Co-ordinate Systems

In order to describe the spatial variations of the quantities, we require using appropriate co-ordinate system. A point or vector can be represented in a curvilinear coordinate system that may be orthogonal or non-orthogonal .

An orthogonal system is one in which the co-ordinates are mutually perpendicular. Non- orthogonal co-ordinate systems are also possible, but their usage is very limited inpractice .

Let $u=$ constant, $v=$ constant and $w=$ constant represent surfaces in a coordinate system,

$$
\begin{array}{lll}
\hat{a_{n}} & \hat{a_{v}} & \hat{a_{w}}
\end{array}
$$

the surfaces may be curved surfaces in general. Furthur, let , and be the unit vectors in the three coordinate directions(base vectors). In a general right handed orthogonal curvilinear systems, the vectors satisfy the following relations :

$$
\begin{align*}
& \hat{a_{u}} \times \hat{a_{v}}=\hat{a_{w}} \\
& \hat{a_{v}} \times \hat{a_{u}}=\hat{a_{u}} \\
& \hat{a_{w}} \times \hat{a_{u}}=\hat{a_{v}} \tag{1.13}
\end{align*}
$$

These equations are not independent and specification of one will automatically implythe other two. Furthermore, the following relations hold

$$
\begin{align*}
& \hat{a}_{u} \cdot \hat{a}_{v}=\hat{a}_{v} \cdot \hat{a}_{w}=\hat{a}_{w} \cdot \hat{a}_{u}=0 \\
& \hat{a_{u}} \cdot \hat{a_{u}}=\hat{a_{v}} \cdot \hat{a_{v}}=\hat{a_{w}} \cdot \hat{a_{w}}=1 \tag{1.14}
\end{align*}
$$

A vector can be represented as sum of its

$$
\vec{A}=A_{u} \hat{a}_{u}+A_{v} \hat{a}_{v}+A_{w} \hat{a}_{w}
$$

orthogonalcomponents,

In general u, v and w may not represent length. We multiply u, v and w by conversion
factors $h 1, h 2$ and $h 3$ respectively to convert differential changes $\mathrm{d} u, \mathrm{~d} v$ and $\mathrm{d} w$ tocorresponding changes in length $\mathrm{d} l 1, \mathrm{~d} l 2$, and $\mathrm{d} l 3$. Therefore

$$
\begin{align*}
d \vec{l} & =\hat{a}_{u} d l_{1}+\hat{a}_{v} d l_{2}+\hat{a}_{w} d l_{3} \\
& =h_{1} d u \hat{a}_{u}+h_{2} d v \hat{a_{v}}+h_{3} d w \hat{a}_{w} \tag{1.16}
\end{align*}
$$

In the same manner, differential volume $\mathrm{d} v$ can be wrivenh $h_{2} h_{3} \mathrm{du} \mathrm{dv} \mathrm{d} w$
$\hat{a}_{n} \quad d s_{1}=h_{2} h_{3} d \nu d w$
In the following sections we discuss three most commonly used orthogonal co-ordinate systems, viz : a_{w}

1. Cartesian (or rectangular) co-ordinate system
2. Cylindrical co-ordinate system
3. Spherical polar co-ordinatesystem

Cartesian Co-ordinate System:

In Cartesian co-ordinate system, we have, $(u, v, w)=(x, y, z)$. A point $P(x 0, y 0, z 0)$ in Cartesian co-ordinate system is represented as intersection of three planes $x=x 0, y=y 0$ and $z=z 0$. The unit vectors satisfies the following relation as shown in figure 2.1:

Fig 2.1 Intersection of three planes (www.brainkart.com/subject/Electromagnetic-Theory_206/)

$$
\begin{aligned}
& \hat{a_{x}} \times \hat{a_{y}}=\hat{a_{z}} \\
& \hat{a_{y}} \times \hat{a_{z}}=\hat{a_{x}} \\
& \hat{a_{z}} \times \hat{a_{x}}=\hat{a_{y}} \\
& \hat{a_{x}} \cdot \hat{a_{y}}=\hat{a_{y}} \cdot \hat{a_{z}}=\hat{a_{z}} \cdot \hat{a_{x}}=0 \\
& \hat{a_{x}} \cdot \hat{a_{x}}=\hat{a_{y}} \cdot \hat{a_{y}}=\hat{a_{z}} \cdot \hat{a_{z}}=1
\end{aligned}
$$

In cartesian co-ordinate system, a ve $\underset{A}{\vec{E}}$ tor

$$
\vec{A}=\hat{a}_{x} A_{x}+\hat{a_{y}} A_{y}+\hat{a_{z}} A_{z}
$$ can be written as

$$
\begin{align*}
& \vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{v} B_{y}+A_{z} B_{z} \cdots \cdots \ldots \ldots \ldots(1.19) \\
& \vec{A} \times \vec{B}=a_{x}\left(A_{y} B_{z}-A_{z} B_{y}\right)+a_{y}\left(A_{z} B_{x}-A_{x} B_{z}\right)+\hat{a_{z}}\left(A_{x} B_{y}-A_{y} B_{x}\right) \\
&=\left|\begin{array}{lll}
\hat{a_{x}} & \hat{a}_{y} & \hat{a_{z}} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \tag{1.20}
\end{align*}
$$

Since $x_{n} y$ and z all represent lengths, $h 1=h 2=h 3=1$. The $d l=d x a_{x}+d y a_{y}+d z a_{z}$
${ }_{d S_{x}}{ }^{\text {diferential }}=d y d z a_{x}$ length, areaand volume are defined respectively as
$d \vec{s} y=d x d z \hat{a}_{y}$
$d \vec{s}_{z}=d x d y \hat{a}_{z}$
$d \nu=d x d y d z$
\qquad

Cylindrical Co-ordinate System :

For cylindrical coordinate systems we hav̌e ${ }^{(\underline{u}, \nu, w)=(r, \phi, z)}$ a point ${ }^{P\left(r_{0}, \phi_{0}, z_{0}\right)}$ isdetermined as th containing the z-axis and making an angl员; with the xz plane and a plane parallelto $x y$ plane located at $z=z 0$ as shown in figure 2.2 and 2.3.

In cylindrical coordinate system, the unit vectors satisfy the following relations

A vector $\vec{A}^{\text {can }}$ be written as $\vec{A}=A_{p} \hat{a}_{p}+A_{\phi} \hat{a}_{\phi}+A_{z} \hat{a}_{z}$
The differential length is defined as,

$$
\begin{gather*}
d \vec{l}=\hat{a}_{\rho} d \rho+\rho d \phi \hat{a}_{\phi}+d z \hat{a}_{z} \quad \quad h_{1}=1, h_{2}=\rho, h_{3}=1 \tag{1.25}\\
a_{\rho} \times a_{\phi}=a_{z} \\
\hat{a}_{\phi} \times \hat{a}_{z}=\hat{a}_{\rho} \\
\hat{a}_{z} \times \hat{a}_{\rho}=\hat{a}_{\phi}
\end{gather*}
$$

\qquad

Fig 2.2 cylindrical co-orfiglate system
(www.brainkart.com/subject/Electromagnetic-Theory_206/)

Fig 2.3 cylindricalsystem surface
(www.brainkart.com/subject/Electromagnetic-Theory_206/)

Transformation between Cartesian and Cylindrical coordinates:

Let us consider $\vec{A}^{\vec{a}} \hat{a}_{\rho} A_{\rho}+\hat{a}_{\psi} A_{\phi}+\hat{a}_{z} A_{z}$ is to be expressed in Cartesian co-ordinate as
$\rightarrow \wedge \hat{n}$. In doing so we note that
$\overrightarrow{A_{x}}=\vec{A} \cdot \hat{a}_{x}=\left(\hat{a}_{\rho} A_{\rho}+\hat{a}_{\phi} A_{\phi}+\hat{a}_{z} A_{z}\right) \hat{a}_{x}$ and it applies for other components as well as shown in figure 2.4.

$$
\begin{align*}
& \hat{a}_{p} \cdot \hat{a}_{x}=\cos \phi \\
& \hat{a}_{p} \cdot \hat{a}_{y}=\sin \phi \\
& \hat{a}_{p} \cdot \hat{a}_{x}=\cos \left(\phi+\frac{\pi}{2}\right)=-\sin \phi \tag{1.28}\\
& \hat{a}_{\psi} \cdot \hat{a}_{y}=\cos \phi \\
& \text { Therefore we can write, } \\
& A_{2}=\vec{A} \hat{a}_{x}=A_{p} \cos \phi-A_{\phi} \sin \phi \\
& A_{y}=\vec{A} \hat{a}_{y}=A_{p} \sin \phi+A_{\phi} \cos \phi \tag{1.29}\\
& A_{z}=\vec{A} \hat{a}_{z}=A_{z}
\end{align*}
$$

Fig 2.4: Unit Vectors in Cartesian and Cylindrical Coordinates
(www.brainkart.com/subject/Electromagnetic-Theory_206/)
These relations can be put conveniently in the matrix form as:

$$
\left[\begin{array}{l}
\sim_{x} \tag{1.30}\\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\operatorname{cov} \psi & \cdots \cdots \psi & 2 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\alpha_{\rho} \\
A_{y} \\
A_{z}
\end{array}\right]
$$

A_{ρ}, A_{ψ} and A_{z} themselves may be functions of ${ }^{\circ}$ and z as:

$$
\begin{align*}
& x=\rho \cos \phi \\
& y=\rho \sin \phi \\
& z=z \quad \ldots \ldots \tag{1.31}
\end{align*}
$$

$$
\begin{aligned}
& \rho=\sqrt{x^{2}+y^{2}} \\
& \phi=\tan ^{-1} \frac{y}{x} \\
& z=z
\end{aligned}
$$

The inverse relationships are

Fig 2.5: Spherical Polar Coordinate System

 (www.brainkart.com/subject/Electromagnetic-Theory_206/)Thus we see that a vector in one coordinate system is transformed to another coordinate system through two-step process: Finding the component vectors and then variable transformation as shown in fig 2.5.

Spherical Polar Coordinates:

For spherical polar sgordinate system, we have, represented as the intersection

$$
(u, v, w)=(r, \theta, \phi) \quad P\left(r_{0}, \phi_{1}, \phi_{6}\right)
$$

of
(i) Spherical surface $r=r 0$
(ii). A point
(iv) half plane containing z-axis making angfe with the $x z$ plane as shown in thefigure 1.10.

$$
\begin{align*}
& \hat{a_{r}} \times \hat{a_{\theta}}=\hat{a_{\phi}} \\
& \hat{a_{\theta}} \times \hat{a_{\phi}}=\hat{a_{r}} \\
& \hat{a_{\phi}} \times \hat{a_{\gamma}}=\hat{a_{\theta}} \tag{1.33}
\end{align*}
$$

The unit vectors satisfy the following relationships
The orientation of the unit vectors are shown in the figure 2.6.

Fig 2.6 : Orientation of Unit Vectors
(www.brainkart.com/subject/Electromagnetic-Theory_206/)
A vector in spherical polar co-ordinates is written $\hat{A}=A_{s} \hat{a}_{y}+A_{\theta} \hat{a}_{\theta}+A_{\phi} \tilde{a}_{\phi}$

$$
d \vec{l}=\hat{a_{r}} d r+\hat{a_{\theta}} r d \theta+\hat{a_{\phi}} r \sin \theta d \phi
$$

$$
r \sin \theta
$$

dFor spherical polar coordinate system we have $h 1=1, h 2=r$ and $h 3=$

Fig 2.7 : Differential volume in s-p coordinates
(www.brainkart.com/subject/Electromagnetic-Theory_206/)

Fig 2.8 : Exploded view (www.brainkart.com/subject/Electromagnetic-Theory_206/)

With reference to the Figure 1.12, the elemental areas are:

$$
\begin{align*}
& \mathrm{d} s_{y}=r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \hat{a_{r}} \\
& \mathrm{~d} s_{\theta}=r \sin \theta \mathrm{dr} \mathrm{~d} \phi \hat{a}_{\theta} \\
& \mathrm{d} s_{\rho}=r \mathrm{~d} \mathrm{~d} \theta \hat{a_{\phi}} \tag{1.34}
\end{align*}
$$

and elementary volume is given by

$$
\begin{equation*}
\mathrm{d} \nu=r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi \tag{1.35}
\end{equation*}
$$

Coordinate transformation between rectangular and spherical

polar: With reference to the figure 2.7 and 2.8 ,we can write the following equations:

$$
\begin{align*}
& \hat{a_{y}} \cdot \hat{a_{x}}=\sin \theta \cos \phi \\
& \hat{a_{y}} \cdot \hat{a_{y}}=\sin \theta \sin \phi \\
& \hat{a_{r}} \cdot \hat{a_{z}}=\cos \theta \\
& \hat{a_{\theta}} \cdot \hat{a_{x}}=\cos \theta \cos \phi \\
& \hat{a_{\theta}} \cdot \hat{a_{y}}=\cos \theta \sin \phi \\
& \hat{a_{\theta}} \cdot \hat{a_{z}}=\cos \left(\theta+\frac{\pi}{2}\right)=-\sin \theta \\
& \hat{a_{\phi}} \cdot \hat{a_{x}}=\cos \left(\phi+\frac{\pi}{2}\right)=-\sin \phi \\
& \hat{a_{\phi}} \cdot \hat{a_{y}}=\cos \phi \\
& \hat{a_{\phi}} \cdot \hat{a_{z}}=0 \tag{1.36}
\end{align*}
$$

Fig 2.9 : Coordinate transformation
(www.brainkart.com/subject/Electromagnetic-Theory_206/)
Given a vector $\vec{A}=A_{r} \hat{a}_{\gamma}+A_{\theta} \hat{a}_{\theta}+A_{\phi} \hat{a}_{\phi}$ in the spherical polar coordinate system as shown in fig 2.9, itscomponent in the cartesian coordinate system can be found out as follows:
$A_{r}=\vec{A} \cdot \hat{a}_{x}=A_{r} \sin \theta \cos \phi+A_{\theta} \cos \theta \cos \phi-A_{\phi} \sin \phi$.

Similarly,

$$
\begin{align*}
& A_{y}=\vec{A} \hat{a}_{y}=A_{r} \sin \theta \sin \phi+A_{\theta} \cos \theta \sin \phi+A_{\phi} \cos \phi \tag{1.38a}\\
& A_{z}=\vec{A} \hat{a}_{z}=A_{r} \cos \theta-A_{\theta} \sin \theta
\end{align*}
$$

WWW
 binils

The above equation can be put in a compact form:

$$
\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\
\sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\
\cos \theta & -\sin \theta & 0
\end{array}\right]\left[\begin{array}{c}
A_{r} \\
A_{v} \\
A_{\phi}
\end{array}\right]
$$

The componeAts A_{θ} and A_{ϕ} themselves will be functions add $\phi r . \theta$ and ϕ arerelated to x, y a

$$
\begin{align*}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \tag{1.40}\\
& z=r \cos \theta
\end{align*}
$$

and conversely,

Using the variable transformation listed above, the vector components, which are functions of variables of one coordinate system, can be transformed to functions of variables of other coordinate system and a total transformation can be done.

Del Operator

The vector differential operātor was introduced by Sir W. R. Hamilton and later ondeveloped by P. G. Tait.

Mathematically the vector differential operator can be written in the general form as:

$$
\begin{equation*}
\nabla=\frac{1}{h_{1}} \frac{\partial}{\partial u} \hat{a}_{u}+\frac{1}{h_{2}} \frac{\partial}{\partial \nu} \hat{a}_{v}+\frac{1}{h_{3}} \frac{\partial}{\partial w} \hat{a}_{w} . \tag{1.43}
\end{equation*}
$$

Gradient of a Scalar function

In Cartesian coordinates:

$$
\begin{equation*}
\nabla=\frac{\partial}{\partial x} \hat{a}_{x}+\frac{\partial}{\partial y} \hat{a}_{y}+\frac{\partial}{\partial z} \hat{a}_{z} \tag{1.44}
\end{equation*}
$$

In cylindrical coordinates:

$$
\prod_{\nabla=\frac{\partial}{\partial \rho} \hat{a}_{\rho}+\frac{1}{\rho} \frac{\partial}{\partial \phi} \hat{a}_{\phi}+\frac{\partial}{\partial z} \hat{a}_{z} \ldots \ldots}^{M_{i}}
$$

and in spherical polar coordinates:

$$
\begin{equation*}
\nabla=\frac{\partial}{\partial r} \hat{a}_{r}+\frac{1}{r} \frac{\partial}{\partial \theta} \hat{a}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \hat{a}_{\phi} \tag{1.46}
\end{equation*}
$$

Let us consider a scalar field $V(u, v, w)$, a function of space coordinates.

Gradient of the scalar field V is a vector that represents both the magnitude and directionof the maximum space rate of increase of this scalar field V as shown in fig 4.1.

Fig 4.1 : Gradient of a scalar function
(www.brainkart.com/subject/Electromagnetic-Theory_206/)

By comparison we can write,

$$
\begin{equation*}
\nabla V=\frac{1}{h_{1}} \frac{\partial V}{\partial u} \hat{a}_{u}+\frac{1}{h_{2}} \frac{\partial V}{\partial v} \hat{a}_{v}+\frac{1}{h_{3}} \frac{\partial V}{\partial w} \hat{a}_{w} \tag{1.52}
\end{equation*}
$$

Hence for the Cartesian, cylindrical and spherical polar coordinate system, theexpressions for gradient can be written as:

In Cartesian coordinates:

$$
\begin{equation*}
\nabla V=\frac{\partial V}{\partial x} \hat{a}_{x}+\frac{\partial V}{\partial y} \hat{a}_{y}+\frac{\partial V}{\partial z} \hat{a}_{z} \tag{1.53}
\end{equation*}
$$

In cylindrical coordinates:

$$
\begin{equation*}
\nabla V=\frac{\partial V}{\partial \rho} \hat{a}_{\rho}+\frac{1}{\rho} \frac{\partial V}{\partial \phi} \hat{a}_{\psi}+\frac{\partial V}{\partial z} \hat{a}_{z} \tag{1.54}
\end{equation*}
$$

and in spherical polar coordinates:

$$
\begin{equation*}
\nabla V=\frac{\partial V}{\partial r} \hat{a}_{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \hat{a}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \hat{a}_{\phi} . \tag{1.55}
\end{equation*}
$$

The following relationships hold for gradient operator.

$$
\nabla(U+V)=\nabla U+\nabla V
$$

$$
\nabla(U V)=V \nabla U+U \nabla V
$$

$$
\begin{equation*}
\nabla\left(\frac{U}{V}\right)=\frac{V \nabla U-U \nabla V}{V^{2}} \tag{1.56}
\end{equation*}
$$

$$
\nabla V^{n}=n V^{n-1} \nabla V
$$

where U and V are scalar functions and n is an
integer.

$$
\frac{\mathrm{d} V}{\mathrm{~d} l}\left(=\Delta V \cdot \hat{a}_{1}\right)
$$

It may further be noted that since magnitude of depends on the direction of $A=\Delta V, V$
$\mathrm{d} l$, it is called the directional derivative. If \vec{A} is called the scalar potential function of the vector function

Divergence of a Vector Field:

In study of vector fields, directed line segments, also called flux lines or streamlines, represent field variations graphically. The intensity of the field is proportional to the density of lines. For example, the number of flux lines passing through a unit surface S normal to the vector measures the vector field strength as shown in fig 4.2.

Fig 4.2: Flux Lines
(www.brainkart.com/subject/Electromagnetic-Theory_206/)
We have already defined flux of a vector field as

$$
\begin{equation*}
\psi=\int_{s} A \cos \theta d s=\int_{s} \vec{A} \cdot \hat{a}_{n} d s=\int \vec{A} \cdot d \vec{s} \tag{1.57}
\end{equation*}
$$

For a volume enclosed by a surface,

We define the divergence of a vector $\overrightarrow{\text { field }}$ at a point P as the net outward flux from avolume enclosing P, as the volume shrinks to zero.

$$
\begin{equation*}
\operatorname{div} \vec{A}=\nabla \cdot \vec{A}=\lim _{\Delta \vartheta \rightarrow 0} \frac{\oint_{s} \vec{A} \cdot d \vec{s}}{\Delta v} \tag{1.59}
\end{equation*}
$$

Here $\Delta V \quad$ is the volume that encloses P and S is the corresponding closed surface as shown in fig 4.3.

Let us consider a differential volume centered on point $\mathrm{P}(u, v, w)$ in a vector field ${ }^{\vec{A}}$. The flux through an elementary area normal to u isgiven by ,

$$
\begin{gathered}
\phi_{x_{2}}=\vec{A} \cdot \hat{a}_{2} h_{2} h_{3} d w w w . . \\
\ldots(1.60)
\end{gathered}
$$

Net outward flux along u can be calculated considering the two elementary surfacesperpendicular to u.

$$
\left[\left.h_{2} h_{3} A_{u}\right|_{\left(u+\frac{d u}{2} \nu, w\right)}-\left.h_{2} h_{3} A_{u}\right|_{\left(u-\frac{d u}{2} \nu, w\right)}\right] d v d w \cong \frac{\partial\left(h_{2} h_{3} A_{u}\right)}{\partial u} d u d v d w
$$

(1.61) Considering the contribution from all six surfaces that enclose thevolume, we can write

$$
\begin{align*}
& \operatorname{div} \overrightarrow{\mathrm{A}}=\nabla \cdot \overrightarrow{\mathrm{A}}=\lim _{\Delta v \rightarrow 0} \frac{\oint_{s} \overrightarrow{\mathrm{~A}} \cdot \overrightarrow{d s}}{\Delta v}=\frac{d u d v d w \frac{\partial\left(h_{2} h_{3} A_{u}\right)}{\partial u}+d u d v d w \frac{\partial\left(h_{1} h_{3} A_{v}\right)}{\partial v}+d u d v d w \frac{\partial\left(h_{1} h_{2} A_{w}\right)}{\partial w}}{h_{1} h_{2} h_{3} d u d v d w} \\
& \therefore \nabla \cdot \overrightarrow{\mathrm{~A}}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial\left(h_{2} h_{3} A_{u}\right)}{\partial u}+\frac{\partial\left(h_{1} h_{3} A_{v}\right)}{\partial v}+\frac{\partial\left(h_{1} h_{2} A_{w}\right)}{\partial w}\right] \tag{1.62}
\end{align*}
$$

Hence for the Cartesian, cylindrical and spherical polar coordinate system, the expressionsfor divergence ca written as:

In Cartesian coordinates:
WWM

In cylindrical coordinates:

$$
\begin{equation*}
\nabla \cdot \vec{A}=\frac{1}{\rho} \frac{\partial\left(\rho A_{\rho}\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial A_{\psi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z} \tag{1.64}
\end{equation*}
$$

and in spherical polar coordinates:

$$
\begin{equation*}
\nabla \cdot \vec{A}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} A_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta A_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} \tag{1.65}
\end{equation*}
$$

In connection with the divergence of a vector field, the following can be noted
Divergence of a vector field gives a scalar.
$\nabla \cdot(V \vec{A})=V \nabla \cdot \vec{A}+\vec{A} \cdot \nabla \vec{V}$

Divergence theorem :

Proof:

Let us consider a volume V enclosed by a surface S. Let us subdivide the volume in large
number of cells. Let the $k^{t h}$ cell has a volume and the corresponding surface is denoted by $S k$. Interior to the volume, cells have common surfaces. Outward flux through these common surfaces from one cell becomes the inward flux for the neighboring cells. Therefore when the total flux from these cells are considered, we actually get the net outward flux through tr

$$
\oint_{s} \vec{A} \cdot d \vec{s}=\sum_{k} \oint_{\Lambda} \vec{A} \cdot d \vec{s}=\sum_{k} \frac{\oint_{i} \vec{A} \cdot d \vec{s}}{\Delta V_{k}} \Delta V_{k}
$$

In the limit, that is when

67) the right hand of the expression

can bewritten as .

$$
\overrightarrow{\oint^{A}} \cdot d \vec{S}=\int_{V} \nabla \cdot A d V
$$

Hence we get , which is the divergence theorem.

Curl of a vector field

We have defined the circulation of a vector field A around a closed path
We have defined the circulation of a vector field A around a closed path as
Curl of a vector field is a measure of the vector field's tendency to rotate about a point $\vec{A} \quad \nabla \times \vec{A}$
Curl, also written as is defined as a vector whose magnitude is maximum of thenet circulation per unit area when the area tends to zero and its direction is the normal direction to the area when the area is oriented in such a way so as to make the circulationmaximum.

Therefore, we can write:

$$
\begin{equation*}
\text { Curl } \vec{A}=\nabla \times \vec{A}=\lim _{\Delta S \rightarrow 0} \frac{\hat{a}_{n}}{\Delta S}[\oint \vec{A} \cdot d l]_{\max } \tag{1.68}
\end{equation*}
$$

To derive the expression for curl in generalized curvilinear coordinate $\nabla \times \vec{A} \cdot \hat{a}_{u}$
system, we first compute and to do so let us consider the figure 4.4 :

WW
 (3)

Fig 4.4: Curl of a Vector

 (www.brainkart.com/subject/Electromagnetic-Theory_206/)$C 1$ represents the boundary of , then we can write

$$
\begin{equation*}
\oint_{Q} \vec{A} \cdot d \vec{l}=\int_{A B} \vec{A} \cdot d \vec{l}+\int_{B C} \vec{A} \cdot d \vec{l}+\int_{D} \vec{A} \cdot d \vec{l}+\int_{D A} \vec{A} \cdot d \vec{l} \tag{1.69}
\end{equation*}
$$

The integrals on the RHS can be evaluated as follows:

$$
\begin{align*}
& \int_{A B} \vec{A} \cdot d \vec{l}=\left(A_{u} \hat{a}_{u}+A_{v} \hat{a}_{v}+A_{w} \hat{a}_{w}\right) \cdot h_{2} \Delta v \hat{a}_{v}=A_{v} h_{2} \Delta v \tag{1.70}\\
& \ldots \ldots \tag{1.71}\\
& \int_{D} \vec{A} \cdot d \vec{l}=-\left(A_{v} h_{2} \Delta v+\frac{\partial}{\partial w}\left(A_{v} h_{2} \Delta v\right) \Delta w\right) \cdots \cdots \cdots \cdots
\end{align*}
$$

The negative sign is because of the fact that the direction of traversal reverses. Similarly,

$$
\begin{align*}
& \int_{D C} \vec{A} \cdot d \vec{l}=\left(A_{w} h_{3} \Delta w+\frac{\partial}{\partial v}\left(A_{w} h_{3} \Delta w\right) \Delta v\right) \tag{1.72}\\
& \int_{\Delta A} \vec{A} \cdot d \vec{l}=-A_{w} h_{3} \Delta w \tag{1.73}
\end{align*}
$$

Adding the contribution from all components, we can write:

$$
\begin{aligned}
& \oint_{a} \vec{A} \cdot d \vec{l}=\left(\frac{\partial}{\partial \nu}\left(A_{w} h_{3}\right)-\frac{\partial}{\partial w}\left(A_{v} h_{3}\right) \Delta v \Delta w\right. \\
& \ldots \ldots(1.74) \text { Therefore, }
\end{aligned}
$$

$$
\begin{equation*}
(\nabla \times \vec{A}) \cdot \hat{a}_{u}=\frac{\oint_{1} \vec{A} \cdot d \vec{d}}{h_{2} h_{3} \Delta V \Delta W}=\frac{1}{h_{2} h_{3}}\left(\frac{\partial\left(h_{3} A_{w}\right)}{\partial V}-\frac{\partial\left(h_{2} A_{v}\right)}{\partial w}\right) \tag{1.75}
\end{equation*}
$$

In the same manner if we compute for

$$
\nabla \times \vec{A}=\frac{1}{h_{2} h_{3}}\left(\frac{\partial\left(h_{3} A_{w}\right)}{\partial v}-\frac{\partial\left(h_{2} A_{v}\right)}{\partial w}\right) \hat{a}_{u}+\frac{1}{h_{1} h_{3}}\left(\frac{\partial\left(h_{1} A_{u}\right)}{\partial w}-\frac{\partial\left(h_{3} A_{w}\right)}{\partial w}\right) \hat{a}_{v}+\frac{1}{h_{1} h_{2}}\left(\frac{\partial\left(h_{2} A_{v}\right)}{\partial u}-\frac{\partial\left(h_{3}\left(A_{w}\right) \cdot\right)}{\partial v}\right) \hat{a}_{w}
$$

This can be written as,

$$
\nabla \times \vec{A}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \hat{a}_{u} & h_{2} \hat{a}_{v} & h_{3} \hat{a}_{w} \tag{1.77}\\
\frac{\partial}{\partial u} & \frac{\partial}{\partial v} & \frac{\partial}{\partial w} \\
h_{1} A_{2} & h_{2} A_{v} & h_{3} A_{w}
\end{array}\right|
$$

$$
\nabla \times \vec{A}=\left|\begin{array}{ccc}
\frac{c}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right|
$$

In Cartesian coordinates
$\quad \nabla \times \vec{A}=\frac{1}{\rho}\left|\begin{array}{ccc}\hat{a}_{\rho} & \rho \hat{a}_{\phi} & \hat{a}_{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{\rho} & \rho A_{\phi} & A_{z}\end{array}\right|$
In Cylindrical coordinates,
In Spherical polar coordinates,
$\nabla \times \vec{A}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}\hat{a}_{r} & r \hat{a}_{\theta} & r \sin \theta \hat{a}_{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_{r} & r A_{\theta} & r \sin \theta A_{\phi}\end{array}\right|$
......(1.80) Curl operation exhibits the
following properties:
(i) Curl of a vector field is another vector field.
(ii) $\nabla \times(\vec{A}+\vec{B})=\nabla \times \vec{A}+\nabla \times \vec{B}$
(iii) $\nabla \times(V \vec{A})=\nabla V \times \vec{A}+V \nabla \times \vec{A}$
(iv) $\quad \nabla \cdot(\nabla \times \vec{A})=0$
(v) $\nabla \times \nabla V=0$
(vi) $\nabla \times(\vec{A} \times \vec{B})=\vec{A} \nabla \cdot \vec{B}-\vec{B} \nabla \cdot \vec{A}+(\vec{B} \cdot \nabla) \vec{A}-(\vec{A} \cdot \nabla) \vec{B}$

As shown in figure 1.17, let us consider two surfaces $S 1$ and $S 2$ where the function V has constant magnitude and the magnitude differs by a small amount $\mathrm{d} V$. Now as one moves from $S 1$ to $S 2$, the magnitude of spatial rate of change of V i.e. $\mathrm{dV} / \mathrm{dl}$ depends on the direction of elementary path length dl , the maximum occurs when one traverses from S_{1} to S_{2} along a path normal to the surfaces as in this case the distance is minimum.

By our definition of gradient we can write:

$$
\begin{equation*}
\operatorname{grad} V=\frac{\mathrm{d} V}{\mathrm{~d} n} \hat{a}_{n}=\nabla V \tag{1.47}
\end{equation*}
$$

www.binils.com for Anna University | Polytechnic and Schools since ${ }^{d \vec{n}}$ which represents the distance along the normal is the shortest distance betweenthe two surfaces.

WWW
 bi nil
 .

UNIT - 1

INTRODUCTION

Electromagnetic Field is a prerequisite for a wide spectrum of studies in the field of Electrical Sciences and Physics. Electromagnetic theory can be thought of as generalization of circuit theory. There are certain situations that can be handled exclusively in terms of field theory. In electromagnetic theory, the quantities involved can be categorized as source quantities and field quantities. Source of electromagnetic field is electric charges: either at rest or in motion. However an electromagnetic field may cause a redistribution of charges that in turn change the field and hence the separation of cause and effect is not always visible.

Sources of EMF:

Current carrying conductors.
Mobile phones.
Microwave oven.
Computer and Television screen. High voltage Power lines.

Effects of Electromagnetic fields:

Plants and Animals.

Humans.

Electrical components.
Fields are classified as
Scalar field

Vector field.

Electric charge is a fundamental property of matter. Charge exist only in positive or negative integral multiple of electronic charge, $-\mathrm{e}, \mathrm{e}=1.60 \times 10-19$ coulombs. [It may be noted here that in 1962, Murray Gell-Mann hypothesized Quarks as the basic building blocks of matters. Quarks were predicted to carry a fraction of electronic charge and the existence of Quarks has been experimentally verified. Principle of conservation of charge states that the total charge (algebraic sum of positive and negative charges) of an isolated system remains unchanged, though the charges may redistribute under the influence of electric field. Kirchhoff's Current Law (KCL) is an assertion of the conservative property of charges under the implicit assumption that there is no accumulation of charge at the junction.

Electromagnetic theory deals directly with the electric and magnetic field vectors where as circuit theory deals with the voltages and currents. Voltages and currents are integrated effects of electric and magnetic fields respectively. Electromagnetic field problems involve three space variables along with the time variable and hence the solution tends to become correspondingly complex. Vector analysis is a mathematical tool with which electromagnetic concepts are more conveniently expressed and best comprehended. Since use of vector analysis in the study of electromagnetic field theory results in real economy of time and thought, we first introduce the concept of vector analysis.

Line, surface and volume integrals

In electromagnetic theory, we come across integrals, which contain vector functions. Some representative integrals are listed below:

 function of space coordinates. C, S and V represent path, surface and volume of integration. All these integrals are evaluated using extension of the usual one-dimensional integral as the limit of a sum, i.e., if a function $f(x)$ is defined over arrange a to b of values of ${ }^{\beta} f(x) d x=\lim \sum^{n}{ }^{n}$ l is given by

$$
\int_{2} f(x) \mathrm{d} x=\lim _{x \rightarrow \infty} \sum_{i=1}^{n} f_{i} \delta x_{i} \text { is given by }
$$

where the interval (a, b) is subdivided into n continuous intervaltof lëngths

$$
\int \vec{E} \cdot \overrightarrow{d l}
$$

Line Integral: Line integral is the dot product $\frac{\text { f a vector with a }}{E}$ specified
C; in other words it is the integral of the tangential component along the

Fig 3.1 : Line Integral
curve.
(www.brainkart.com/subject/Electromagnetic-Theory_206/)

As shown in the figure 3.1, given a vector around C,
we define the 荡tegral as the line $\int_{d} \vec{E} \cdot d \vec{l}=\int_{a}^{b} E \cos \theta d l$ integral of E along the curve C.

If the path of integration is a closed path as shown in the figure the line integral becomes a closed line integral and is called the ${ }^{\vec{E}} \dot{\Phi} \vec{E} \cdot \vec{l}$
circulation of around C and denoted as as shown in the figure 3.2.

Fig 3.2: Closed Line Integral
(www.brainkart.com/subject/Electromagnetic-Theory_206/)

Surface Integral :

Given a vector $\overrightarrow{\text { field }}$, continuous in a region containing the smooth surface S, wedefine the surface integral or the flux of $\psi=\int_{S} A \cos \theta d S=\int_{S} \vec{A} \cdot a_{n} d S=\int_{S} \vec{A} d \vec{S}$
as surface integral over surface S as shown in fig 3.3.

Surface S
Fig 3.3 : Surface Integral
(www.brainkart.com/subject/Electromagnetic-Theory_206/)
If the surface integral is carried out over a closed surface, then we $\psi=\oint{ }_{S} \vec{A} d \vec{S}$

Volume Integrals:

We defin $\oint f d V$ or $\iiint f \mathrm{~d} V$ as the volume integral of the scalar function $f\left(\right.$ function spatial codrdinates) over the volume V. $\int F d V$ Evaluation of \vec{F} ntegral of the form can be carried out as a sum of three scalar volume integrals, where each scalar volume integral is a component of the vector

Vector Analvsis

The quantities that we deal in electromagnetic theory may be either scalar or vectors. There are other class of physical quantities called Tensors: where magnitude and direction vary with co ordinate axes]. Scalars are quantities characterized by magnitude only and algebraic sign. A quantity that has direction as well as magnitude is called a vector. Both scalar and vector quantities are function of time and position . A field is a function that specifies a particular quantity everywhere in a region. Depending upon the nature of the quantity under consideration, the field may be a vector or a scalar field.
Example of scalar field is the electric potential in a region while electric or magneticfields at any point is the example of vector field.

A vector $\vec{A}_{\text {can be written as, }} \vec{A}=\hat{a} A$, where, $A=|\vec{A}|_{\text {is }}$ the magnitude $\hat{a}=\frac{\hat{A}}{|A|}$ is the unit vector which has \vec{A}_{1} nit magnitude and same direction as that .

Two vector $\vec{A}_{\text {and }} \quad \vec{B}_{\text {are }}$ added together to give another vector . We have

$$
\vec{C}=\vec{A}+\vec{B} \ldots \ldots(1.1)
$$ which has tworules: 1: Parallelogram law and 2: Head \& tail rule as shown in figure 1.1(a), 1.1(b) and 1.2

PARALLELOGRAM RULE FOR VECTOR ADDITION
USE THE PLAY AND STOP BUTTONS TO VIEW HOW THE VECTORS A AND B ARE ADDED AND THE RESULTANT C IS PRODUCED
Fig 1.1(a):Vector Addition(Parallelogram Rule)

play
2)

HEAD TO TAIL RULE FOR VECIOR ADDITION
USE THE PLAY AND STOP BUTTONS TO VIEW HOW THE VECTORS A AND B ARE ADDED AND THE RESULTANT C IS PRODUCED
Fig 1.1 (b): Vector Addition (Head \& Tail Rule)

Vector Subtraction is similarly carried out: $\vec{D}=\vec{A}-\vec{B}=\vec{A}+(-\vec{B})$

CLICK PLAY AND STOP TO SEE THE VECTOR SUBTRATION OF A AND B

Fig 1.2: Vector subtraction
(www.brainkart.com/subject/Electromagnetic-Theory_206/)
Scaling of a vector is defined as $\vec{C}=\alpha \vec{B}$, where \vec{C} is scaled version of vector \vec{B} and ${ }^{\alpha}$ is a scalar.
Some important laws of vector algebra are:
$\vec{A}+\vec{B}=\vec{B}+\vec{A}$
Commutative Law

$$
\begin{align*}
& \vec{A}+(\vec{B}+\vec{C})=(\vec{A}+\vec{B})+\vec{C} \tag{1.4}\\
& \alpha(\vec{A}+\vec{B})=\alpha \vec{A}+\alpha \vec{B} \tag{1.5}
\end{align*}
$$

Associative Law

Distributive Law
The position vector \vec{r}_{ϱ} of a point P is the directed distance from the origin (O) to P, i.e., $\overrightarrow{r_{Q}}=\overrightarrow{O P}$ as shown in figure 1.3.

Fig 1.3: Distance Vector
(www.brainkart.com/subject/Electromagnetic-Theory_206/)

If ${ }^{r_{E}}=\mathrm{OP}$ and ${ }^{r_{P}}=\mathrm{OQ}$ are the position vectors of the points P and Q then the distance yector

Product of Vectors

The two types of vector multiplication are:
Scalar product

$$
\vec{A} \cdot \vec{B} \text {, Vector product } \vec{A} \times \vec{B}
$$

The dot product between two vectors is defined as
疌 $\left|\begin{array}{c}\text { G }\end{array}\right||B| \cos \theta A B$
Vector product $\quad \vec{A} \times \vec{B}=|A||B| \sin \theta_{A B} \cdot \vec{n}$

Fig 1.4: Vector dot product

(www.brainkart.com/subject/Electromagnetic-Theory_206/)
The dot product is commutative i.e., $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$ and distributive i.e., $\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}$ ve law does not apply to scalar product as shown in figure 1.4 The vector or cross product of two vectors \vec{A} and \vec{B} is denoted by $\vec{A} \times \vec{B}, \vec{A} \times \vec{B}$ is a vector perpendicular to the plane containing \vec{A} and \vec{B}, the magnitude is given by $|A||B| \sin \theta_{A B}$ and direction is given by right hand rule as explained in Figure 1.5.

Fig 1.5 : Illustrating the left thumb rule for determining the vector cross product

$$
C=B \times A
$$

Fig 1.5 :Illustrating the left thumb rule for determining the vector cross product
(www.brainkart.com/subject/Electromagnetic-Theory_206/)

$$
\begin{equation*}
\vec{A} \times \vec{B}=\hat{a_{n}} A B \sin \theta_{A B} \tag{1.7}
\end{equation*}
$$

\hat{a}_{n} is the unit vector given by, $\quad a_{n}=\frac{A}{|\vec{A} \times \vec{B}|}$
The following relations hold for vector product.

$$
\begin{equation*}
\vec{A} \times \vec{B}-\vec{B} \times \vec{A} \quad \text { i.e., cross product is non commutative } \tag{1.8}
\end{equation*}
$$

\qquad

$$
\begin{equation*}
\vec{A} \times(\vec{B}+\vec{C})=\vec{A} \times \vec{B}+\vec{A} \times \vec{C} \tag{1.9}
\end{equation*}
$$

i.e., cross product is distributive
$\vec{A} \times(\vec{B} \times \vec{C}) \neq(\vec{A} \times \vec{B}) \times \vec{C}$
i.e., cross product is non associative \qquad

Scalar and vector triple product :

Scalar triple product \qquad
\qquad

Vector triple product

$$
\begin{align*}
& \vec{A} \cdot(\vec{B} \times \vec{C})=\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B}) \tag{1.11}\\
& \vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})
\end{align*}
$$

Stoke's theorem

It states that the circulation of a $\quad \vec{A}$ vector around a closed path is equal to the $\vec{A}+\vec{A}$ tegral of over the surface bounded by this path. It may be noted that this equalityholds provided are continuous on the surface.
i.e,

$$
\begin{equation*}
\oint_{I} \vec{A} \cdot d \vec{l}=\int_{s} \nabla \times \vec{A} \cdot d \vec{s} \tag{1.82}
\end{equation*}
$$

Proof:Let us consider an area S that is subdivided into large number of cells as shown inthe figure 5.1.

Fig 5.1: Stokes theorem
(www.brainkart.com/subject/Electromagnetic-Theory_206/)
Let $k^{t \mathrm{~h}}$ cell has surface area and is bounded path $L \mathrm{k}$ while the total area is bounded by path L. As seen from the figure that if we evaluate the sum of the line integrals around the elementary areas, there is cancellation along every interior path and we are left the line integral along path L. Therefore we can write,

$$
\begin{equation*}
\oint_{I} \vec{A} \cdot d \vec{l}=\sum_{k} \oint_{L_{1}} \vec{A} \cdot d \vec{l}=\sum_{k} \frac{\oint_{L_{1}} \vec{A} \cdot d \vec{l}}{\Delta S_{k}} \Delta S_{k} \tag{1.83}
\end{equation*}
$$

$$
\begin{align*}
& \text { As } \quad 0 \\
& \oint_{L} \vec{A} \cdot d \vec{l}=\int_{S} \nabla \times \vec{A} \cdot d \vec{s}
\end{align*}
$$

which is the stoke's theorem

