
www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Unit-5
INTRODUCTION TO AJAX and WEB

SERVICES

INTRODUCTION TO AJAX

The underlying technologies behind classic Web applications (HTML) are simple and

straight forward. The classic web pages has very little intelligence and lack dynamic and

interactive behaviors. Changes in today’s web pages are brought by AJAX (Asynchronous

JavaScript and XML)

Ajax refers to a set of technologies and techniques that allow web pages be interactive

like desktop applications.

AJAX is a new technique for creating better, faster, and more interactive web applications

with the help of XML, HTML, CSS, and Java Script. Ajax uses XHTML for content, CSS for

presentation, along with Document Object Model and JavaScript for dynamic content display.

Conventional web applications transmit information to and from the sever using synchronous

requests. It means the user fill out a form, hit submit, and get directed to a new page with new

information from the server. With AJAX, when the user hit submit, JavaScript will make a

request to the server, interpret the results, and update the current screen. The user would never

know that anything was even transmitted to the server.

XML is commonly used as the format for receiving server data. AJAX is a web browser

technology independent of web server software. A user can continue to use the application

while the client program requests information from the server in the background. In AJAX,

clicking is not required; mouse movement is a sufficient event trigger. It is a data-driven

technology. AJAX cannot work independently. It is used in combination with other

technologies to create interactive webpages. The technologies that support AJAX are:

JavaScript, DOM, CSS and XMLHttpRequest.

AJAX is based on the following open standards:

❖ Browser-based presentation using HTML and Cascading Style Sheets (CSS).

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Asynchronous nature of AJAX

Asynchronous in AJAX means that the script will send a request to the server, and

continue the execution without waiting for the reply. As soon as reply is received a browser

event is fired, which in turn allows the script to execute associated actions. The client and the

server are asynchronous.

Browser
Server

An event occurs

Create an

XMLHttpRequest object

Send HttpRequest

Internet

Browser

Process the returned data

using Javascript

update page content

Internet

Fig 5.1: Working of AJAX

Process HttpRequest

Create a response and send

data back to the browser

Synchronous Request Asynchronous Request

❖ Data is stored in XML format and fetched from the server.

❖ Behind-the-scenes data fetching is done using XMLHttpRequest objects in the

browser.

❖ JavaScript to make everything happen.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Data

Deployed application

Web pages

(HTML, PHP, JSP, ….)

Application

logic
Data

5.1 CLIENT SERVER ARCHITECTURE

The Ajax provides a rich and diverse set of product that range from hundreds of

suppliers. This diversity provides IT managers and Web developers with the ability to choose

the optimal architectural approach and best products among multiple vendors.

Most Ajax technologies transform a platform-independent definition of the application

into the appropriate HTML and JavaScript content that is then processed by the browser to

deliver a rich user experience. Some Ajax designs perform most of their transformations on

the client. Others perform transformations on the server.

Client side vs server side transformations

➢ Client-side Ajax transformations

• With client-side Ajax, the Ajax engine runs on the client.

• The server delivers Web content (HTML, CSS, JavaScript, etc.) which is processed by

the client-side Ajax engine into revised Web content.

HTML browser client

Original

HTML + JS + …
Ajax engine

User interface

(HTML DOM)

Application server

Fig 5.2 AJAX Client transformations

• The browser renders the revised HTML/etc. content that comes out of the Ajax engine.

UI logic

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Deployed application
Server-side

Ajax engine

Web pages

(HTML, PHP, JSP, ….)

Application

logic
Data

• With this architecture, the application development team typically provides the

following server-side components: Web pages (e.g., *.html, *.php, *.jsp, *.asp),

application logic (e.g., Java) and data management (e.g., via a SQL database and/or

Web Services)

• The client-side component includes client-side user interface logic, such as event

handlers.

• The advantage of this option is the independence from the server side technology.

• The server code creates and serves the page and responds to the client's asynchronous

requests.

This way either side can be swapped with another implementation approach.

➢ Server-side transformations

• For server-side Ajax, an Ajax server component performs most or all of the Ajax

transformations.

HTML browser client

HTML + JS + …

output from server-

side Ajax engine

Client-side

Ajax engine

User interface

(HTML DOM)

Application server

Fig 5.3 AJAX Server transformations

• The server component generates the necessary Web content (HTML, CSS, JavaScript,

etc.) to deliver the desired user experience.

• The server-side Ajax toolkit downloads its own client-side Ajax library which

communicates directly with the toolkit's server-side Ajax component.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• With this architecture, the application development team typically only provides server-

side components (Web pages, application logic, and data management) and entrusts

client-side logic to the Ajax toolkit.

• The main benefit of this approach is that it allows the use of server-side languages for

debugging, editing, and refactoring tools with which developers are already familiar

• The disadvantage of this approach is the dependence on a particular server-side

technology.

• As a general rule, server-side Ajax frameworks expect application code to be written

in the server-side language.

• These frameworks typically hide all the JavaScript that runs in the browser inside

widgets, including their events.

Single DOM vs Dual DOM

Single DOM

Some Ajax runtime toolkits use a Single-DOM approach where the toolkit uses the

browser's DOM for both any original source markup and any HTML+JavaScript that results

from the toolkit's Ajax-to-HTML transformation logic. This is same as Fig 5.2 In the above

example, the developer is using tree widgets from an Ajax runtime library. The original

HTML markup (un-shaded) and the additional HTML markup inserted by the Ajax toolkit

(shaded) is given in the left. The DOM objects that correspond to the elements in the HTML

markup (e.g., the DOM object that represents a particular <div> element), where

JavaScript/DOM objects from unshaded objects correspond to original HTML markup and

shaded objects are ones that have been inserted by the Ajax toolkit is given in the right.

Fig 5.4 Manipulation of Single DOM

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Deployed application

Web pages

(HTML, PHP, JSP, ….)

Application

logic
Data

Typically, the Ajax toolkit inserts various rendering constructs such as ,<div>, and

<p> elements, inline within the original HTML markup (e.g., adding child elements to an

existing <div> element), thereby providing the various graphics and text necessary to produce

the desired visual representation for the tree widgets. The shaded sections on the right reflect

the private data that Ajax libraries typically add to various DOM and JavaScript objects in

order to store private data, such as run-time state information. The Single-DOM approach is

particularly well-suited for situations where the developer is adding Ajax capability within non-

Ajax DHTML application.

Dual DOM

Other Ajax runtime toolkits adopt a Dual-DOM approach that separates the data for

the Ajax-related markup into an Ajax DOM tree that is kept separate from the original

Browser DOM tree. The Dual-DOM approach has two types:

HTML browser client

Original

Ajax XML

Markup

Ajax engine

User interface

(HTML

DOM for Ajax

XML Markup

Application server

Fig 5.5 Dual DOM

With Client-side Dual-DOM, the second DOM tree typically consists of a separate

tree of JavaScript objects. With Server-side Dual-DOM, the second DOM tree is stored on

the server.

UI logic

Data

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Fig 5.6 Manipulation of Dual DOM

There are two DOMs : the HTML DOM and the XML DOM corresponding to the

Ajax-specific XML markup for the user interface elements.

The above example shows a separate file, "myapp.abc", which contains the user

interface definition for the tree widgets, which in this case are to be placed into the HTML

tree inside the <div> element with id="abctarget". Even though the example shows the use of

a separate file, some Dual-DOM Ajax runtime libraries support inline XML. In either case, a

Dual-DOM Ajax runtime library builds a separate DOM tree, typically using its own XML

parser rather than relying on the browser's HTML parser.

Sometimes the separate DOM tree is attached to the 'window' or 'document' objects.

With this approach, in model view controller (MVC) terms, the Ajax DOM can be thought of

as the model, the Browser DOM as the generated view, and the Ajax runtime toolkit as the

controller. It is usually necessary to establish bidirectional event listeners between the Ajax

DOM and the Browser DOM in order to maintain synchronization. Sometimes having a

separate Ajax DOM enables a more complete set of XML and DOM support, such as full

support for XML Namespaces, than is possible in the Browser DOM.

Dual-DOM (server-side)

Some Ajax technologies combine server-side Ajax transformations with a Dual-DOM

approach. The key difference between Server-side Dual-DOM and Client-side Dual-DOM is

that, with Server-side Dual-DOM, the Ajax DOM and most user interface logic is managed on

the server. In this scenario, the primary job of the client Ajax engine is to reflect back to the

server any interaction state changes, deferring data handling, UI state management and UI

update logic to the server. Server-side Dual-DOM enables tight application integration with

server-side development technologies such as Java Server Faces (JSF).

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Deployed application

Server-side

Ajax engine
DOM for Ajax

XML Markup

Web pages

(HTML, PHP, JSP, ….)

Application

logic
Data

HTML browser client

HTML + JS + …

output from server-

side Ajax engine

Client-side

Ajax engine
User interface

(HTML DOM)

Application server

Fig 5.7 Server side Dual DOM

UI logic

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

<wsp:Policywsu:Id="AddNumbers_policy">

<wsp:ExactlyOne> <wsp:All> <wsrm:RMAssertion>

<wsrm:InactivityTimeout Milliseconds="600000"/>

<wsrm:AcknowledgementInterval Milliseconds="200"/>

</wsrm:RMAssertion> </wsp:All> </wsp:ExactlyOne> </wsp:Policy>

5.4 DEVELOPING A WEB SERVICE

Use Web services tools to discover, create, and publish Web services that are created

from Java beans, enterprise beans, and WSDL files.

Creating a Web Service from WSDL

Start from WSDL to build the web service to implement a web service that is already

defined either by a standard or an existing instance of the service. In either case, the WSDL

already exists. The JAX-WS import tool processes the existing WSDL document, either from

a local copy on disk or by retrieving it from a network address or URL. When developing a

web service starting from an existing WSDL, the process is actually simpler than starting from

Java. This is because the policy assertions needed to enable various WSIT technologies are

already embedded in the WSDL file.

To create a web service from WSDL, create the following source files: WSDL File,

Web Service Implementation File, custom-server.xml , web.xml, sun-jaxws.xml, build.xml,

build.properties

The following files are standard files required for JAX-WS. custom-server.xml, sun-

jaxws.xml and web.xml

The build.xml and build.properties files are standard in any build environment.

WSDL File

Web Service Implementation File

AddNumbersImpl.java

package fromwsdl.server; import javax.jws.WebService;

import javax.jws.WebMethod;

@WebService (endpointInterface= "fromwsdl.server.AddNumbersPortType")

public class AddNumbersImpl{

@WebMethod(action="addNumbers")

public intaddNumbers (int number1, int number2)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Publishing a Web service

The Web service, also known as the business service, describes a Web service's

endpoint and where its WSDL file resides. The WSDL file lists the operations that service

provides.

Prerequisites:Register with a registry, Launch the Web Services Explorer, Add the

registry to the Web Services Explorer, Create a Web service, Deploy the Web service, Publish

a Business Entity.

Web services are published using two different publication formats: simple and

advanced.

Publish a business service using the simple option

• In the Web Services Explorer, select UDDI Main and select the registry to which

the users want to publish the business entity.

• In the Actions pane toolbar, click the Publish icon Picture of the Publish icon.

• Select Service and select the Simple radio button.

• Enter the publish URL, your user ID, password, WSDL URL, service name, and

service description in the respective fields.

• Click Go to publish your business entity.

Ensure that you select the service document, since the service element is the basis for

the Business Service that you will publish. The Web Services Explorer is automatically

updated with your published Web service. The registry contains pointers to the URL of the

WSDL service document of the Web service. Businesses can now discover and integrate with

your Web service.

Publish a Web service using the advanced option:

In the Web Services Explorer, select UDDI Main and select the registry to which the

users want to publish the business entity.

• In the Actions pane toolbar, click the Publish icon Picture of the Publish icon.

• Select Service and select the Advanced radio button.

• Enter the publish URL, your user ID, password, and WSDL URL in the respective

fields.

throw new AddNumbersFault_Exception(message, fault); }

return number1 + number2; }

public void oneWayInt(int number) {

System.out.println("Service received: " + number); } }

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Click Get or Find to associate the service with a business entity.

• Click Get or Find to associate a specific service interface with the service.

• Click Add to create service names.

• Click Add to create service descriptions.

• Click Add to create categories. Enter your service categories. Select a category

type from the drop down list.

• Click Browse to open the Categories pane.

• Navigate through the hierarchical taxonomy and select the appropriate

classification for your business service, then exit the Categories pane.

• Click Go to publish your business entity.

Testing a web service

The loosely coupled nature of web services and non-existence of a User interface

present a challenge to the developers and testers alike. Following are some of the challenges

that web service testers have to face: Scalability and Security, Absence of User Interface,

Distributed across network and Testing the service

Types of testing

As with traditional applications, there are different sorts of testing that are needed to be

carried out in case of web services.

➢ Proof of concept Testing

Web service is a new concept and because of this we need to make sure that the

architecture that we have chosen for our application is a correct one.

➢ Functional testing

Web service is designed to solve a business problem. It has a predefined function to

perform. This type of testing validates whether the service performs the intended function

correctly, does it handle the exception conditions gracefully and does it handle the

boundary value conditions.

➢ Regression testing

Regression testing aims to ensure that the web service is still working across builds or

releases. This sort of testing needs to be carried out during each release; hence it is an

ideal candidate for automation.

➢ Load testing

Load or stress testing is a test of the performance of the web service when many

simultaneous users are accessing the system. The response of the web service must be

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

consistent and also its performance must not degrade with the increase in the number of

users.

➢ Unit testing

Unit test cases must be written before the application is developed. As and when the

application is built, test cases are applied on the code. Hence the functionality is verified

as and when we develop the web service.

➢ Basic testing

The main aim of this testing is to test whether the web service is accessible and can be

invoked properly. Main focus in this phase should be to carry out the following

procedures.

- Get the WSDL file and test whether it is well-formed and in compliance with the

WSDL specifications published by W3C

- Using this WSDL file generate the client side stubs that handle the interaction with the

web service.

- Test the web service functionality that is whether the webs ervice responds to the

requests submitted to it correctly.

- Invoke the sample invoker by passing it the parameters required by the web service.

Check the response of the web service from a functionality point of view.

- The sample invoker calls the client stubs which further call the web service

- The stub constructs the SOAP message from the parameters passed to it and passes this

message to the service. This message can be monitored by a Sniffer program like TCP

Monitor.

- If there are any security checks, like username and password we need to test their

effectiveness. The intent of this step should be to break in the system and gain

unauthorized access.

➢ Testing SOA

As organizations create a web service interface to their systems and overcome security

issues, they will be able to exchange data with business entities such as customers,

suppliers and partners in a more uninhibited and loosely coupled manner. For testing such

collaborating web services we need to focus on the following:

- In a system where web services interact with each other, we need to test the ‘publish’,

‘find’ and ‘bind’ capabilities of the constituent web services.

- A particular SOAP message may typically have a designated recipient, but may also

have one or more intermediaries along the message route that take actions based upon

the instructions provided to them in the header of the SOAP message. Web services

testing must verify the proper functionality of these intermediaries also.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

➢ Interoperability testing

In the loosely coupled environment of a service-oriented architecture, separate sources

don't need to know the details of each other’s working, but they need to have enough

common ground for reliably exchanging messages without error or misunderstanding.

Standardized specifications help in creating such a common ground, but differences in

implementation may still cause problems in the communication. Interoperability is when

services can interact with each other without encountering such problems.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

SOAP is an XML-based protocol for exchanging information between computers.

SOAP is an application of the XML specification.

5.6 SIMPLE OBJECT ACCESS PROTOCOL (SOAP)

Features of SOAP:

• SOAP is a communication protocol for Internet

• SOAP can extend HTTP for XML messaging

• SOAP provides data transport for Web services

• SOAP can exchange complete documents or call a remote procedure

• SOAP can be used for broadcasting a message

• SOAP is platform and language independent

• SOAP is the XML way of defining what information gets sent and how

• SOAP enables client applications to easily connect to remote services and invoke

remote methods.

SOAPMessage Structure

A SOAP message is an ordinary XML document containing the following elements.

➢ Envelope: (Mandatory) Defines the start and the end of the message.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

...

Message information goes here

...

</SOAP-ENV:Envelope>

➢ Header: (Optional) Contains any optional attributes of the message used in

processing the message, either at an intermediary point or at the ultimate end

point.

➢ Body: (Mandatory) Contains the XML data comprising the message being

sent.

➢ Fault: (Optional) An optional Fault element that provides information about

errors that occurred while processing the message

SOAP Envelope Element

The SOAP envelope indicates the start and the end of the message so that the receiver

knows when an entire message has been received. The SOAP envelope is a packaging

mechanism. Every SOAP message has a root Envelope element. Every Envelope element

must contain exactly one Body element. If an Envelope contains a Header element, it must

contain no more than one, and it must appear as the first child of the Envelope, before the

Body. The envelope changes when SOAP versions change. The SOAP envelope is specified

using the ENV namespace prefix and the Envelope element. The optional SOAP encoding is

also specified using a namespace name and the optional encoding Style element, which could

also point to an encoding style other than the SOAP one.

SOAP Header Element

The optional Header element offers a flexible framework for specifying additional

application-level requirements. For example, the Header element can be used to specify a

digital signature for password-protected services; likewise, it can be used to specify an

account number for pay-per-use SOAP services.

Header elements can occur multiple times. Headers are intended to add new features

and functionality. The SOAP header contains header entries defined in a namespace. The

header is encoded as the first immediate child element of the SOAP envelope. When more

than one header is defined, all immediate child elements of the SOAP header are interpreted

as SOAP header blocks.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/2001/12/soap-encoding

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

<?xml version="1.0"?> <SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<SOAP-ENV:Header>

<t:Transaction

xmlns:t="http://www.tutorialspoint.com/transaction/"

SOAP-ENV:mustUnderstand="true">5</t:Transaction>

</SOAP-ENV:Header>

....

</SOAP-ENV:Envelope>

<?xml version="1.0"?>

<SOAP-ENV:Envelope

........

<SOAP-ENV:Body>

<m:GetQuotationResponsexmlns:m="http://www.tp.com/Quotation">

SOAP Header element can have following two attributes

a) Actor attribute: The SOAP protocol defines a message path as a list of SOAP service

nodes. Each of these intermediate nodes can perform some processing and then forward

the message to the next node in the chain. By setting the Actor attribute, the client can

specify the recipient of the SOAP header.

b) Must Understand attribute: Indicates whether a Header element is optional or

mandatory. If set to true ie. 1 the recipient must understand and process the Header

attribute according to its defined semantics, or return a fault.

SOAP Header

SOAP Body Element

The SOAP body is a mandatory element which contains the application-defined XML

data being exchanged in the SOAP message. The body must be contained within the envelope

and must follow any headers that might be defined for the message. The body is defined as a

child element of the envelope, and the semantics for the body are defined in the associated

SOAP schema. The body contains mandatory information intended for the ultimate receiver of

the message.

Example: SOAP Body

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/2001/12/soap-encoding
http://www.tutorialspoint.com/transaction/
http://www.tutorialspoint.com/transaction/
http://www.tp.com/Quotation
http://www.tp.com/Quotation

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema"> <SOAP-ENV:Body>

<SOAP-ENV:Fault>

<faultcodexsi:type="xsd:string">SOAP-ENV:Client</faultcode>

<faultstringxsi:type="xsd:string">

Failed to locate method (ValidateCreditCard) in class

(examplesCreditCard) at /usr/local/ActivePerl-5.6/lib/

SOAP Fault Element

When an error occurs during processing, the response to a SOAP message is a SOAP

fault element in the body of the message, and the fault is returned to the sender of the SOAP

message. The SOAP fault mechanism returns specific information about the error, including a

predefined code, a description, the address of the SOAP processor that generated. A SOAP

Message can carry only one fault block. Fault element is an optional part of SOAP Message

For the HTTP binding, a successful response is linked to the 200 to 299 range of status codes;

SOAP fault is linked to the 500 to 599 range of status codes.

Sub Element Description

<faultCode> A text code used to indicate a class of errors.

<faultString> A text message explaining the error

<faultActor> A text string indicating who caused the fault. This is useful if the

SOAP message travels through several nodes in the SOAP

message path, and the client needs to know which node caused the

error. A node that does not act as the ultimate destination must

include a faultActor element.

<detail> An element used to carry application-specific error messages. The

detail element can contain child elements, called detail entries.

SOAP Fault Codes

The faultCode values must be used in the faultcode element when describing faults

<m:Quotation>This is Qutation</m:Quotation>

</m:GetQuotationResponse> </SOAP-ENV:Body> </SOAP-ENV:Envelope>

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/1999/XMLSchema-instance
http://www.w3.org/1999/XMLSchema-instance
http://www.w3.org/1999/XMLSchema
http://www.w3.org/1999/XMLSchema

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns1:getProductResponse

xmlns:ns1="urn:examples:productservice"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<return xmlns:ns2="urn:examples" xsi:type="ns2:product">

<name xsi:type="xsd:string">Red Hat Linux</name>

<price xsi:type="xsd:double">54.99</price>

<description xsi:type="xsd:string">

Red Hat Linux Operating System

</description>

<SKU xsi:type="xsd:string">A358185</SKU>

</return> </ns1:getProductResponse> </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP Encoding

SOAP includes a built-in set of rules for encoding data types. This enables the SOAP

message to indicate specific data types, such as integers, floats, doubles, or arrays. SOAP data

types are divided into two broad categories: scalar types and compound types. Scalar types

contain exactly one value, such as a last name, price, or product description. Compound types

contain multiple values, such as a purchase order or a list of stock quotes. Compound types

are further subdivided into arrays and structs. Structs contain multiple values, but each

element is specified with a unique accessor element.

SOAP

In this example, a GetQuotation request is sent to a SOAP Server over HTTP. The

request has a QuotationName parameter, and a Quotation will be returned in the response.

The namespace for the function is defined in "http://www.xyz.org/quotation" address.

site_perl/5.6.0/SOAP/Lite.pm line 1555. </faultstring>

</SOAP-ENV:Fault> </SOAP-ENV:Body> </SOAP-ENV:Envelope>

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/2001/12/soap-encoding
http://www.xyz.org/quotation

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

POST /Quotation HTTP/1.0

Host: www.xyz.org

Content-Type: text/xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<SOAP-ENV:Bodyxmlns:m="http://www.xyz.org/quotations">

<m:GetQuotation>

<m:QuotationsName>MiscroSoft</m:QuotationsName>

</m:GetQuotation> </SOAP-ENV:Body> </SOAP-ENV:Envelope>

HTTP/1.0 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<SOAP-ENV:Bodyxmlns:m="http://www.xyz.org/quotation">

<m:GetQuotationResponse>

<m:Quotation>Here is the quotation</m:Quotation>

</m:GetQuotationResponse> </SOAP-ENV:Body> </SOAP-ENV:Envelope>

SOAP request:

SOAP response:

Advantages and Disadvantages of SOAP

• Language neutrality: SOAP can be developed using any language.

• Interoperability and Platform Independence: SOAP can be implemented in any

language and can be executed in any platform.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.xyz.org/
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/2001/12/soap-encoding
http://www.xyz.org/quotations
http://www.xyz.org/quotations
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/2001/12/soap-encoding
http://www.xyz.org/quotation
http://www.xyz.org/quotation

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Simplicity: SOAP messages are in very simple XML format.

• Scalability: SOAP uses HTTP protocol for transport due to which it becomes

scalable.

Disadvantages of SOAP

• Slow: SOAP uses the XML format which needs to be parsed and is lengthier too

which makes SOAP slower than CORBA, RMI or IIOP.

• WSDL Dependence: It depends on WSDL and does not have any standardized

mechanism for dynamic discovery of the services.

Differences between SOAP and HTTP

SOAP HTTP

It is a protocol for accessing web services and

based on XML.

Http (HyperText Transfer Protocol) is a

transfer used protocol, which called a

stateless protocol because each command

is executed independently, without any

knowledge of the commands that came

before it.

SOAP provides a way to communicate

between applications running on different

operating systems, with different technologies

and programming languages.

This is the main reason that it is difficult to

implement Web sites that react intelligently

to user input.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Soap

client

UDDI registry

5.5 WEB SERVICE DESCRIPTION LANGUAGE (WSDL)

WSDL stands for Web Services Description Language. It is the standard format for

describing a web service. WSDL was developed jointly by Microsoft and IBM.

Features of WSDL

• WSDL is an XML-based protocol for information exchange in decentralized and

distributed environments.

• WSDL definitions describe how to access a web service and what operations it will

perform.

Soap server

Publish specify the

WSDL

Client side

Client side

discovery code Discover obtain the

WSDL

Fig 5.9 Architecture of Web service

Web service Web service Web service

Generate

stubs

Web server

S
o

ap
 o

v
er H

T
T

P

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• WSDL is a language for describing how to interface with XML-based services.

• WSDL is an integral part of Universal Description, Discovery, and Integration

(UDDI), an XML-based worldwide business registry.

• WSDL is the language that UDDI uses.

WSDL addresses this need by defining an XML grammar for describing network

services as collections of communication endpoints capable of exchanging messages. WSDL

service definitions provide documentation for distributed systems and serve as a recipe for

automating the details involved in applications communication.

Steps in providing service:

The following figure illustrates the use of WSDL. At the left is a service provider. At

the right is a service consumer. The steps involved in providing and consuming a service are:

❖ A service provider describes its service using WSDL. This definition is published

to a repository of services. The repository could use Universal Description,

Discovery, and Integration (UDDI). Other forms of directories could also be used.

Fig 5.10 WSDL service

❖ A service consumer issues one or more queries to the repository to locate a service

and determine how to communicate with that service.

❖ Part of the WSDL provided by the service provider is passed to the service

consumer. This tells the service consumer what the requests and responses are for

the service provider.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

❖ The service consumer uses the WSDL to send a request to the service provider.

❖ The service provider provides the expected response to the service consumer.

WSDL Document

A WSDL document defines services as collections of network endpoints, or ports. In

WSDL, the abstract definition of endpoints and messages is separated from their concrete

network deployment or data format bindings. A port is defined by associating a network

address with a reusable binding, and a collection of ports define a service.

WSDL Elements

WSDL breaks down web services into three specific, identifiable elements that can be

combined or reused once defined: Types, Operations and Binding. A WSDL document has

various elements, but they are contained within these three main elements, which can be

developed as separate documents and then they can be combined or reused to form complete

WSDL files. A WSDL document contains the following elements:

➢ Definition: It is the root element of all WSDL documents. It defines the name of

the web service, declares multiple namespaces used throughout the remainder of

the document, and contains all the service elements described here.

➢ Data types: The data types to be used in the messages are in the form of XML

schemas.

➢ Message: It is an abstract definition of the data, in the form of a message presented

either as an entire document or as arguments to be mapped to a method invocation.

➢ Operation: It is the abstract definition of the operation for a message, such as

naming a method, message queue, or business process, that will accept and process

the message.

➢ Port type: It is an abstract set of operations mapped to one or more end-points,

defining the collection of operations for a binding; the collection of operations, as

it is abstract, can be mapped to multiple transports through various bindings.

➢ Binding: It is the concrete protocol and data formats for the operations and

messages defined for a particular port type.

➢ Port: It is a combination of a binding and a network address, providing the target

address of the service communication.

➢ Service: It is a collection of related end-points encompassing the service

definitions in the file; the services map the binding to the port and include any

extensibility definitions.

➢ Documentation: This element is used to provide human-readable documentation

and can be included inside any other WSDL element.

➢ Import: This element is used to import other WSDL documents or XML Schemas.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

<definitions> <types>

definition of types </types>

<message> definition ofa message...... </message>

<portType> <operation> definition of a operation </operation>

</portType>

<binding> definition ofa binding. </binding>

<service> definition of a service..... </service> </definitions>

Document Structure of WSDL

CONSUMING A WEB SERVICE

A web service can be consumed (or called) by a client application. Different types of

client applications can consume a web service. In today's software environment, almost every

application needs a web service to enhance its functionality. The important advantage of a

web service is that it returns its results in xml format, which can be consumed by different

types of clients like browser based clients, rich desktop clients, spreadsheets, wireless devices,

interactive voice response(IVR) systems and other business applications.

A client application discovers a web service, and then uses services provided by the

web service. This process is known as consuming a Web service.

Creating Web Ports

Web ports are specially configured ports that you use to consume (call) Web services.

A Web port can contain multiple operations that represent a mix of one-way (request only)

and two-way (request-response) Web methods. Each operation in a Web port represents one

method of a Web service.

Adding Web References

A Web reference is a description of a Web service that is available to the project. A

Web reference includes:

➢ A Universal Resource Locator (URL) for the Web service.

➢ A WSDL file that offers information about the service such as available methods,

ports, and message types.

➢ A reference map (Reference.map).

When the user add a Web reference, all the Web methods for that Web service must be

compatible with the Server.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

PL/SQL Query

Java DML

DATABASE DRIVEN WEB APPLICATION

Web services enable application-to-application interaction over the Web, regardless of

platform, language, or data formats. The key ingredients, including Extensible Markup

Language (XML), Simple Object Access Protocol (SOAP), Web Services Description

Language (WSDL), and Universal Description, Discovery, and Integration (UDDI), have been

adopted across the entire software industry. The Database Web services technology is a

database approach to Web services. It works in the following two directions:

➢ Accessing database resources as a Web service

➢ Consuming external Web services from the database

Oracle Database can access Web services through PL/SQL packages and Java classes

deployed within the database.

Using Oracle Database as Web Services Provider

Web Services use industry-standard mechanisms to provide easy access to remote

content and applications, regardless of the platform and location of the provider and

implementation and data format. Client applications can query and retrieve data from Oracle

Database and call stored procedures using standard Web service protocols. There is no

dependency on Oracle-specific database connectivity protocols. This approach is highly

beneficial in heterogeneous, distributed, and disconnected environments. Using Oracle

Database as a Web service provider offers the following features:

• Enhances PL/SQL Web services

• Exposes Java in the database as Web services

• Provides SQL query Web services

• Enables DML Web services

Oracle Fusing Middleware

End point implicity

specifies the of

service provided by

the server

SOAP response

per WSDL

OC4J

Web services

servlet

JPub

Generated

Java

Classes

Oracle Database

Fig 5.11 Accessing a

Database web service
XML

parser

Soap

libraries

Encoding

Decoding

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

JVM

Web services
 Oracle Database

WDSL
JVM

SOAP Static Java

PL/SQL

Call Spec

Fig 5.12 Calling web services within a database

Web Service Data Sources (Virtual Table Support)

To access data that is returned from single or multiple Web service invocations, create

a virtual table using a Web service data source. This table lets the user to query a set of

returned rows as though it were a table.

The client calls a Web service and the results are stored in a virtual table in the

database. The result sets can be passed from function to function. This enables the user to set

up a sequence of transformation without a table holding intermediate results. By using Web

services with the table function, a range of input values can be manipulated fr om single or

multiple Web services as a real table.

DII

Java

Proxy Class

Database module

as a Web service

requestor

Using Oracle Database as Web Services Consumer

The storage, indexing, and searching capabilities of a relational database can be

extended to include semi-structured and non-structured data, including Web services. By

calling Web services, the database can track, aggregate, refresh, and query dynamic data

produced on-demand, such as stock prices, currency exchange rates, and weather information.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Web services
Oracle Database

JVM

Call out to

 Web

service

Database

module as

a web

service

requestor

Fig 5.13 Virtual table

SOAP

Virtual

database

table

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

5.3 WEB SERVICES

A web service is a collection of open protocols and standards used for exchanging

data between applications or systems.

Web services are a technology, a process, and a phenomenon. Web services are built

on top of open standards such as TCP/IP, HTTP, Java, HTML, and XML. XML is used to

encode all communications to a web service. They include programs, objects, messages, or

documents. They are available over the Internet or private (intranet) networks. They are not

tied to any one operating system or programming language. They are self-describing through a

common XML grammar They are discoverable through a simple find mechanism

Components of Web Services

The basic web services platform is XML + HTTP. All the standard web services work

using the following components:

➢ Java Web Services

➢ SOAP (Simple Object Access Protocol)

➢ UDDI (Universal Description, Discovery and Integration)

➢ WSDL (Web Services Description Language)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Working of Web service

A web service enables communication among various applications by using open

standards such as HTML, XML, WSDL, and SOAP. A web service takes the help of:

• XML to tag the data

• SOAP to transfer a message

• WSDL to describe the availability of service.

• Java-based web service can also be built.

Example:

Consider a simple account-management and order processing system. The accounting

personnel use a client application built with Visual Basic or JSP to create new accounts and

enter new customer orders.

The processing logic for this system is written in Java and resides on a Solaris machine,

which maintains a database. The following are the steps to perform an operation in a web

service:

• The client program bundles the account registration information into a SOAP

message.

• This SOAP message is sent to the web service as the body of an HTTP POST

request.

• The web service unpacks the SOAP request and converts it into a command that the

application can understand.

• The application processes the information as required and responds with a new

unique account number for that customer.

• Then the web service packages the response into another SOAP message, which it

sends back to the client program in response to its HTTP request.

• The client program unpacks the SOAP message to obtain the results of the account

registration process.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Characteristics of Web Service

➢ XML based: Using XML eliminates any networking, operating system, or platform

binding.

➢ Loosely Coupled: A tightly coupled system implies that the client and server logic

are closely tied to one another, implying that if one interface changes, the other

must be updated. Adopting a loosely coupled architecture tends to make software

systems more manageable and allows simpler integration between different

systems.

➢ Coarse grained: Web services technology provides a natural way of defining coarse-

grained services that access the right amount of business logic.

➢ Ability to be Synchronous or Asynchronous: Synchronicity refers tothe binding

of the client to the execution of the service. In synchronous invocations, the client

blocks and waits for the service to complete its operation before continuing.

Asynchronous operations allow a client to invoke a service and then execute other

functions.

➢ Supports Remote Procedure Calls (RPCs): Web services support the transparent

exchange of documents to facilitate business integration.

Advantages of Web services: Interoperability, Reusability, Platform independent, Coarse-

grained, Low communication cost, Standardized protocol, Exposing the existing function on

the network

JAVA WEB SERVICES

Java web services has two APIs: JAX-WS and JAX-RS. The java web service

application can be accessed by other programming languages such as .Net and PHP. Java web

service application perform communication through WSDL (Web Services Description

Language).

JAVA Web Services API

JAX-WS

(SOAP)

JAX-RS

(REST ful)

RPC Style Document Style Jersey REST easy

Fig 5.8 Java Web Services API

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

import javax.jws.WebMethod; import javax.jws.WebService;

import javax.jws.soap.SOAPBinding; import javax.jws.soap.SOAPBinding.Style;

//Service Endpoint Interface @WebService

@SOAPBinding(style = Style.RPC)

public interface HelloWorld

{ @WebMethod String getHelloWorldAsString(String name); }

There are two ways to develop JAX-WS example: RPC style and Document style.

1) AX-WS Example RPC Style

Creating JAX-WS example is a easy task because it requires no extra configuration

settings. JAX-WS API is inbuilt in JDK, so no extra jar file is needed for it.

This simple application has four files:

•

•

•

•

HelloWorld.java

HelloWorld.java

HelloWorldImpl.java

Publisher.java

HelloWorldClient.java

HelloWorldImpl.java

import javax.jws.WebService;

@WebService(endpointInterface = "com.abc.HelloWorld")

public class HelloWorldImpl implements HelloWorld{

@Override

public String getHelloWorldAsString(String name) { //Implementation of the interface

return "Hello World JAX-WS " + name; } }

➢ JAX-WS: for SOAP web services. There are two ways to write JAX-WS

application code: by RPC style and Document style.

➢ JAX-RS: for RESTful web services. There are mainly two implementations: Jersey

and RESTeasy.

JAX-WS

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

import javax.xml.ws.Endpoint; //Endpoint publisher

public class HelloWorldPublisher{

public static void main(String[] args) {

Endpoint.publish("http://localhost:7779/ws/hello", new HelloWorldImpl()); } }

HelloWorldClient.java

JAX-WS Example Document Style

Like RPC style, we can create JAX-WS example in document style. Use

Style.DOCUMENT for @SOAPBinding annotation in place of Style.RPC.

HelloWorld.java

Hello World JAX-WSrpc

import java.net.URL; import javax.xml.namespace.QName;

import javax.xml.ws.Service;

public class HelloWorldClient{

public static void main(String[] args) throws Exception {

URL url =new URL("http://localhost:7779/ws/hello?wsdl");

//1st argument service URI, refer to wsdl document above

//2nd argument is service name, refer to wsdl document above

QNameqname=new QName("http://abc.com/","HelloWorldImplService");

Service service = Service.create(url, qname);

HelloWorldhello=service.getPort(HelloWorld.class);

System.out.println(hello.getHelloWorldAsString("rpc")); } }

import javax.jws.WebMethod; import javax.jws.WebService;

import javax.jws.soap.SOAPBinding; import javax.jws.soap.SOAPBinding.Style;

//Service Endpoint Interface

@WebService

@SOAPBinding(style = Style.DOCUMENT)

public interface HelloWorld

{ @WebMethod String getHelloWorldAsString(String name); }

Publisher.java

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://abc.com/
http://abc.com/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Publisher.java

HelloWorldClient.java

Difference between RPC and Document web services

Hello World JAX-WS document

import java.net.URL; import javax.xml.namespace.QName;

import javax.xml.ws.Service; public class HelloWorldClient

{ public static void main(String[] args) throws Exception

{ URL url = new URL("http://localhost:7779/ws/hello?wsdl");

//1st argument service URI, refer to wsdl document above

//2nd argument is service name, refer to wsdl document above

QNameqname = new QName("http://abc.com/", "HelloWorldImplService");

Service service = Service.create(url, qname);

HelloWorld hello = service.getPort(HelloWorld.class);

System.out.println(hello.getHelloWorldAsString("document")); } }

importjavax.xml.ws.Endpoint;//Endpointpublisher

public class HelloWorldPublisher

{ public static void main(String[] args)

{ Endpoint.publish("http://localhost:7779/ws/hello", new HelloWorldImpl()); } }

import javax.jws.WebService; //Service Implementation

@WebService(endpointInterface = "com.abc.HelloWorld")

public class HelloWorldImpl implements HelloWorld

{ @Override public String getHelloWorldAsString(String name)

{ return "Hello World JAX-WS " + name; } }

HelloWorldImpl.java

RPC style Document style

RPC style web services use method

name and parameters to generate XML

structure. The generated WSDL is

difficult to be validated against schema.

Document style web services can be validated

against predefined schema.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://abc.com/
http://abc.com/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

import javax.ws.rs.GET; import javax.ws.rs.Path;

import javax.ws.rs.Produces; import javax.ws.rs.core.MediaType;

@Path("/hello") public class Hello {

// This method is called if HTML and XML is not requested

@GET

@Produces(MediaType.TEXT_PLAIN)

public String sayPlainTextHello() {

return "Hello Jersey Plain"; }

// This method is called if XML is requested

@GET

@Produces(MediaType.TEXT_XML)

public String sayXMLHello() {

return "<?xml version=\"1.0\"?>" + "<hello> Hello Jersey" + "</hello>";

}

// This method is called if HTML is requested

In RPC style, SOAP message is sent as

many elements.

In document style, SOAP message is sent as a

single document.

RPC style message is tightly coupled. Document style message is loosely coupled

In RPC style, SOAP message keeps the

operation name.

In Document style, SOAP message loses the

operation name.

In RPC style, parameters are sent as

discrete values.

In Document style, parameters are sent in

XML format.

JAX-RS

There are two main implementation of JAX-RS API: Jersey and RESTEasy.

1) JAX-RS Example Jersey

We can create JAX-RS example by jersey implementation. To do so load jersey jar

files or use maven framework. In this example, we are using jersey jar files for using

jersey example for JAX-RS.

Here, we create the following four files: Hello.java, web.xml, index.html and

HelloWorldClient.java

Hello.java

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

id="WebApp_ID" version="3.0">

<servlet>

<servlet-name>Jersey REST Service</servlet-name>

<servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>

<init-param>

<param-name>jersey.config.server.provider.packages</param-name>

<param-value>com.abc.rest</param-value>

</init-param>

<load-on-startup>1</load-on-startup> </servlet>

<servlet-mapping>

<servlet-name>Jersey REST Service</servlet-name>

<url-pattern>/rest/*</url-pattern>

</servlet-mapping> </web-app>

Click Here

Web.xml

Index.xml

@GET

@Produces(MediaType.TEXT_HTML)

public String sayHtmlHello() {

return "<html> " + "<title>" + "Hello Jersey" + "</title>"

+ "<body><h1>" + "Hello Jersey HTML" + "</h1></body>" + "</html> ";

}

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Now run this application on server. Here we are using Tomcat server on port 4444. The

project name is restfuljersey.

ClientTest.java

import java.net.URI;

import javax.ws.rs.client.Client;

import javax.ws.rs.client.ClientBuilder; import javax.ws.rs.client.WebTarget;

import javax.ws.rs.core.MediaType; import javax.ws.rs.core.UriBuilder;

import org.glassfish.jersey.client.ClientConfig;

public class ClientTest {

public static void main(String[] args) {

ClientConfigconfig = new ClientConfig();

Client client =ClientBuilder.newClient(config);

WebTarget target = client.target(getBaseURI());

//Now printing the server code of different media type

System.out.println(target.path("rest").path("hello").request().accept(MediaType.TEXT_PLAIN).

get(String.class));

System.out.println(target.path("rest").path("hello").request().accept(MediaType.TEXT_XML).

get(String.class));

System.out.println(target.path("rest").path("hello").request().accept(MediaType.TEXT_HTML).

get(String.class)); }

private static URI getBaseURI() {

//here server is running on 4444 port number and project name is restfuljersey

return UriBuilder.fromUri("http://localhost:4444/restfuljersey").build(); } }

Hello Jersey Plain

<?xml version="1.0"?><hello> Hello Jersey</hello>

<html><title>Hello Jersey</title><body><h1>Hello Jersey HTML</h1></body></html>

JAX-RS Annotations

Annotations Description

Path It identifies the URI path. It can be specified on class or method.

PathParam represents the parameter of the URI path.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

GET specifies method responds to GET request.

POST specifies method responds to POST request.

PUT specifies method responds to PUT request.

HEAD specifies method responds to HEAD request.

DELETE specifies method responds to DELETE request.

OPTIONS specifies method responds to OPTIONS request.

FormParam represents the parameter of the form.

QueryParam represents the parameter of the query string of an URL.

HeaderParam represents the parameter of the header.

CookieParam represents the parameter of the cookie.

Produces defines media type for the response such as XML, PLAIN, JSON etc. It

defines the media type that the methods of a resource class or

MessageBodyWriter can produce.

Consumes It defines the media type that the methods of a resource class or

MessageBodyReader can produce.

2) RESTful Web Services

REST stands for REpresentational State Transfer.REST is an architectural style not a protocol.

Advantages of RESTful Web Services

❖ Fast: RESTful Web Services are fast because there is no strict specification like

SOAP. It consumes less bandwidth and resource.

❖ Language and Platform independent: RESTful web services can be written in

any programming language and executed in anyplatform.

❖ Can use SOAP: RESTful web services can use SOAP web services as the

implementation.

❖ Permits different data format: RESTful web service permits different data

format such as Plain Text, HTML, XML and JSON.

We can download text files, image files, pdffiles, excel files in java by JAX-RS API. To

do so we need to write few lines of code only. Here, we are using jersey implementation for

developing JAX-RS file download examples. It is important to specify different content type

to download different files. The @Produces annotation is used to specify the type of file

content.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

import java.io.File; import javax.ws.rs.GET; import javax.ws.rs.Path;

import javax.ws.rs.Produces; import javax.ws.rs.core.Response;

import javax.ws.rs.core.Response.ResponseBuilder;

@Path("/files")

public class FileDownloadService {

private static final String FILE_PATH = "c:\\myfile.txt";

@GET

@Path("/txt")

@Produces("text/plain")

public Response getFile() {

File file = new File(FILE_PATH);

ResponseBuilder response = Response.ok((Object) file);

response.header("Content-Disposition","attachment; filename=\" javapoint_file1.txt\"");

return response.build(); } }

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

id="WebApp_ID" version="3.0">

<servlet>

<servlet-name>Jersey REST Service</servlet-name>

• @Produces("text/plain"): for downloading text file.

• @Produces("image/png"): for downloading png image file.

• @Produces("application/pdf"): for downloading PDF file.

• @Produces("application/vnd.ms-excel"): for downloading excel file.

• @Produces("application/msword"): for downloading ms word file.

FileDownloadService.java

web.xml

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

index.html

Output:

Download Text File

<servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>

<init-param>

<param-name>jersey.config.server.provider.packages</param-name>

<param-value>com.javatpoint.rest</param-value>

</init-param>

<load-on-startup>1</load-on-startup> </servlet>

<servlet-mapping>

<servlet-name>Jersey REST Service</servlet-name>

<url-pattern>/rest/*</url-pattern>

</servlet-mapping> </web-app>

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

5.2 XML Http Request Object and CALLBACK()

The XMLHttpRequest object is used to exchange data with a server behind the scenes.

This means that it is possible to update parts of a web page, without reloading the whole page.

XMLHttpRequest (XHR) is an API that can be used by JavaScript, JScript, VBScript, and

other web browser scripting languages to transfer and manipulate XML data to and from a

webserver using HTTP, establishing an independent connection channel between a webpage's

Client-Side and Server-Side. The data returned from XMLHttpRequest calls will often be

provided by back-end databases. Besides XML, XMLHttpRequest can be used to fetch data in

other formats, e.g. JSON or even plain text.

Creatingan XMLHttpRequest Object

Syntax:

variable=new XMLHttpRequest(); (new version)

variable=new ActiveXObject("Microsoft.XMLHTTP"); (old version)

Processing Requests in AJAX

The following are the sequence of operations request is initiated:

❖ A client event occurs.

❖ An XMLHttpRequest object is created.

❖ The XMLHttpRequest object is configured.

❖ The XMLHttpRequest object makes an asynchronous request to the

Webserver.

❖ The Webserver returns the result containing XML document.

❖ The XMLHttpRequest object calls the callback() function and processes the

result.

❖ The HTML DOM is updated.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

➢ A client event occurs:

- A JavaScript function is called as the result of an event.

- Example: validateUserId() JavaScript function is mapped as an event

handler to an onkeyup event on input form field whose id is set to "userid".

<input type="text" size="20" id="userid" name="id"onkeyup="validateUserId();">.

➢ XMLHttpRequest object is created

varajaxRequest; // AJAX variable

functionajaxFunction()

{ try

{ // This code is for browsers Opera 8.0+, Firefox, Safari

ajaxRequest =new XMLHttpRequest(); }

catch (e)

{ // Internet Explorer Browsers

Try {

ajaxRequest = new ActiveXObject("Msxml2.XMLHTTP"); }

catch (e) {

try{

ajaxRequest = new ActiveXObject("Microsoft.XMLHTTP"); }

catch (e){

// Something went wrong

alert("Your browser broke");

return false; } } } }

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

➢ The XMLHttpRequest object is configured

functionvalidateUserId()

{ ajaxFunction(); // Here processRequest() is the callback function.

ajaxRequest.onreadystatechange = processRequest;

if (!target) target = document.getElementById("userid");

varurl = "validate?id=" + escape(target.value);

ajaxRequest.open("GET", url, true);

ajaxRequest.send(null); }

➢ Making an asynchronous request to the Webserver

This is done using the XMLHttpRequest object ajaxRequest. Assume that the user

enters Sona in the userid box, then in the above request, the URL is set to

"validate?id=Sona".

➢ Webserver Returns the Result Containing XML Document

Server-side script is implemented as follows:

- Get a request from the client.

- Parse the input from the client.

- Do required processing.

- Send the output to the client.

If we assume that the user is going to write a servlet, then:

public void doGet(HttpServletRequest request, HttpServletResponse response) throws

IOException, ServletException

{ String targetId = request.getParameter("id");

if ((targetId != null) && !accounts.containsKey(targetId.trim()))

{ response.setContentType("text/xml");

response.setHeader("Cache-Control", "no-cache");

response.getWriter().write("true"); }

else {

response.setContentType("text/xml");

response.setHeader("Cache-Control", "no-cache");

response.getWriter().write("false"); } }

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

➢ Callback Function processRequest() is Called

The callback function is responsible for checking the progress of requests, identifying

the result of the request and handling data returned from the server. Callback functions also

serve as delegators, handing off to other areas of the application code. The XMLHttpRequest

object was configured to call the processRequest() function when there is a state change to the

readyState of the XMLHttpRequest object. Now this function will receive the result from the

server and will do the required processing. As in the following example, it sets a variable

message on true or false based on the returned value from the Webserver.

functionprocessRequest()

{ if (req.readyState == 4)

{ if (req.status == 200)

{ var message = ...;

...

}

➢ The HTML DOM is updated.

This is the final step and in this step, the HTML page will be updated. It happens in the

following way:

- JavaScript gets a reference to any element in a page using DOM API.

- The recommended way to gain a reference to an element is to call.

document.getElementById("userIdMessage"), // userIdMessage is ID attribute

// of an element appearing in the HTML document

- JavaScript may now be used to modify the element's attributes; modify the

element's style properties; or add, remove, or modify the child elements.

<script type="text/javascript">

<!— functionsetMessageUsingDOM(message)

{ varuserMessageElement = document.getElementById("userIdMessage");

varmessageText;

if (message == "false")

{ userMessageElement.style.color = "red";

messageText = "Invalid User Id"; }

else {

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

userMessageElement.style.color = "green";

messageText = "Valid User Id"; }

varmessageBody = document.createTextNode(messageText);

if (userMessageElement.childNodes[0])

{ userMessageElement.replaceChild(messageBody, userMessageElement.childNodes[0]);

}

Else { userMessageElement.appendChild(messageBody); } }

</script> <body> <div id="userIdMessage"><div> </body>

XMLHttpRequest Methods

Method Description

abort() Cancels the current request.

getAllResponseHeaders() Returns the complete set of HTTP headers as a

string.

getResponseHeader(headerName) Returns the value of the specified HTTP header

open(method, URL)

open(method, URL, async)

open(method, URL, async, userName)

open(method, URL, async, userName,

password)

Specifies the method, URL, and other optional

attributes of a request. The method parameter can

have a value of "GET", "POST", or "HEAD".

Other HTTP methods, such as "PUT" and

"DELETE" may be possible. The "async"

parameter specifies whether the request should be

handled asynchronously or not. "true" means that

the script processing carries on after the send()

method without waiting for a response, and

"false" means that the script waits for a response

before continuing script processing.

send(content) Sends the request.

setRequestHeader(label, value) Adds a label/value pair to the HTTP header to be

sent.

XMLHttpRequest Properties

➢ onreadystatechange: An event handler for an event that fires at every state change.

➢ readyState: The readyState property defines the current state of the XMLHttpRequest

object.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

State Description

0 The request is not initialized.

1 The request has been set up.

2 The request has been sent.

3 The request is in process.

4 The request is completed.

• readyState = 0 After the user have created the XMLHttpRequest object, but before

the call of the open() method.

• readyState = 1 After the user have called the open() method, but before the call of

send().

• readyState = 2 After the user have called send().

• readyState = 3 After the browser has established a communication with the server,

but before the server has completed the response.

• readyState = 4 After the request has been completed, and the response data has

been completely received from the server.

➢ responseText:Returns the response as a string.

➢ responseXML:Returns the response as XML. This property returns an XML

document object, which can be examined and parsed using the W3C DOM

node tree methods and properties.

➢ Status:Returns the status as a number (e.g., 404 for "Not Found" and 200 for

"OK").

➢ statusText:Returns the status as a string (e.g., "Not Found" or "OK").

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

