JPEG for still images;

MPEG-2, MPEG-4, H.264, etc. for video.

• Data storage and management: Because people want to select what multimedia objects

they save or play, data storage goes hand-in-hand with multimedia capture and display.

Many devices provide PC-compatible file systems so that data can be shared more

easily.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Communications: Communications may be relatively simple, such as a USB interface

to a host computer. The communications link may also be more sophisticated, such as

an Ethernet port or a cellular telephone link.

Consumer electronics devices must meet several types of strict nonfunctional requirements

as well. Many devices are battery-operated, which means that they must operate under strict

energy budgets. A typical battery for a portable device provides only about 75mW, which must

support not only the processors and digital electronics but also the display, radio, etc.

Consumer electronics must also be very inexpensive. A typical primary processing chip must

sell in the neighborhood of $10. These devices must also provide very high performance

sophisticated networking and multimedia compression require huge amounts of computation.

Let’s consider some basic use cases of some basic operations. Figure 1.8.1 shows a use case

for selecting and playing a multimedia object (an audio clip, a picture, etc.). Selecting an object

makes use of both the user interface and the file system. Playing also makes use of the file

system as well as the decoding subsystem and I/O subsystem. Figure 1.8.2 shows a use case

for connecting to a client. The connection may be either over a local connection like USB or

over the Internet. While some operations may be performed locally on the client device, most

of the work is done on the host system while the connection is established.

Figure 1.8.1 Use case for playing multimedia

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Figure 1.8.2 Use case of synchronizing with a host system

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

Figure 1.8.3 Functional architecture of a generic consumer electronics device

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

Platforms and Operating Systems

Given these types of usage scenarios, we can deduce a few basic characteristics of the

underlying architecture of these devices. Figure 1.8.3 shows a functional block diagram of a

typical device. The storage system provides bulk, permanent storage. The network interface

may provide a simple USB connection or a full-blown Internet connection.

Multiprocessor architectures are common in many consumer multimedia devices.

Figure 1.8.3 shows a two-processor architecture; if more computation is required, more DSPs

and CPUs may be added. The RISC CPU runs the operating system, runs the user interface,

maintains the file system, etc. The DSP performs signal processing. The DSP may be

programmable in some systems; in other cases, it may be one or more hardwired accelerators.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The operating system that runs on the CPU must maintain processes and the file system.

Processes are necessary to provide concurrency, for example, the user wants to be able to push

a button while the device is playing back audio. Depending on the complexity of the device,

the operating system may not need to create tasks dynamically. If all tasks can be created using

initialization code, the operating system can be made smaller and simpler.

Flash File Systems

Many consumer electronics devices use flash memory for mass storage. Flash memory

is a type of semiconductor memory that, unlike DRAM or SRAM, provides permanent storage.

Values are stored in the flash memory cell as electric charge using a specialized capacitor that

can store the charge for years. The flash memory cell does not require an external power supply

to maintain its value. Furthermore, the memory can be written electrically and, unlike previous

generations of electrically-erasable semiconductor memory, can be written using

standard power supply voltages and so does not need to be disconnected during programming.

Disk drives, which use rotating magnetic platters, are the most common form of mass

storage in PCs. Disk drives have some advantages: they are much cheaper than flash memory

(at this writing, disk storage costs $0.50 per gigabyte, while flash memory is slightly less than

$50/gigabyte) and they have much greater capacity. But disk drives also consume more power

than flash storage. When devices need a moderate amount of storage, they often use flash

memory. The file system of a device is typically shared with a PC. In many cases the memory

device is read directly by the PC through a flash card reader or a USB port.

The device must therefore maintain a PC-compatible file system, using the same

directory structure, file names, etc. as are used on a PC. However, flash memory has one

important limitation that must be taken into account. Writing a flash memory cell causes

mechanical stress that eventually wears out the cell. Today’s flash memories can reliably be

written a million times but at some point they will fail. While a million write cycles may sound

like enough to ensure that the memory will never wear out, creating a single file may require

many write operations, particularly to the part of the memory that stores the directory

information.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

A wear-leveling flash file system manages the use of flash memory locations to equalize

wear while maintaining compatibility with existing file systems. A simple model of a standard

file system has two layers: the bottom layer handles physical reads and writes on the storage

device; the top layer provides a logical view of the file system. A flash file system imposes an

intermediate layer that allows the logical-to-physical mapping of files to be changed. This

layer keeps track of how frequently different sections of the flash memory have been written

and allocates data to equalize wear. It may also move the location of the directory structure

while the file system is operating. Because the directory system receives the most wear,

keeping it in one place may cause part of the memory to wear out before the rest, unnecessarily

reducing the useful life of the memory device. Several flash file systems have been developed,

such as Yet Another Flash Filing System (YAFFS).

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

DESIGN EXAMPLE: MODEL TRAIN CONTROLLER

In order to learn how to use UML to model systems, we will specify a simple system, a

model train controller, which is illustrated in Figure 1.3.1 The user sends messages to the train

with a control box attached to the tracks.

The control box may have familiar controls such as a throttle, emergency stop button,

and so on. Since the train receives its electrical power from the two rails of the track, the

control box can send signals to the train over the tracks by modulating the power supply

voltage.

As shown in the figure 1.3.1, the control panel sends packets over the tracks to the

receiver on the train. The train includes analog electronics to sense the bits being transmitted

and a control system to set the train motor’s speed and direction based on those commands.

Each packet includes an address so that the console can control several trains on the

same track; the packet also includes an error correction code (ECC) to guard against

transmission errors. This is a one-way communication system the model train cannot send

commands back to the user.

We start by analyzing the requirements for the train control system. We will base our

system on a real standard developed for model trains. We then develop two specifications: a

simple, high-level specification and then a more detailed specification.

Requirements

Before we can create a system specification, we have to understand the requirements.

Here is a basic set of requirements for the system:

• The console shall be able to control up to eight trains on a single track.

• The speed of each train shall be controllable by a throttle to at least 63 different levels

in each direction (forward and reverse).

• There shall be an inertia control that shall allow the user to adjust the responsiveness of

the train to commanded changes in speed. Higher inertia means that the train responds

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

more slowly to a change in the throttle, simulating the inertia of a large train. The inertia

control will provide at least eight different levels.

• There shall be an emergency stop button.

• An error detection scheme will be used to transmit messages.

Figure 1.3.1 Model Train Control System

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

We will develop our system using a widely used standard for model train control. We

could develop our own train control system from scratch, but basing our system upon a

standard has several advantages in this case: It reduces the amount of work we have to do and

it allows us to use a wide variety of existing trains and other pieces of equipment.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

We can put the requirements into chart format:

DCC

The Digital Command Control (DCC) was created by the National Model Railroad

Association to support interoperable digitally-controlled model trains.

Hobbyists started building homebrew digital control systems in the 1970s and Marklin

developed its own digital control system in the 1980s. DCC was created to provide a standard

that could be built by any manufacturer so that hobbyists could mix and match components

from multiple vendors.

The DCC standard is given in two documents:

Standard S-9.1, the DCC Electrical Standard, defines how bits are encoded on the rails for

transmission.

Standard S-9.2, the DCC Communication Standard, defines the packets that carry information.

Any DCC-conforming device must meet these specifications. DCC also provides

several recommended practices. These are not strictly required but they provide some hints to

manufacturers and users as to how to best use DCC.

The DCC standard does not specify many aspects of a DCC train system. It doesn’t

define the control panel, the type of microprocessor used, the programming language to be

used, or many other aspects of a real model train system.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The standard concentrates on those aspects of system design that are necessary for

interoperability. Over standardization, or specifying elements that do not really need to be

standardized, only makes the standard less attractive and harder to implement. The Electrical

Standard deals with voltages and currents on the track. While the electrical engineering aspects

of this part of the specification are beyond the scope of the book, we will briefly discuss the

data encoding here.

The standard must be carefully designed because the main function of the track is to

carry power to the locomotives. The signal encoding system should not interfere with power

transmission either to DCC or non-DCC locomotives. A key requirement is that the data signal

should not change the DC value of the rails. The data signal swings between two voltages

around the power supply voltage. As shown in Figure 1.3.2, bits are encoded in the time

between transitions, not by voltage levels. A 0 is at least 100 ms while a 1 is nominally 58ms.

The durations of the high (above nominal voltage) and low (below nominal voltage)

parts of a bit are equal to keep the DC value constant. The specification also gives the allowable

variations in bit times that a conforming DCC receiver must be able to tolerate. The standard

also describes other electrical properties of the system, such as allowable transition times for

signals. The DCC Communication Standard describes how bits are combined into packets and

the meaning of some important packets.

Figure 1.3.2 Bit Encoding in DCC

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

Some packet types are left undefined in the standard but typical uses are given in

Recommended Practices documents. We can write the basic packet format as a regular

expression:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

PSA (sD) + E (1.1)

In this regular expression:

P is the preamble, which is a sequence of at least 10 1 bits. The command station should send

at least 14 of these 1 bits, some of which may be corrupted during transmission.

S is the packet start bit. It is a 0 bit.

A is an address data byte that gives the address of the unit, with the most significant bit of the

address transmitted first. An address is eight bits long. The addresses 00000000, 11111110,

and 11111111 are reserved.

s is the data byte start bit, which, like the packet start bit, is a 0.

D is the data byte, which includes eight bits. A data byte may contain an address, instruction,

data, or error correction information.

E is a packet end bit, which is a 1 bit.

A packet includes one or more data byte start bit/data byte combinations. Note that the

address data byte is a specific type of data byte.

A baseline packet is the minimum packet that must be accepted by all DCC

implementations. More complex packets are given in a Recommended Practice document. A

baseline packet has three data bytes: an address data byte that gives the intended receiver of

the packet; the instruction data byte provides a basic instruction; and an error correction data

byte is used to detect and correct transmission errors.

The instruction data byte carries several pieces of information. Bits 0–3 provide a 4-bit

speed value. Bit 4 has an additional speed bit, which is interpreted as the least significant speed

bit. Bit 5 gives direction, with 1 for forward and 0 for reverse. Bits 7–8 are set at 01 to indicate

that this instruction provides speed and direction.

The error correction data byte is the bitwise exclusive OR of the address and instruction

data bytes. The standard says that the command unit should send packets frequently since a

packet may be corrupted. Packets should be separated by at least 5 ms.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Conceptual Specification

Digital Command Control specifies some important aspects of the system, particularly

those that allow equipment to interoperate. But DCC deliberately does not specify everything

about a model train control system. We need to round out our specification with details that

complement the DCC spec.

A conceptual specification allows us to understand the system a little better. We will

use the experience gained by writing the conceptual specification to help us write a detailed

specification to be given to a system architect. This specification does not correspond to what

any commercial DCC controllers do, but it is simple enough to allow us to cover some basic

concepts in system design.

A train control system turns commands into packets. A command comes from the

command unit while a packet is transmitted over the rails. Commands and packets may not be

generated in a 1-to-1 ratio.

In fact, the DCC standard says that command units should resend packets in case a

packet is dropped during transmission. We now need to model the train control system itself.

There are clearly two major subsystems: the command unit and the train-board component as

shown in Figure 1.3.3. Each of these subsystems has its own internal structure.

The basic relationship between them is illustrated in Figure 1.3.4. This figure shows a

UML collaboration diagram; we could have used another type of figure, such as a class or

object diagram, but we wanted to emphasize the transmit/receive relationship between these

major subsystems. The command unit and receiver are each represented by objects; the

command unit sends a sequence of packets to the train’s receiver, as illustrated by the arrow.

The notation on the arrow provides both the type of message sent and its sequence in a

flow of messages; since the console sends all the messages, we have numbered the arrow’s

messages as

1..n. Those messages are of course carried over the track.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Since the track is not a computer component and is purely passive, it does not appear in

the diagram. However, it would be perfectly legitimate to model the track in the collaboration

diagram, and in some situations it may be wise to model such nontraditional components in

the specification diagrams.

For example, if we are worried about what happens when the track breaks, modeling the

tracks would help us identify failure modes and possible recovery mechanisms.

Figure 1.3.3 Class Diagram for the Train Controller Messages

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

Figure 1.3.4 UML Collaboration Diagram for major Subsystems of the

Train Controller System

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

Let’s break down the command unit and receiver into their major components. The

console needs to perform three functions: read the state of the front panel on the command

unit, format messages, and transmit messages.

The train receiver must also perform three major functions: receive the message,

interpret the message (taking into account the current speed, inertia setting, etc.), and actually

control the motor. In this case, let’s use a class diagram to represent the design; we could also

use an object diagram if we wished.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Figure 1.3.4 UML Class Diagram for the Train Controller showing the

Composition of the Subsystems

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

The UML class diagram is shown in Figure 1.3.5. It shows the console class using three

classes, one for each of its major components. These classes must define some behaviors, but

for the moment we will concentrate on the basic characteristics of these classes:

• The Console class describes the command unit’s front panel, which contains the analog

knobs and hardware to interface to the digital parts of the system.

• The Formatter class includes behaviors that know how to read the panel knobs and

creates a bit stream for the required message.

• The Transmitter class interfaces to analog electronics to send the message along the

track.

There will be one instance of the Console class and one instance of each of the component

classes, as shown by the numeric values at each end of the relationship links. We have also

shown some special classes that represent analog components, ending the name of each with

an asterisk:

• Knobs* describes the actual analog knobs, buttons, and levers on the control panel.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Sender* describes the analog electronics that send bits along the track.

Likewise, the Train makes use of three other classes that define its components:

• The Receiver class knows how to turn the analog signals on the track into digital form.

• The Controller class includes behaviors that interpret the commands and figures out

how to control the motor.

• The Motor interface class defines how to generate the analog signals required to control

the motor. We define two classes to represent analog components:

✓ Detector* detects analog signals on the track and converts them into digital form.

✓ Pulser* turns digital commands into the analog signals required to control the

motor speed.

We have also defined a special class, Train set, to help us remember that the system can

handle multiple trains. The values on the relationship edge show that one train set can

have t trains. We would not actually implement the train set class, but it does serve as useful

documentation of the existence of multiple receivers.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

DESIGN METHODOLOGY

This section considers the complete design methodology a design process for embedded

computing systems. We will start with the rationale for design methodologies, then look at

several different methodologies. Process is important because without it, we can’t reliably

deliver the products we want to create. Thinking about the sequence of steps necessary to build

something may seem superfluous. But the fact is that everyone has their own design process,

even if they don’t articulate it. If you are designing embedded systems in your basement by

yourself, having your own work habits is fine. But when several people work together on a

project, they need to agree on who will do things and how they will get done. Being explicit

about process is important when people work together. Therefore, since many embedded

computing systems are too complex to be designed and built by one person, we have to think

about design processes.

The obvious goal of a design process is to create a product that does something useful. Typical

specifications for a product will include functionality (e.g., cell phone), manufacturing cost

(must have a retail price below $200), performance (must power up within 3 s), power

consumption (must run for 12 h on two AA batteries), or other properties. Of course, a design

process has several important goals beyond function, performance, and power. Three of these

goals are summarized below.

• Time-to-market: Customers always want new features. The product that comes out first

can win the market, even setting customer preferences for future generations of the

product. The profitable market life for some products is 3-6 months. If you are 3 months

late, you will never make money. In some categories, the competition is against the

calendar, not just competitors. Calculators, for example, are disproportionately sold just

before school starts in the fall. If you miss your market window, you have to wait a year

for another sales season.

• Design cost: Many consumer products are very cost sensitive. Industrial buyers are also

increasingly concerned about cost. The costs of designing the system is distinct from

manufacturing cost, the cost of engineers’ salaries, computers used in design, and so on

must be spread across the units sold. In some cases, only one or a few copies of an

embedded system may be built, so design costs can dominate manufacturing costs.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Design costs can also be important for high-volume consumer devices when time-to-

market pressures cause teams to swell in size.

• Quality: Customers not only want their products fast and cheap, they also want them to

be right. A design methodology that cranks out shoddy products will soon be forced out

of the marketplace. Correctness, reliability, and usability must be explicitly addressed

from the beginning of the design job to obtain a high-quality product at the end.

Processes evolve over time. They change due to external and internal forces. Customers

may change, requirements change, products change, and available components change.

Internally, people learn how to do things better, people move on to other projects and others

come in, and companies are bought and sold to merge and shape corporate cultures. Software

engineers have spent a great deal of time thinking about software design processes. Much of

this thinking has been motivated by mainframe software such as databases. But embedded

applications have also inspired some important thinking about software design processes.

A good methodology is critical to building systems that work properly. Delivering

buggy systems to customers always causes dissatisfaction. But in some applications, such as

medical and automotive systems, bugs create serious safety problems that can endanger the

lives of users.

DESIGN FLOWS

A design flow is a sequence of steps to be followed during a design. Some of the steps

can be performed by tools, such as compilers or CAD systems; other steps can be performed

by hand. In this section we look at the basic characteristics of design flows.

Figure 1.4.1 shows the waterfall model, the first model proposed for the software

development process. The waterfall development model consists of five major phases:

requirements analysis determines the basic characteristics of the system; architecture design

decomposes the functionality into major components; coding implements the pieces and

integrates them; testing uncovers bugs; and maintenance entails deployment in the field, bug

fixes, and upgrades. The waterfall model gets its name from the largely one-way flow of work

and information from higher levels of abstraction to more detailed design steps (with a limited

amount of feedback to the next-higher level of abstraction). Although top-down design is ideal

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

since it implies good foreknowledge of the implementation during early design phases, most

designs are clearly not quite so top-down. Most design projects entail experimentation and

changes that require bottom-up feedback. As a result, the waterfall model is today cited as an

unrealistic design process. However, it is important to know what the waterfall model is to be

able to understand and how others are reacting against it.

Figure 1.4.1 The waterfall model of software development

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

Figure 1.4.2 The spiral model of software design

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Figure 1.4.2 illustrates an alternative model of software development called the spiral

model. While the waterfall model assumes that the system is built once in its entirety, the spiral

model assumes that several versions of the system will be built. Early systems will be simple

mock-ups constructed to aid designer’s intuition and to build experience with the system. As

design progresses, more complex systems will be constructed. At each level of design, the

designers go through requirements, construction, and testing phases. At later stages when more

complete versions of the system are constructed, each phase requires more work, widening the

design spiral. This successive refinement approach helps the designers understand the system

they are working on through a series of design cycles.

The first cycles at the top of the spiral are very small and short, while the final cycles at

the spiral’s bottom add detail learned from the earlier cycles of the spiral. The spiral model is

more realistic than the waterfall model because multiple iterations are often necessary to add

enough detail to complete a design. However, a spiral methodology with too many spirals may

take too long when design time is a major requirement.

Figure 1.4.3 A successive refinement development mode

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

Figure 1.4.3 shows a successive refinement design methodology. In this approach, the

system is built several times. A first system is used as a rough prototype, and successive models

of the system are further refined. This methodology makes sense when you are relatively

unfamiliar with the application domain for which you are building the system. Refining the

system by building several increasingly complex systems allows you to test out architecture

and design techniques. The various iterations may also be only partially completed; for

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

example, continuing an initial system only through the detailed design phase may teach you

enough to help you avoid many mistakes in a second design iteration that is carried through to

completion.

Embedded computing systems often involve the design of hardware as well as software.

Even if you aren’t designing a board, you may be selecting boards and plugging together

multiple hardware components as well as writing code.

Figure 1.4.4 A simple hardware/software design methodology

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

Figure 1.4.4 shows a design methodology for a combined hardware/software project.

Front-end activities such as specification and architecture simultaneously consider hardware

and software aspects. Similarly, back-end integration and testing consider the entire system.

In the middle, however, development of hardware and software components can go on

relatively independently, while testing of one will require stubs of the other, most of the

hardware and software work can proceed relatively independently. In fact, many complex

embedded systems are themselves built of smaller designs.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The complete system may require the design of significant software components,

custom logic, and so on, and these in turn may be built from smaller components that need to

be designed. The design flow follows the levels of abstraction in the system, from complete

system design flows at the most abstract to design flows for individual components.

Figure 1.4.5 A hierarchical design flow for an embedded system

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

The design flow for these complex systems resembles the flow shown in Figure 1.4.5.

The implementation phase of a flow is itself a complete flow from specification through

testing. In such a large project, each flow will probably be handled by separate people or teams.

The teams must rely on each other’s results. The component teams take their requirements

from the team handling the next higher level of abstraction, and the higher-level team relies

on the quality of design and testing performed by the component team. Good communication

is vital in such large projects. When designing a large system along with many people, it is

easy to lose track of the complete design flow and have each designer take a narrow view of

his or her role in the design flow.

Concurrent engineering attempts to take a broader approach and optimize the total

flow. Reduced design time is an important goal for concurrent engineering, but it can help with

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

any aspect of the design that cuts across the design flow, such as reliability, performance,

power consumption, and so on. It tries to eliminate “over-the-wall” design steps, in which one

designer performs an isolated task and then throws the result over the wall to the next designer,

with little interaction between the two. In particular, reaping the most benefits from concurrent

engineering usually requires eliminating the wall between design and manufacturing.

Concurrent engineering efforts are comprised of several elements:

• Cross-functional teams include members from various disciplines involved in the

process, including manufacturing, hardware and software design, marketing, and so

forth.

• Concurrent product realization process activities are at the heart of concurrent

engineering. Doing several things at once, such as designing various subsystems

simultaneously, is critical to reducing design time.

• Incremental information sharing and use helps minimize the chance that concurrent

product realization will lead to surprises. As soon as new information becomes

available, it is shared and integrated into the design. Cross functional teams are

important to the effective sharing of information in a timely fashion.

• Integrated project management ensures that someone is responsible for the entire

project, and that responsibility is not abdicated once one aspect of the work is done.

• Early and continual supplier involvement helps make the best use of suppliers’

capabilities.

• Early and continual customer focus helps ensure that the product best meets customers’

needs.

REQUIREMENTS ANALYSIS

Before designing a system, we need to know what we are designing. The terms

“requirements” and “specifications” are used in a variety of ways some people use them as

synonyms, while others use them as distinct phases. We use them to mean related but distinct

steps in the design process. Requirements are informal descriptions of what the customer

wants, while specifications are more detailed, precise, and consistent descriptions of the

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

system that can be used to create the architecture. Both requirements and specifications are,

however, directed to the outward behavior of the system, not its internal structure.

The overall goal of creating a requirements document is effective communication

between the customers and the designers. The designers should know what they are expected

to design for the customers; the customers, whether they are known in advance or represented

by marketing, should understand what they will get. We have two types of requirements:

functional and nonfunctional. A functional requirement states what the system must do, such

as compute an FFT. A nonfunctional requirement can be any number of other attributes,

including physical size, cost, power consumption, design time, reliability, and so on.

A good set of requirements should meet several tests:

• Correctness: The requirements should not mistakenly describe what the customer

wants. Part of correctness is avoiding over-requiring the requirements should not add

conditions that are not really necessary.

• Unambiguousness: The requirements document should be clear and have only one plain

language interpretation.

• Completeness: All requirements should be included.

• Verifiability: There should be a cost-effective way to ensure that each requirement is

satisfied in the final product. For example, a requirement that the system package be

“attractive” would be hard to verify without some agreed upon definition of

attractiveness.

• Consistency: One requirement should not contradict another requirement.

• Modifiability: The requirements document should be structured so that it can be

modified to meet changing requirements without losing consistency, verifiability, and

so forth.

• Traceability: Each requirement should be traceable in the following ways:

✓ We should be able to trace backward from the requirements to know why each

requirement exists.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

✓ We should also be able to trace forward from documents created before the

requirements (e.g., marketing memos) to understand how they relate to the final

requirements.

✓ We should be able to trace forward to understand how each requirement is

satisfied in the implementation.

✓ We should also be able to trace backward from the implementation to know which

requirements they were intended to satisfy.

How do you determine requirements? If the product is a continuation of a series, then

many of the requirements are well understood. But even in the most modest upgrade, talking

to the customer is valuable. In a large company, marketing or sales departments may do most

of the work of asking customers what they want, but a surprising number of companies have

designers talk directly with customers. Direct customer contact gives the designer an unfiltered

sample of what the customer says. It also helps build empathy with the customer, which often

pays off in cleaner, easier-to-use customer interfaces. Talking to the customer may also include

conducting surveys, organizing focus groups, or asking selected customers to test a mock-up

or prototype.

SPECIFICATIONS

In this section we take a look at some advanced techniques for specification and how

they can be used.

Control-Oriented Specification Languages

We have already seen how to use state machines to specify control in UML. An example

of a widely used state machine specification language is the SDL language, which was

developed by the communications industry for specifying communication protocols, telephone

systems, and so forth. As illustrated in Figure 1.4.6, SDL specifications include states, actions,

and both conditional and unconditional transitions between states. SDL is an event-oriented

state machine model since transitions between states are caused by internal and external

events.

Other techniques can be used to eliminate clutter and clarify the important structure of

a state-based specification. The Statechart is one well-known technique for state-based

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

specification that introduced some important concepts. The Statechart notation uses an event-

driven model. Statecharts allow states to be grouped together to show common functionality.

There are two basic groupings: OR and AND. Figure 1.4.7 shows an example of an OR state

by comparing a traditional state transition diagram with a Statechart described via an OR state.

The state machine specifies that the machine goes to state s4 from any of s1, s2, or s3 when

they receive the input i2.

Figure 1.4.6 The SDL specification language

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

The Statechart denotes this commonality by drawing an OR state around s1, s2, and s3

(the name of the OR state is given in the small box at the top of the state). A single transition

out of the OR state s123 specifies that the machine goes into state s4 when it receives the i2

input while in any state included in s123.The OR state still allows interesting transitions

between its member states. There can be multiple ways to get into s123 (via s1 or s2), and

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

there can be transitions between states within the OR state (such as from s1 to s3 or s2 to s3).

The OR state is simply a tool for specifying some of the transitions relating to these states.

Figure 1.4.7 An OR state in Statecharts

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

Figure 1.4.8 An AND state in Statecharts

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Figure 1.4.8 shows an example of an AND state specified in Statechart notation as

compared to the equivalent in the traditional state machine model. In the traditional model,

there are numerous transitions between the states; there is also one entry point into this cluster

of states and one exit transition out of the cluster.

In the Statechart, the AND state sab is decomposed into two components, sa and sb.

When the machine enters the AND state, it simultaneously inhabits the state s1 of component

sa and the state s3 of component sb. We can think of the system’s state as multidimensional.

When it enters sab, knowing the complete state of the machine requires examining both sa and

sb. The names of the states in the traditional state machine reveal their relationship to the AND

state components. Thus, state s1-3 corresponds to the Statechart machine having its sa

component in s1 and its sb component in s3, and so forth. We can exit this cluster of states to

go to state s5 only when, in the traditional specification, we are in state s2-4 and receive input

r. In the AND state, this corresponds to sa in state s2, sb in state s4, and the machine receiving

the r input while in this composite state. Although the traditional and Statechart models

describe the same behavior, each component has only two states, and the relationships between

these states are much simpler to see.

Figure 1.4.9 An AND/OR Table

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

The AND/OR table, to describe similar relationships between states. An example

AND/OR table and the Boolean expression it describes are shown in Figure 1.4.9. The rows

in the AND/OR table are labeled with the basic variables in the expression. Each column

corresponds to an AND term in the expression. For example, the AND term (cond2 and not

cond3) is represented in the second column with a T for cond2, an F for cond3, and a dash

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

(don’t-care) for cond1; this corresponds to the fact that cond2 must be T and cond3 F for the

AND term to be true. We use the table to evaluate whether a given condition holds in the

system. The current states of the variables are compared to the table elements.

A column evaluates to true if all the current variable values correspond to the

requirements given in the column. If any one of the columns evaluates to true, then the table’s

expression evaluates to true, as we would expect for an AND/OR expression. The most

important difference between this notation and Statecharts is that don’t-cares are explicitly

represented in the table, which was found to be of great help in identifying problems in a

specification table.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

DESIGNING WITH COMPUTING PLATFORMS

System Architecture

We know that architecture is a set of elements and the relationships between them that

together form a single unit. The architecture of an embedded computing system is the blueprint

for implementing that system it tells you what components you need and how you put them

together. The architecture of an embedded computing system includes both hardware and

software elements. Let’s consider each in turn. The hardware architecture of an embedded

computing system is the more obvious manifestation of the architecture since you can touch it

and feel it. It includes several elements, some of which may be less obvious than others.

CPU An embedded computing system clearly contains a microprocessor. But which one?

There are many different architectures, and even within an architecture we can select between

models that vary in clock speed, bus data width, integrated peripherals, and so on. The choice

of the CPU is one of the most important, but it cannot be made without considering the

software that will execute on the machine.

Bus The choice of a bus is closely tied to that of a CPU, since the bus is an integral part of the

microprocessor. But in applications that make intensive use of the bus due to I/O or other data

traffic, the bus may be more of a limiting factor than the CPU. Attention must be paid to the

required data bandwidths to be sure that the bus can handle the traffic.

Memory Once again, the question is not whether the system will have memory but the

characteristics of that memory. The most obvious characteristic is total size, which depends

on both the required data volume and the size of the program instructions. The ratio of ROM

to RAM and selection of DRAM versus SRAM can have a significant influence on the cost of

the system. The speed of the memory will play a large part in determining system performance.

Input and output devices The user’s view of the input and output mechanisms may not

correspond to the devices connected to the microprocessor.

For example, a set of switches and knobs on a front panel may all be controlled by a

single microcontroller, which is in turn connected to the main CPU. For a given function, there

may be several different devices of varying sophistication and cost that can do the job. The

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

difficulty of using a particular device, such as the amount of glue logic required to interface it,

may also play a role in final device selection.

Hardware Design

The design complexity of the hardware platform can vary greatly, from a totally off-the-

shelf solution to a highly customized design. At the board level, the first step is to consider

evaluation boards supplied by the microprocessor manufacturer or another company working

in collaboration with the manufacturer. Evaluation boards are sold for many microprocessor

systems; they typically include the CPU, some memory, a serial link for downloading

programs, and some minimal number of I/O devices. Figure 1.7.1 shows an ARM evaluation

board manufactured by Sharp.

Figure 1.7.1 An ARM evaluation board

[Source: Embedded Systems: An Integrated Approach by Lyla B. Das]

The evaluation board may be a complete solution or provide what you need with only

slight modifications. If the evaluation board is supplied by the microprocessor vendor, its

design (netlist, board layout, etc.) may be available from the vendor; companies provide such

information to make it easy for customers to use their microprocessors. If the evaluation board

comes from a third party, it may be possible to contract them to design a new board with your

required modifications, or you can start from scratch on a new board design. The other major

task is the choice of memory and peripheral components. In the case of I/O devices, there are

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

two alternatives for each device: selecting a component from a catalog or designing one

yourself. When shopping for devices from a catalog, it is important to read data sheets carefully

it may not be trivial to figure out whether the device does what you need it to do.

Development Environments

A typical embedded computing system has a relatively small amount of everything,

including CPU horsepower, memory, I/O devices, and so forth. As a result, it is common to

do at least part of the software development on a PC or workstation known as a host as

illustrated in Figure The hardware on which the code will finally run is known as the target.

The host and target are frequently connected by a USB link, but a higher-speed link such as

Ethernet can also be used.

Figure 1.7.2 Connecting a host and a target system

[Source: Embedded Systems: An Integrated Approach by Lyla B. Das]

The target must include a small amount of software to talk to the host system. That

software will take up some memory, interrupt vectors, and so on, but it should generally leave

the smallest possible footprint in the target to avoid interfering with the application software.

The host should be able to do the following:

• load programs into the target,

• start and stop program execution on the target, and

• examine memory and CPU registers

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Debugging Techniques:

A good deal of software debugging can be done by compiling and executing the code

on a PC or workstation. But at some point it inevitably becomes necessary to run code on the

embedded hardware platform. Embedded systems are usually less friendly programming

environments than PCs. Nonetheless, the resourceful designer has several options available

for debugging the system. The serial port found on most evaluation boards is one of the most

important debugging tools. In fact, it is often a good idea to design a serial port into an

embedded system even if it will not be used in the final product; the serial port can be used not

only for development debugging but also for diagnosing problems in the field. Another very

important debugging tool is the breakpoint.

The simplest form of a breakpoint is for the user to specify an address at which the

program’s execution is to break. When the PC reaches that address, control is returned to the

monitor program. From the monitor program, the user can examine and/or modify CPU

registers, after which execution can be continued. Implementing breakpoints does not require

using exceptions or external devices.

Debugging Challenges

Logical errors in software can be hard to track down, but errors in real-time code can

create problems that are even harder to diagnose. Real-time programs are required to finish

their work within a certain amount of time; if they run too long, they can create very

unexpected behavior.

The exact results of missing real-time deadlines depend on the detailed characteristics

of the I/O devices and the nature of the timing violation. This makes debugging real-time

problems especially difficult. Unfortunately, the best advice is that if a system exhibits truly

unusual behavior, missed deadlines should be suspected. In-circuit emulators, logic analyzers,

and even LEDs can be useful tools in checking the execution time of real-time code to

determine whether it in fact meets its deadline.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

EMBEDDED SYSTEM DESIGN PROCESS

This section provides an overview of the embedded system design process aimed at two

objectives. First, it will give us an introduction to the various steps in embedded system design

before we delve into them in more detail. Second, it will allow us to consider the

design methodology itself. A design methodology is important for three reasons.

First, it allows us to keep a scorecard on a design to ensure that we have done everything

we need to do, such as optimizing performance or performing functional tests.

Second, it allows us to develop computer-aided design tools. Developing a single

program that takes in a concept for an embedded system and emits a completed design would

be a daunting task, but by first breaking the process into manageable steps, we can work on

automating (or at least semi automating) the steps one at a time.

Third, a design methodology makes it much easier for members of a design team to

communicate. By defining the overall process, team members can more easily understand what

they are supposed to do, what they should receive from other team members at certain times,

and what they are to hand off when they complete their assigned steps. Since most embedded

systems are designed by teams, coordination is perhaps the most important role of a well-

defined design methodology.

Figure 1.2.1 Embedded System Design Process

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Figure 1.2.1 summarizes the major steps in the embedded system design process. In this

top-down view, we start with the system requirements. In the next step, specification, we

create a more detailed description of what we want.

But the specification states only how the system behaves, not how it is built. The details

of the system’s internals begin to take shape when we develop the architecture, which gives

the system structure in terms of large components.

Once we know the components we need, we can design those components, including

both software modules and any specialized hardware we need. Based on those components,

we can finally build a complete system. In this section we will consider design from the top-

down we will begin with the most abstract description of the system and conclude with

concrete details. The alternative is a bottom-up view in which we start with components to

build a system.

Bottom-up design steps are shown in the figure as dashed-line arrows. We need bottom-

up design because we do not have perfect insight into how later stages of the design process

will turn out. Decisions at one stage of design are based upon estimates of what will happen

later: How fast can we make a particular function run? How much memory will we need? How

much system bus capacity do we need? If our estimates are inadequate, we may have to

backtrack and amend our original decisions to take the new facts into account. In general, the

less experience we have with the design of similar systems, the more we will have to rely on

bottom-up design information to help us refine the system. But the steps in the design process

are only one axis along which we can view embedded system design. We also need to consider

the major goals of the design:

• Manufacturing cost

• Performance (both overall speed and deadlines)

• Power consumption

We must also consider the tasks we need to perform at every step in the design process.

At each step in the design, we add detail: We must analyze the design at each step to determine

how we can meet the specifications. We must then refine the design to add detail. We must

verify the design to ensure that it still meets all system goals, such as cost, speed, and so on.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Clearly, before we design a system, we must know what we are designing. The initial

stages of the design process capture this information for use in creating the architecture and

components. We generally proceed in two phases: First, we gather an informal description

from the customers known as requirements, and we refine the requirements into a specification

that contains enough information to begin designing the system architecture.

Separating out requirements analysis and specification is often necessary because of the

large gap between what the customers can describe about the system they want and what the

architects need to design the system.

Consumers of embedded systems are usually not themselves embedded system

designers or even product designers. Their understanding of the system is based on how they

envision users’ interactions with the system. They may have unrealistic expectations as to what

can be done within their budgets; and they may also express their desires in a language very

different from system architects’ jargon.

Capturing a consistent set of requirements from the customer and then massaging those

requirements into a more formal specification is a structured way to manage the process of

translating from the consumer’s language to the designer’s.

Requirements may be functional or nonfunctional. We must of course capture the

basic functions of the embedded system, but functional description is often not sufficient.

Typical nonfunctional requirements include:

• Performance: The speed of the system is often a major consideration both for the

usability of the system and for its ultimate cost. As we have noted, performance may be

a combination of soft performance metrics such as approximate time to perform a user-

level function and hard deadlines by which a particular operation must be completed.

• Cost: The target cost or purchase price for the system is almost always a consideration.

Cost typically has two major components: manufacturing cost includes the cost of

components and assembly; nonrecurring engineering (NRE) costs include the

personnel and other costs of designing the system.

• Physical size and weight: The physical aspects of the final system can vary greatly

depending upon the application. An industrial control system for an assembly line may

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

be designed to fit into a standard-size rack with no strict limitations on weight. A

handheld device typically has tight requirements on both size and weight that can ripple

through the entire system design.

• Power consumption: Power, of course, is important in battery-powered systems and is

often important in other applications as well. Power can be specified in the requirements

stage in terms of battery life—the customer is unlikely to be able to describe the

allowable wattage.

• Validating a set of requirements is ultimately a psychological task since it requires

understanding both what people want and how they communicate those needs. One

good way to refine at least the user interface portion of a system’s requirements is to

build a mock-up. The mock-up may use canned data to simulate functionality in a

restricted demonstration, and it may be executed on a PC or a workstation. But it should

give the customer a good idea of how the system will be used and how the user can react

to it. Physical, nonfunctional models of devices can also give customers a better idea of

characteristics such as size and weight.

Figure 1.2.2 Sample Requirements Form

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

Requirements analysis for big systems can be complex and time consuming. However,

capturing a relatively small amount of information in a clear, simple format is a good start

toward understanding system requirements. To introduce the discipline of requirements

analysis as part of system design, we will use a simple requirements methodology.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Figure 1.2.2 shows a sample requirements form that can be filled out at the start of the

project. We can use the form as a checklist in considering the basic characteristics of the

system.

Let’s consider the entries in the form:

• Name: This is simple but helpful. Giving a name to the project not only simplifies

talking about it to other people but can also crystallize the purpose of the machine.

• Purpose: This should be a brief one- or two-line description of what the system is

supposed to do. If you can’t describe the essence of your system in one or two lines,

chances are that you don’t understand it well enough.

• Inputs and Outputs: These two entries are more complex than they seem. The inputs

and outputs to the system encompass a wealth of detail:

a. Types of data: Analog electronic signals? Digital data? Mechanical inputs?

b. Data characteristics: Periodically arriving data, such as digital audio samples?

Occasional user inputs? How many bits per data element?

c. Types of I/O devices: Buttons? Analog/digital converters? Video displays?

• Functions: This is a more detailed description of what the system does. A good way to

approach this is to work from the inputs to the outputs: When the system receives an

input, what does it do? How do user interface inputs affect these functions? How do

different functions interact?

• Performance: Many embedded computing systems spend at least some time controlling

physical devices or processing data coming from the physical world. In most of these

cases, the computations must be performed within a certain time frame. It is essential

that the performance requirements be identified early since they must be carefully

measured during implementation to ensure that the system works properly.

• Manufacturing Cost: This includes primarily the cost of the hardware components.

Even if you don’t know exactly how much you can afford to spend on system

components, you should have some idea of the eventual cost range. Cost has a

substantial influence on architecture: A machine that is meant to sell at $10 most likely

has a very different internal structure than a $100 system.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Power: Similarly, you may have only a rough idea of how much power the system can

consume, but a little information can go a long way. Typically, the most important

decision is whether the machine will be battery powered or plugged into the wall.

Battery-powered machines must be much more careful about how they spend energy.

• Physical Size and Weight: You should give some indication of the physical size of the

system to help guide certain architectural decisions. A desktop machine has much more

flexibility in the components used than, for example, a lapel mounted voice recorder.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

PLATFORM-LEVEL PERFORMANCE ANALYSIS

Bus based systems add another layer of complication to performance analysis platform

level performance involve much more than the CPU we often focus on the CPU because it

processes instructions but any part of the system can affect total system performance. More

precisely the CPU provides an upper bound on performance but any other part of the system

can slow down the CPU merely counting instruction execution times is not enough.

Consider the simple system we want to move data from memory to the CPU to process

it to get the data from memory to the CPU we must:

• Read from the memory

• Transfer over the bus to the cache

• Transfer from the cache to the CPU

The time required to transfer from the cache to the CPU is included in the instruction execution

time, but the other two times are not.

Bandwidth as performance

The most basic measure of performance we are interested in is bandwidth the rate at which we

can move data ultimately if we are interested in real time performance we are interested in real

time performance measured in seconds but often the simplest way to measure performance is

in units of clock cycles however different parts of the system will run at different clock rates.

We have to make sure that we apply the right clock rate to each part of the performance

estimate when we convert from clock cycles to seconds

Bus bandwidth

Bandwidth questions often come up when we are transferring large blocks of data for

simplicity let’s start by considering the bandwidth provided by only one system component

the bus consider and image of 320 pixels with each pixel composed of 3 bytes of data this

gives a grand total of 230400 bytes of data if these images are video frames, we want to check

if we can push one frame through the system within the 1/30 sec that we have to process a

frame before the next one arrives.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Let us assume that we can transfer one byte of data every microsecond which implies a

bus speed of 1 MHz. In this case we would require 230400 µs = 0.23 sec to transfer one frame

that is more than the 0.033 sec allotted to the data transfer we would have to increase the

transfer rate by 7xto satisfy our performance requirement.

We can increase bandwidth in two ways we can increase the clock rate of the bus or we

can increase the amount of data transferred per clock cycle for example if we increased the

bus to carry four bytes or 32 bits per transfer we would reduce the transfer time to 0.058 sec if

we could also increase the bus clock rate to 2 Mhz. then we would reduce the transfer time to

0.029sec, which is within our time budget for the transfer.

Analyze the Program-Level Performance

Because embedded systems must perform functions in real time we often need to know

how fast a program runs. The techniques we use to analyze program execution time are also

helpful in analyzing properties such as power consumption. In this section, we study how to

analyze programs to estimate their run times. We also examine how to optimize programs to

improve their execution times; of course, optimization relies on analysis.

Figure 1.9.1 The CPU Pipeline and Cache act as Windows into Program

[Source: Embedded Systems: An Integrated Approach by Lyla B. Das]

It is important to keep in mind that CPU performance is not judged in the same way as

program performance. Certainly, CPU clock rate is a very unreliable metric for program

performance. But more importantly, the fact that the CPU executes part of our program quickly

does not mean that it will execute the entire program at the rate we desire. As illustrated in

Figure 1.9.1, the CPU pipeline and cache act as windows into our program. In order to

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

understand the total execution time of our program, we must look at execution paths, which in

general are far longer than the pipeline and cache windows.

The pipeline and cache influence execution time, but execution time is a global property

of the program. While we might hope that the execution time of programs could be precisely

determined, this is in fact difficult to do in practice:

• The execution time of a program often varies with the input data values because those

values select different execution paths in the program. For example, loops may be

executed a varying number of times, and different branches may execute blocks of

varying complexity.

• The cache has a major effect on program performance, and once again, the cache’s

behavior depends in part on the data values input to the program.

• Execution times may vary even at the instruction level. Floating-point operations are

the most sensitive to data values, but the normal integer execution pipeline can also

introduce data-dependent variations. In general, the execution time of an instruction in

a pipeline depends not only on that instruction but on the instructions around it in the

pipeline.

We can measure program performance in several ways:

• Some microprocessor manufacturers supply simulators for their CPUs: The simulator

runs on a workstation or PC, takes as input an executable for the microprocessor along

with input data, and simulates the execution of that program. Some of these simulators

go beyond functional simulation to measure the execution time of the program.

Simulation is clearly slower than executing the program on the actual microprocessor,

but it also provides much greater visibility during execution. Be careful some

microprocessor performance simulators are not 100% accurate, and simulation of I/O-

intensive code may be difficult.

• A timer connected to the microprocessor bus can be used to measure performance of

executing sections of code. The code to be measured would reset and start the timer at

its start and stop the timer at the end of execution. The length of the program that can

be measured is limited by the accuracy of the timer.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• A logic analyzer can be connected to the microprocessor bus to measure the start and

stop times of a code segment. This technique relies on the code being able to produce

identifiable events on the bus to identify the start and stop of execution. The length of

code that can be measured is limited by the size of the logic analyzers buffer. We are

interested in the following three different types of performance measures on programs:

✓ Average-case execution time This is the typical execution time we would expect

for typical data. Clearly, the first challenge is defining typical inputs.

✓ Worst-case execution time The longest time that the program can spend on any

input sequence is clearly important for systems that must meet deadlines. In some

cases, the input set that causes the worst-case execution time is obvious, but in

many cases it is not.

✓ Best-case execution time This measure can be important in Multirate real-time

systems.

First, we look at the fundamentals of program performance in more detail. We then

consider trace driven performance based on executing the program and observing its behavior.

Elements of Program Performance

The path is the sequence of instructions executed by the program (or its equivalent in

the high-level language representation of the program). The instruction timing is determined

based on the sequence of instructions traced by the program path, which takes into account

data dependencies, pipeline behaviour, and caching. Luckily, these two problems can be

solved relatively independently.

Although we can trace the execution path of a program through its high-level language

specification, it is hard to get accurate estimates of total execution time from a high-level

language program. The number of memory locations and variables must be estimated, and

results may be either saved for reuse or recomputed on the fly, among other effects. These

problems become more challenging as the compiler puts more and more effort into optimizing

the program. However, some aspects of program performance can be estimated by looking

directly at the C program. For example, if a program contains a loop with a large, fixed iteration

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

bound or if one branch of a conditional is much longer than another, we can get at least a rough

idea that these are more time-consuming.

Figure 1.9.2 Segments of the program

[Source: Embedded Systems: An Integrated Approach by Lyla B. Das]

A precise estimate of performance also relies on the instructions to be executed, since

different instructions take different amounts of time. (In addition, to make life even more

difficult, the execution time of one instruction can depend on the instructions executed before

and after it. To measure the longest path length, we must find the longest path through the

optimized CDFG since the compiler may change the structure of the control and data flow to

optimize the program’s implementation. It is important to keep in mind that choosing the

longest path through a CDFG as measured by the number of nodes or edges touched may not

correspond to the longest execution time. Since the execution time of a node in the CDFG will

vary greatly depending on the instructions represented by that node, we must keep in mind that

the longest path through the CDFG depends on the execution times of the nodes.

In general, it is good policy to choose several of what we estimate are the longest paths

through the program and measure the lengths of all of them in sufficient detail to be sure that

we have in fact captured the longest path. Once we know the execution path of the program,

we have to measure the execution time of the instructions executed along that path. The

simplest estimate is to assume that every instruction takes the same number of clock cycles,

which means we need only count the instructions and multiply by the per-instruction execution

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

time to obtain n the program’s total execution time. However, even ignoring cache effects, this

technique is simplistic for the reasons summarized below.

• Not all instructions take the same amount of time. Although RISC architectures tend to

provide uniform instruction execution times in order to keep the CPU’s pipeline full,

even many RISC architectures take different amounts of time to execute certain

instructions. Multiple load-store instructions are examples of longer-executing

instructions in the ARM architecture. Floating point instructions show especially wide

variations in execution time—while basic multiply and add operations are fast, some

transcendental functions can take thousands of cycles to execute.

• Execution times of instructions are not independent. The execution time of one

instruction depends on the instructions around it. For example, many CPUs use register

bypassing to speed up instruction sequences when the result of one instruction is used

in the next instruction. As a result, the execution time of an instruction may depend on

whether its destination register is used as a source for the next operation (or vice versa).

• The execution time of an instruction may depend on operand values. This is clearly true

of floating-point instructions in which a different number of iterations may be required

to calculate the result. Other specialized instructions can, for example, perform a data-

dependent number of integer operations.

Measurement-Driven Performance Analysis

Most methods of measuring program performance combine the determination of the

execution path and the timing of that path: as the program executes, it chooses a path and we

observe the execution time along that path. We refer to the record of the execution path of a

program as a program trace (or more succinctly, a trace). Traces can be valuable for other

purposes, such as analyzing the cache behavior of the program. Perhaps the biggest problem

in measuring program performance is figuring out a useful set of inputs to provide to the

program. This problem has two aspects. First, we have to determine the actual input values.

We may be able to use benchmark data sets or data captured from a running system to help us

generate typical values. For simple programs, we may be able to analyze the algorithm to

determine the inputs that cause the worst-case execution time.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The other problem with input data is the software scaffolding that we may need to feed

data into the program and get data out. When we are designing a large system, it may be

difficult to extract out part of the software and test it independently of the other parts of the

system. We may need to add new testing modules to the system software to help us introduce

testing values and to observe testing outputs.

We can measure program performance either directly on the hardware or by using a

simulator. Each method has its advantages and disadvantages. Physical measurement requires

some sort of hardware instrumentation. The most direct method of measuring the performance

of a program would be to watch the program counter’s value: start a timer when the PC reaches

the program’s start, stop the timer when it reaches the program’s end. Unfortunately, it

generally isn’t possible to directly observe the program counter.

However, it is possible in many cases to modify the program so that it starts a timer at

the beginning of execution and stops the timer at the end. While this doesn’t give us direct

information about the program trace, it does give us execution time. If we have several timers

available, we can use them to measure the execution time of different parts of the program.

A logic analyzer or an oscilloscope can be used to watch for signals that mark various points

in the execution of the program. However, because logic analyzers have a limited amount of

memory, this approach doesn’t work well for programs with extremely long execution times.

Some CPUs have hardware facilities for automatically generating trace information. For

example, the Pentium family microprocessors generate a special bus cycle, a branch trace

message, that shows the source and/or destination address of a branch [Col97]. If we record

only traces, we can reconstruct the instructions executed within the basic blocks while greatly

reducing the amount of memory required to hold the trace. The alternative to physical

measurement of execution time is simulation. A CPU simulator is a program that takes as input

a memory image for a CPU and performs the operations on that memory image that the actual

CPU would perform, leaving the results in the modified memory image.

For purposes of performance analysis, the most important type of CPU simulator is the

cycle-accurate simulator, which performs a sufficiently detailed simulation of the

processor’s internals so that it can determine the exact number of clock cycles required for

execution. A cycle-accurate simulator is built with detailed knowledge of how the processor

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

works, so that it can take into account all the possible behaviours of the micro architecture that

may affect execution time. Cycle-accurate simulators are slower than the processor itself, but

a variety of techniques can be used to make them surprisingly fast, running only hundreds of

times slower than the hardware itself.

A cycle-accurate simulator has a complete model of the processor, including the cache.

It can therefore provide valuable information about why the program runs too slowly. The next

example discusses a simulator that can be used to model many different processors.

Performance Optimization

Loop Optimizations:

Loops are important targets for optimization because programs with loops tend to spend

a lot of time executing those loops. There are three important techniques in optimizing loops:

code motion, induction variable elimination, and strength reduction. Code motion lets us

move unnecessary code out of a loop. If a computation’s result does not depend on operations

performed in the loop body, then we can safely move it out of the loop. Code motion

opportunities can arise because programmers may find some computations clearer and more

concise when put in the loop body, even though they are not strictly dependent on the loop

iterations.

An induction variable is a variable whose value is derived from the loop iteration

variable’s value. The compiler often introduces induction variables to help it implement the

loop. Properly transformed, we may be able to eliminate some variables and apply strength

reduction to others. A nested loop is a good example of the use of induction variables.

Cache Optimizations:

A loop nest is a set of loops, one inside the other. Loop nests occur when we process

arrays. A large body of techniques has been developed for optimizing loop nests. Rewriting a

loop nest changes the order in which array elements are accessed. This can expose new

parallelism opportunities that can be exploited by later stages of the compiler, and it can also

improve cache performance.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

QUALITY ASSURANCE TECHNIQUES

Introduction

The quality of a product or service can be judged by how well it satisfies its intended

function. A product can be of low quality for several reasons, such as it was shoddily

manufactured, its components were improperly designed, its architecture was poorly

conceived, and the product’s requirements were poorly understood. Quality must be designed

in. You can’t test out enough bugs to deliver a high-quality product. The quality assurance

(QA) process is vital for the delivery of a satisfactory system. In this section we will

concentrate on portions of the methodology particularly aimed at improving the quality of the

resulting system. The software testing techniques described earlier in the book constitute one

component of quality assurance, but the pursuit of quality extends throughout the design flow.

For example, settling on the proper requirements and specification cannot be overlooked

as an important determinant of quality. If the system is too difficult to design, it will probably

be difficult to keep it working properly. Customers may desire features that sound nice but in

fact don’t add much to the overall usefulness of the system. In many cases, having too many

features only makes the design more complicated and the final device more prone to breakage.

To help us understand the importance of QA, application example serious safety problems in

one computer-controlled medical system. Medical equipment, like aviation electronics, is a

safety-critical application; unfortunately, this medical equipment caused deaths before its

design errors were properly understood. This example also allows us to use specification

techniques to understand software design problems. In the rest of the section, we look at

several ways of improving quality: design reviews, measurement-based QA, and techniques

for debugging large systems.

Quality Assurance Techniques

The International Standards Organization (ISO) has created a set of quality standards

known as ISO 9000. ISO 9000 was created to apply to a broad range of industries, including

but not limited to embedded hardware and software. A standard developed for a particular

product, such as wooden construction beams, could specify criteria particular to that product,

such as the load that a beam must be able to carry. However, a wide-ranging standard such as

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

ISO 9000 cannot specify the detailed standards for every industry. Consequently, ISO 9000

concentrates on processes used to create the product or service. The processes used to satisfy

ISO 9000 affect the entire organization as well as the individual steps taken during design and

manufacturing. We can, however, make the following observations about quality management

based on ISO 9000:

• Process is crucial: Haphazard development leads to haphazard products and low

quality. Knowing what steps are to be followed to create a high quality product is

essential to ensuring that all the necessary steps are in fact followed.

• Documentation is important: Documentation has several roles: The creation of the

documents describing processes helps those involved understand the processes;

documentation helps internal quality monitoring groups to ensure that the required

processes are actually being followed; and documentation also helps outside groups

(customers, auditors, etc.) understand the processes and how they are being

implemented.

• Communication is important: Quality ultimately relies on people. Good documentation

is an aid for helping people understand the total quality process. The people in the

organization should understand not only their specific tasks but also how their jobs can

affect overall system quality.

Many types of techniques can be used to verify system designs and ensure quality.

Techniques can be either manual or tool based. Manual techniques are surprisingly effective

in practice. Design reviews, which are simply meetings at which the design is discussed and

which are very successful in identifying bugs. Many of the software testing techniques can be

applied manually by tracing through the program to determine the required tests. Tool-based

verification helps considerably in managing large quantities of information that may be

generated in a complex design. Test generation programs can automate much of the drudgery

of creating test sets for programs. Tracking tools can help ensure that various steps have been

performed. Design flow tools automate the process of running design data through other tools.

Metrics are important to the quality control process. To know whether we have achieved high

levels of quality, we must be able to measure aspects of the system and our design process.

We can measure certain aspects of the system itself, such as the execution speed of programs

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

or the coverage of test patterns. We can also measure aspects of the design process, such as

the rate at which bugs are found. Section describes ways in which measurements can be used

in the QA process. Tool and manual techniques must fit into an overall process. The details of

that process will be determined by several factors, including the type of product being

designed (e.g., video game, laser printer, air traffic control system), the number of units to be

manufactured and the time allowed for design, the existing practices in the company into which

any new processes must be integrated, and many other factors. An important role of ISO 9000

is to help organizations study their total process, not just particular segments that may appear

to be important at a particular time.

One well-known way of measuring the quality of an organization’s software development

process is the Capability Maturity Model (CMM) developed by Carnegie Mellon University’s

Software Engineering Institute. The CMM provides a model for judging an organization. It

defines the following five levels of maturity:

1. Initial: A poorly organized process, with very few well-defined processes. Success of a

project depends on the efforts of individuals, not the organization itself.

2. Repeatable: This level provides basic tracking mechanisms that allow management to

understand cost, scheduling, and how well the systems under development meet their

goals.

3. Defined: The management and engineering processes are documented and standardized.

All projects make use of documented and approved standard methods.

4. Managed: This phase makes detailed measurements of the development process and

product quality.

5. Optimizing: At the highest level, feedback from detailed measurements is used to

continually improve the organization’s processes.

The Software Engineering Institute has found very few organizations anywhere in the

world that meet the highest level of continuous improvement and quite a few organizations

that operate under the chaotic processes of the initial level. However, the CMM provides a

benchmark by which organizations can judge themselves and use that information for

improvement.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Verifying the Specification

The requirements and specification are generated very early in the design process.

Verifying the requirements and specification is very important for the simple reason that bugs

in the requirements or specification can be extremely expensive to fix later on. Figure 1.6.1

shows how the cost of fixing bugs grows over the course of the design process (we use the

waterfall model as a simple example, but the same holds for any design flow). The longer a

bug survives in the system, the more expensive it will be to fix. A coding bug, if not found

until after system deployment, will cost money to recall and reprogram existing systems,

among other things. But a bug introduced earlier in the flow and not discovered until the same

point will accrue all those costs and more costs as well.

A bug introduced in the requirements or specification and left until maintenance could

force an entire redesign of the product, not just the replacement of a ROM. Discovering bugs

early is crucial because it prevents bugs from being released to customers, minimizes design

costs, and reduces design time. While some requirements and specification bugs will become

apparent in the detailed design stages. For example, as the consequences of certain

requirements are better understood, it is possible and desirable to weed out many bugs during

the generation of the requirements and spec.

Figure 1.6.1 Long-lived bugs are more expensive to fix

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The goal of validating the requirements and specification is to ensure that they satisfy

the criteria to create the specification, including correctness, completeness, consistency, and

so on. Validation is in fact part of the effort of generating the requirements and specification.

Some techniques can be applied while they are being created to help you understand the

requirements and specifications, while others are applied on a draft, with results used to modify

the specs. Since requirements come from the customer and are inherently somewhat informal,

it may seem like a challenge to validate them. However, there are many things that can be done

to ensure that the customer and the person actually writing the requirements are

communicating. Prototypes are a very useful tool when dealing

with end users rather than simply describe the system to them in broad, technical terms, a

prototype can let them see, hear, and touch at least some of the important aspects of the system.

Of course, the prototype will not be fully functional since the design work has not yet been

done. However, user interfaces in particular are well suited to prototyping and user testing.

Canned or randomly generated data can be used to simulate the internal operation of the

system. A prototype can help the end user critique numerous functional and nonfunctional

requirements, such as data displays, speed of operation, size, weight, and so forth.

Certain programming languages, sometimes called prototyping languages or

specification languages, are especially well suited to prototyping. Very high-level languages

(such as MATLAB in the signal processing domain) may be able to perform functional

attributes, such as the mathematical function to be performed, but not nonfunctional attributes

such as the speed of execution. Preexisting systems can also be used to help the end user

articulate his or her needs. Specifying what someone does or doesn’t like about an existing

machine is much easier than having them talk about the new system in the abstract. In some

cases, it may be possible to construct a prototype of the new system from the preexisting

system. Particularly when designing cyber-physical systems that use real-time computers for

physical control, simulation is an important technique for validating requirements.

Requirements for cyber-physical systems depend in part on the physical properties of the plant

being controlled. Simulators that model the physical plant can help system designers

understand the requirements on the cyber side of the system.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The techniques used to validate requirements are also useful in verifying that the

specifications are correct. Building prototypes, specification languages, and comparisons to

preexisting systems are as useful to system analysis and designers as they are to end users.

Auditing tools may be useful in verifying consistency, completeness, and so forth. Working

through usage scenarios often helps designers fill out the details of a specification and ensure

its completeness and correctness. In some cases, formal techniques (that is, design techniques

that make use of mathematical proofs) may be useful. Proofs may be done either manually or

automatically. In some cases, proving that a particular condition can or cannot occur according

to the specification is important. Automated proofs are particularly useful in certain types of

complex systems that can be specified succinctly but whose behavior over time is complex.

For example, complex protocols have been successfully formally verified.

Design Reviews

The design review is a critical component of any QA process. The design review is a

simple, low-cost way to catch bugs early in the design process. A design review is simply a

meeting in which team members discuss a design,

reviewing how a component of the system works. Some bugs are caught simply by preparing

for the meeting, as the designer is forced to think through the design in detail. Other bugs are

caught by people attending the meeting, who will notice problems that may not be caught by

the unit’s designer. By catching bugs early and not allowing them to propagate into the

implementation, we reduce the time required to get a working system. We can also use the

design review to improve the quality of the implementation and make future changes easier to

implement. A design review is held to review a particular component of the system. A design

review team has the following members:

• The designers of the component being reviewed are, of course, central to the design

process. They present their design to the rest of the team for review and analysis.

• The review leader coordinates the pre-meeting activities, the design review itself, and

the post-meeting follow-up.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• The review scribe records the minutes of the meeting so that designers and others know

which problems need to be fixed.

• The review audience studies the component. Audience members will naturally include

other members of the project for which this component is being designed. Audience

members from other projects often add valuable perspective and may notice problems

that team members have missed.

The design review process begins before the meeting itself. The design team prepares a

set of documents (code listings, flowcharts, specifications, etc.) that will be used to describe

the component. These documents are distributed to other members of the review team in

advance of the meeting, so that everyone has time to become familiar with the material. The

review leader coordinates the meeting time, distribution of handouts, and so forth.

During the meeting, the leader is responsible for ensuring that the meeting runs

smoothly, while the scribe takes notes about what happens. The designers are responsible for

presenting the component design. A top-down presentation often works well, beginning with

the requirements and interface description, followed by the overall structure of the component,

the details, and then the testing strategy. The audience should look for all types of problems at

every level of detail, including the problems listed below.

• Is the design team’s view of the component’s specification consistent with the overall

system specification, or has the team misinterpreted something?

• Is the interface specification correct?

• Does the component’s internal architecture work well?

• Are there coding errors in the component?

• Is the testing strategy adequate?

The notes taken by the scribe are used in meeting follow-up. The design team should correct

bugs and address concerns raised at the meeting. While doing so, the team should keep notes

describing what they did. The design review leader coordinates with the design team, both to

make sure that the changes are made and to distribute the change results to the audience. If the

changes are straightforward, a written report of them is probably adequate. If the errors found

during the review caused a major reworking of the component, a new design review meeting

for the new implementation, using as many of the original team members as possible, may be

useful.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

SYSTEM ANALYSIS AND ARCHITECTURE DESIGN

In this section we consider how to turn a specification into an architecture design. We

already have a number of techniques for making specific decisions; in this section we look at

how to get a handle on the overall system architecture.

The CRC card methodology is a well-known and useful way to help analyze a system’s

structure. It is particularly well suited to object-oriented design since it encourages the

encapsulation of data and functions. The acronym CRC stands for the following three major

items that the methodology tries to identify:

• Classes define the logical groupings of data and functionality.

• Responsibilities describe what the classes do.

• Collaborators are the other classes with which a given class works.

The name CRC card comes from the fact that the methodology is practiced by having people

write on index cards. (In the United States, the standard size for index cards is 3” X 5”, so

these cards are often called 3 X 5 cards.) An example card is shown in Figure 1.5.1; it has

space to write down the class name, its responsibilities and collaborators, and other

information. The essence of the CRC card methodology is to have people write on these cards,

talk about them, and update the cards until they are satisfied with the results. This technique

may seem like a primitive way to design computer systems.

However, it has several important advantages. First, it is easy to get noncomputer people

to create CRC cards. Getting the advice of domain experts (automobile designers for

automotive electronics or human factors experts for PDA design, for example) is very

important in system design.

The CRC card methodology is informal enough that it will not intimidate non-computer

specialists and will allow you to capture their input. Second, it aids even computer specialists

by encouraging them to work in a group and analyze scenarios. The walkthrough process used

with CRC cards is very useful in scoping out a design and determining what parts of a system

are poorly understood. This informal technique is valuable to tool-based design and coding. If

you still feel a need to use tools to help you practice the CRC methodology, software

engineering tools are available that automate the creation of CRC cards.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Figure 1.5.1 Layout of a CRC card

[Source: Computers as Components - Principles of Embedded Computing System Design by Marilyn Wolf.]

Before going through the methodology, let’s review the CRC concepts in a little more

detail. We are familiar with classes they encapsulate functionality. A class may represent a

real-world object or it may describe an object that has been created solely to help architect the

system. A class has both an internal state and a functional interface; the functional interface

describes the class’s capabilities. The responsibility set is an informal way of describing that

functional interface. The responsibilities provide the class’s interface, not its internal

implementation. Unlike describing

a class in a programming language, however, the responsibilities may be described informally

in English (or your favorite language). The collaborators of a class are simply the classes that

it talks to, that is, classes that use its capabilities or that it calls upon to help it do its work. The

class terminology is a little misleading when an object oriented programmer looks at CRC

cards. In the methodology, a class is actually used more like an object in an OO programming

language the CRC card class is used to represent a real actor in the system. However, the CRC

card class is easily transformable into a class definition in an object-oriented design.

CRC card analysis is performed by a team of people. It is possible to use it by yourself,

but a lot of the benefit of the method comes from talking about the developing classes with

others. Before becoming the process, you should create a large number of CRC cards using

the basic format shown in Figure 1.5.1. As you are working in your group, you will be writing

on these cards; you will probably discard many of them and rewrite them as the system

evolves.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The CRC card methodology is informal, but you should go through the following steps

when using it to analyze a system:

1. Develop an initial list of classes: Write down the class name and perhaps a few words

on what it does. A class may represent a real-world object or an architectural object.

Identifying which category the class falls into (perhaps by putting a star next to the name

of a real-world object) is helpful. Each person can be responsible for handling a part of

the system, but team members should talk during this process to be sure that no classes

are missed and that

duplicate classes are not created.

2. Write an initial list of responsibilities and collaborators: The responsibilities list

helps describe in a little more detail what the class does. The collaborators list should

be built from obvious relationships between classes. Both the responsibilities and

collaborators will be refined in the later stages.

3. Create some usage scenarios: These scenarios describe what the system does.

Scenarios probably begin with some type of outside stimulus, which is one important

reason for identifying the relevant real-world objects.

4. Walk through the scenarios: This is the heart of the methodology. During the walk-

through, each person on the team represents one or more classes. The scenario should

be simulated by acting: people can call out what their class is doing, ask other classes

to perform operations, and so on. Moving around, for example, to show the transfer of

data, may help you visualize the system’s operation. During the walk-through, all of the

information created so far is targeted for updating and refinement, including the classes,

their responsibilities and collaborators, and the usage scenarios. Classes may be created,

destroyed, or modified during this process. You will also probably find many holes in

the scenario itself.

5. Refine the classes, responsibilities, and collaborators: Some of this will be done

during the course of the walkthrough, but making a second pass after the scenarios is a

good idea. The longer perspective will help you make more global changes to the CRC

cards.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

6. Add class relationships: Once the CRC cards have been refined, subclass and

superclass relationships should become clearer and can be added to the cards.

Once you have the CRC cards, you need to somehow use them to help drive the

implementation. In some cases, it may work best to use the CRC cards as direct source material

for the implementors; this is particularly true if you can get the designers involved in the CRC

card process. In other cases, you may want to write a more formal description, in UML or

another language, of the information that was captured during the CRC card analysis, and then

use that formal description as the design document for the system implementors.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

