
www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

BUILDING DATA PATH AND CONTROL IMPLEMENTATION SCHEME

Datapath

• Components of the processor that perform arithmetic operations and holds data.

Control

· Components of the processor that commands the datapath, memory, I/O devices

according to the instructions of the memory.

Building a Datapath

• Elements that process data and addresses in the CPU - Memories, registers,

ALUs.

• MIPS datapath can be built incrementally by considering only a subset of

instructions

• 3 main elements are

Fig. 3.2.1 Datapath

[source : V. Carl Hamacher, Zvonko G. Varanesic and Safat G. Zaky, ―Computer Organization]

A memory unit to store instructions of a program and supply instructions given

an address. Needs to provide only read access (once the program is loaded).- No control

signal is needed .PC (Program Counter or Instruction address register) is a register that

holds the addressof the current instruction

• A new value is written to it every clock cycle. No control signal is required to

enable write

• Adder to increment the PC to the address of the next instruction

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

An ALU permanently wired to do only addition. No extra control signal required

Fig. 3.2.2 Datapath portion for Instruction Fetch Types of Elements in the

Datapath

[source : V. Carl Hamacher, Zvonko G. Varanesic and Safat G. Zaky, ―Computer Organization]

State element:

• A memory element, i.e., it contains a state

E.g., program counter, instruction memory Combinational element:

• Elements that operate on values

Eg adder ALU E.g. adder, ALU

Elements required by the different classes of instructions

• Arithmetic and logical instructions

• Data transfer instructions

• Branch instructions R-Format ALU Instructions

• E.g., add $t1, $t2, $t3

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Perform arithmetic/logical operation

• Read two register operands and write register result Register file:

• A collection of the registers

• Any register can be read or written by specifying the number of the register

• Contains the register state of the computer

Read from register

• inputs to the register file specifying the numbers

• bit wide inputs for the 32 registers

• outputs from the register file with the read values

• 32 bit wide

• For all instructions. No control required.

Write to register file

• 1 input to the register file specifying the number 5 bit wide inputs for the 32

registers

• 1 input to the register file with the value to be written 32 bit wide

• Only for some instructions. RegWrite control signal.

ALU

• Takes two 32 bit input and produces a 32 bit output

• Also, sets one-bit signal if the results is 0

• The operation done by ALU is controlled by a 4 bit control signal input. This is

set according to the instruction .

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

EXCEPTIONS

Control is the most challenging aspect of processor design: it is both the hardest part to

get right and the hardest part to make fast. One of the hardest parts of control is implementing

exceptions and interrupts—events other than branches or jumps that change the normal flow

of instruction execution. An exception is an unexpected event from within the processor;

arithmetic overflow is an example of an exception. An interrupt is an event that also causes an

unexpected change in control flow but comes from outside of the processor. Interrupts are used

by I/O devices to communicate with the processor.

Many architectures and authors do not distinguish between interrupts and exceptions,

often using the older name interrupt to refer to both types of events. MIPS convention uses the

term exception to refer to any unexpected change in control flow without distinguishing

whether the cause is internal or external; we use the term interrupt only when the event is

externally caused.

The Intel IA-32 architecture uses the word interrupt for all these events. Interrupts were

initially created to handle unexpected events like arithmetic overflow and to signal requests

for service from I/O devices. The same basic mechanism was extended to handle internally

generated exceptions as well. Here are some examples showing whether the situation is

generated internally by the processor or externally generated:

Type of event

I/O device request - External

Invoke the operating system from user program - Internal

Arithmetic overflow - Internal

Using an undefined instruction - Internal

Hardware malfunctions - Either

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The operating system knows the reason for the exception by the address at which it is

initiated. The addresses are separated by 32 bytes or 8 instructions, and the operating system

must record the reason for the exception and may perform some limited processing in this

sequence. When the exception is not vectored, a single entry point for all exceptions can be

used, and the operating system decodes the status register to find the cause.

For the operating system to handle the exception, it must know the reason for the

exception, in addition to the instruction that caused it. There are two main methods used to

communicate the reason for an exception. The method used in

the MIPS architecture is to include a status register (called the Cause register), which holds a

field that indicates the reason for the exception. A second method is to use vectored

interrupts. In a vectored interrupt, the address to which control is transferred is determined by

the cause of the exception.

The basic action that the processor must perform when an exception occurs is to save the

address of the offending instruction in the exception program counter (EPC) and then

transfer control to the operating system at some specified address.

Interrupt & Exception

Exception Also called interrupt. An unscheduled event that disrupts program execution;

used to detect overflow.

Interrupt an exception that comes from outside of the processor. (Some architectures use

the term interrupt for all exceptions.)

The Intel x86 uses interrupt. We follow the MIPS convention, using the term exception.

External term interrupt only when the event is externally caused. Some examples are given

below in table

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

How Exceptions Are Handled in the MIPS Architecture

The basic action that the processor must perform when an exception occurs is to save the

address of the offending instruction in the exception program counter (EPC) and then transfer

control to the operating system at some specified address.

After performing the necessary action the operating system can either terminate the

program or continue with its execution, using the EPC to determine where to restart the

execution of the program.

To handle an exception, an operating system should know the reason for the exception and

the instruction that caused it. Two methods are used in MIPS architecture to communicate the

reason for interrupt.

1. MIPS uses a Status register or cause register which has a field that holds the reason for

exception.

2. Vectored interrupts – The operating system knows the reason for the exception by the address

at which it is addresses are separated by 32 bytes or eight instructions, and the initiated. The

operating system must record the reason for the exception.

Exceptions in a Pipelined Implementation:

A pipelined implementation treats exceptions as a form of control hazard. For example,

suppose there is an arithmetic overflow in an add instruction. We must flush the instructions

that follow the add instruction from the pipeline and begin fetching instructions from the new

address.

The easiest way to do this is to flush the instruction and restart it from the beginning after

the exception is handled. The final step is to save the address of the offending instruction in the

exception program counter (EPC). In reality, we save the address +4, so the exception handling

the software routine must first subtract 4 from the saved value.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

HANDLING DATA HAZARDS & CONTROL HAZARDS

Hazards: Prevent the next instruction in the instruction stream from executing during its

designated clock cycle.

• Hazards reduce the performance from the ideal speedup gained by pipelining. 3 classes of

hazards:

• Structural hazards: arise from resource conflicts when the hardware cannot support all

possible combinations of instructions simultaneously in overlapped execution.

• Data hazards: arise when an instruction depends on the results of a previous instruction in a

way that is exposed by the overlapping of instructions in the pipeline.

• Control hazards: arise from the pipelining of branches and other instructions that change the

PC.

Performance of Pipelines with Stalls

• A stall causes the pipeline performance to degrade from the ideal performance. Speedup

from pipelining = [1/ (1+ pipeline stall cycles per instruction)] * Pipeline

Structural Hazards

• When a processor is pipelined, the overlapped execution of instructions requires

pipelining of functional units and duplication of resources to allow all possible

combinations of instructions in the pipeline.

• If some combination of instructions cannot be accommodated because of resource

conflicts, the processor is said to have a structural hazard.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Instances:

• When functional unit is not fully pipelined, Then a sequence of instructions using that

unpipelined unit cannot proceed at the rate of one per clock cycle.

• when some resource has not been duplicated enough to allow all combinations of

instructions in the pipeline to execute.

To Resolve this hazard

Stall the the pipeline for 1 clock cycle when the data memory access occurs. A stall is

commonly called a pipeline bubble or just bubble, since it floats through the pipeline taking

space but carrying no useful work.

Data Hazards

• A major effect of pipelining is to change the relative timing of instructions by

overlapping their execution. This overlap introduces data and control hazards.

• Data hazards occur when the pipeline changes the order of read/write accesses to

operands so that the order differs from the order seen by sequentially executing

instructions on an unpipelined processor.

Minimizing Data Hazard Stalls by Forwarding

The problem solved with a simple hardware technique called forwarding (also called

bypassing and sometimes short-circuiting).

Forwards works as:

• The ALU result from both the EX/MEM and MEM/WB pipeline registers is always fed

back to the ALU inputs.

• If the forwarding hardware detects that the previous ALU operation has written the

register corresponding to a source for the current ALU operation, control logic selects

the forwarded result as the ALU input rather than the value read from the register file.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Data Hazards Requiring Stalls

• The load instruction has a delay or latency that cannot be eliminated by forwarding

alone. Instead, we need to add hardware, called a pipeline interlock, to preserve the

correct execution pattern.

• A pipeline interlock detects a hazard and stalls the pipeline until the hazard is cleared.

• This pipeline interlock introduces a stall or bubble. The CPI for the stalled instruction

increases by the length of the stall.

Branch Hazards

• Control hazards can cause a greater performance loss for our MIPS pipeline . When a

branch is executed, it may or may not change the PC to something other than its current

value plus 4.

• If a branch changes the PC to its target address, it is a taken branch; if it falls through, it

is not taken, or untaken.

Reducing Pipeline Branch Penalties

• Simplest scheme to handle branches is to freeze or flush the pipeline, holding or deleting

any instructions after the branch until the branch destination is known.

• A higher-performance, and only slightly more complex, scheme is to treat every branch

as not taken, simply allowing the hardware to continue as if the branch were not

executed. The complexity of this scheme arises from having to know when the state

might be changed by an instruction and how to “back out” such a change.

• Implemented by continuing to fetch instructions as if the branch were a normal

instruction.

• The pipeline looks as if nothing out of the ordinary is happening.

• If the branch is taken, however, we need to turn the fetched instruction into a no-op and

restart the fetch at the target address.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• An alternative scheme is to treat every branch as taken. As soon as the branch is decoded

and the target address is computed, we assume the branch to be taken and begin fetching

and executing at the target .

Performance of Branch Schemes

Pipeline speedup = Pipeline depth / [1+ Branch frequency × Branch penalty]

The branch frequency and branch penalty can have a component from both

unconditional and conditional branches.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

BASIC MIPS IMPLEMENTATION

1. Instruction fetch cycle (IF):

IR = Mem[PC];

NPC = PC + 4; Operation:

Send out the PC and fetch the instruction from memory into the instruction register (IR).

Increment the PC by 4 to address the next sequential instruction.

IR - holds instruction that will be needed on subsequent clock cycles Register NPC - holds

next sequential PC.

2. Instruction decode/register fetch cycle (ID):

A = Regs[rs]; B = Regs[rt];

Imm = sign-extended immediate field of IR; Operation:

Decode instruction and access register file to read the registers (rs and rt -register

specifiers).

Outputs of general purpose registers are read into 2 temporary registers (A and B) for use

in later clock cycles.

Lower 16 bits of IR are sign extended and stored into the temporary register Imm, for use

in the next cycle.

3. Execution/effective address cycle (EX):

• ALU operates on the operands prepared in the prior cycle, performing one of four functions

depending on the MIPS instruction type.

i. Memory reference: ALUOutput = A + Imm;

ii. Register-Register ALU instruction:

ALUOutput = A func B; Operation:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

ALU performs the operation specified by the function code on the value in register A and

in register B.

a) Result is placed in temporary register ALU Output

b) Register-Immediate ALU instruction:

ALU Output = A op Imm; Operation:

ALU performs operation specified by the opcode on the value in register A and register

Imm.

Result is placed in temporary register ALU Output.

iv)Branch:

ALUOutput = NPC + (Imm << 2); Cond = (A == 0)

Operation:

• ALU adds NPC to sign-extended immediate value in Imm, which is shifted

left by 2 bits to create a word offset, to compute address of branch target.

• Register A, which has been read in the prior cycle, is checked to determine

whether branch is taken.

a) Considering only one form of branch (BEQZ), the comparison is against 0.

4. Memory access/branch completion cycle (MEM):

* PC is updated for all instructions: PC = NPC; i. Memory reference: LMD =

Mem[ALUOutput] or

Mem[ALUOutput] = B;

Operation:

a) Access memory if needed.

b) Instruction is load-data returns from memory and is placed in LMD (load memory

data)

c) Instruction is store-data from the B register is written into memory

ii.Branch:

if (cond) PC = ALU Output

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Operation: If the instruction branches, PC is replaced with the branch destination address

in register ALU Output.

5. Write-back cycle (WB):

* Register-Register ALU instruction: Regs[rd] = ALUOutput;

* Register-Immediate ALU instruction: Regs[rt] = ALUOutput;

* Load instruction:

Regs[rt] = LMD;

Operation: Write the result into register file, depending on the effective opcode.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

PIPELINING

Basic concepts

• Pipelining is an implementation technique whereby multiple instructions

are overlapped in execution

• Takes advantage of parallelism

• Key implementation technique used to make fast CPUs.

• A pipeline is like an assembly line.

In a computer pipeline, each step in the pipeline completes a part of an

instruction. Like the assembly line, different steps are completing different parts

of different instructions in parallel. Each of these steps is called a pipe stage or

a pipe segment. The stages are connected one to the next to form a pipe—

instructions enter at one end, progress through the stages, and exit at the other

end.

• The throughput of an instruction pipeline is determined by how often an

instruction exits the pipeline.

• The time required between moving an instruction one step down the

pipeline is a processor cycle..

• If the starting point is a processor that takes 1 (long) clock cycle per

instruction, then pipelining decreases the clock cycle time.

• Pipeline for an integer subset of a RISC architecture that consists of load-

store word, branch, and integer ALU operations.

Every instruction in this RISC subset can be implemented in at most 5 clock

cycles. The 5 clock cycles are as follows.

1. Instruction fetch cycle (IF):

Send the program counter (PC) to memory and fetch the current instruction from

memory. PC=PC+4

2. Instruction decode/register fetch cycle (ID):

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Decode the instruction and read the registers.

• Do the equality test on the registers as they are read, for a possible branch.

• Compute the possible branch target address by adding the sign-extended

offset to the incremented PC.

• Decoding is done in parallel with reading registers, which is possible

because the register specifiers are at a fixed location in a RISC architecture,

known as fixed-field decoding

3. Execution/effective address cycle (EX):

The ALU operates on the operands prepared in the prior cycle, performing

one of three functions depending on the instruction type.

• Memory reference: The ALU adds the base register and the offset to form

the effective address.

• Register-Register ALU instruction: The ALU performs the operation

specified by the ALU opcode on the values read from the register file

• Register-Immediate ALU instruction: The ALU performs the operation

specified by the ALU opcode on the first value read from the register file

and the sign-extended immediate.

4. Memory access(MEM):

• If the instruction is a load, memory does a read using the effective address

computed in the previous cycle.

• If it is a store, then the memory writes the data from the second register

read from the register file using the effective address.

5. Write-back cycle (WB):

Register-Register ALU instruction or Load instruction: Write the result into the

register file, whether it comes from the memory system (for a load) or from the

ALU (for an ALU instruction).

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

PIPELINED DATA PATH AND CONTROL

The Classic Five-Stage Pipeline for a RISC Processor

Each of the clock cycles from the previous section becomes a pipe stage—a cycle in the

pipeline. Each instruction takes 5 clock cycles to complete, during each clock cycle the

hardware will initiate a new instruction and will be executing some part of the five different

instructions.

3 observations:

1. Use separate instruction and data memories, which implement with

separate instruction and data caches.

2. The register file is used in the two stages: one for reading in ID and one for

writing in WB, need to perform 2 reads and one write every clock cycle.

3. Does not deal with PC, To start a new instruction every clock, we must

increment and store the PC every clock, and this must be done during the

IF stage in preparation for the next instruction.

To ensure that instructions in different stages of the pipeline do not

interfere with one another. This separation is done by introducing pipeline

registers between successive stages of the pipeline, so that at the end of a clock

cycle all the results from a given stage are stored into a register that is used as the

input to the next stage on the next clock cycle.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

