
www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

A distributed system is a collection of independent computers, interconnected via a

network, capable of collaborating on a task. Distributed computing is computing

performed in a distributed system.

INTRODUCTION TO DISTRIBUTED SYSTEMS

INTRODUCTION

The process of computation was started from working on a single processor. This uni-

processor computing can be termed as centralized computing. As the demand for the increased

processing capability grew high, multiprocessor systems came to existence. The advent of

multiprocessor systems, led to the development of distributed systems with high degree of

scalability and resource sharing. The modern day parallel computing is a subset of distributed

computing

A distributed system is a collection of independent entities that cooperate to solve a problem

that cannot be individually solved. Distributed computing is widely used due to advancements

in machines; faster and cheaper networks. In distributed systems, the entire network will be

viewed as a computer. The multiple systems connected to the network will appear as a single

system to the user. Thus the distributed systems hide the complexity of the underlying

architecture to the user. Distributed computing is a special version of parallel computing where

the processors are in different computers and tasks are distributed to computers over a network.

The definition of distributed systems deals with two aspects that:

Deals with hardware: The machines linked in a distributed system are autonomous.

Deals with software: A distributed system gives an impression to the users that they are

dealing with a single system.

Features of Distributed Systems:

No common physical clock - This is an important assumption because it introduces the

element of “distribution” in the system and gives rise to the inherent asynchrony amongst the

processors.

No shared memory - A key feature that requires message-passing for communication. This

feature implies the absence of the common physical clock.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Geographical separation – The geographically wider apart that the processors are, the more

representative is the system of a distributed system.

Autonomy and heterogeneity – Here the processors are “loosely coupled” in that they have

different speeds and each can be running a different operating system.

Issues in distributed systems

Heterogeneity

Openness

Security

Scalability

Failure handling

Concurrency

Transparency

Quality of service

QOS parameters

The distributed systems must offer the following QOS:

• Performance

• Reliability

• Availability

• Security

Differences between centralized and distributed systems

Centralized Systems Distributed Systems

In Centralized Systems, several jobs are done

on a particular central processing unit(CPU)

In Distributed Systems, jobs are distributed

among several processors. The Processor are

interconnected by a computer network

They have shared memory and shared

variables.

They have no global state (i.e.) no shared

memory and no shared variables.

Clocking is present. No global clock.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

RELATION TO COMPUTER SYSTEM COMPONENTS

Fig : Example of a Distributed System

As shown in Fig., Each computer has a memory-processing unit and the computers are

connected by a communication network. Each system connected to the distributed networks

hosts distributed software which is a middleware technology. This drives the Distributed

System (DS) at the same time preserves the heterogeneity of the DS. The term computation or

run in a distributed system is the execution of processes to achieve a common goal.

Fig : Interaction of layers of network

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The interaction of the layers of the network with the operating system and

middleware is shown in Fig. The middleware contains important library functions for

facilitating the operations of DS.

The distributed system uses a layered architecture to break down the complexity of system

design. The middleware is the distributed software that drives the distributed system, while

providing transparency of heterogeneity at the platform level

Examples of middleware: Object Management Group’s (OMG), Common Object Request

Broker Architecture (CORBA) [36], Remote Procedure Call (RPC), Message Passing Interface

(MPI)

MOTIVATION

The following are the keypoints that acts as a driving force behind DS:

Inherently distributed computations: DS can process the computations at geographically

remote locations.

Resource sharing: The hardware, databases, special libraries can be shared between systems

without owning a dedicated copy or a replica. This is cost effective and reliable.

Access to geographically remote data and resources: As mentioned previously, computations

may happen at remote locations. Resources such as centralized servers can also be accessed

from distant locations.

Enhanced reliability: DS provides enhanced reliability, since they run on multiple copies of

resources. The distribution of resources at distant locations makes them less susceptible for

faults.

The term reliability comprises of:

1. Availability: the resource/ service provided by the resource should be accessible at

all times

2. Integrity: the value/state of the resource should be correct and consistent.

3. Fault-Tolerance: the ability to recover from system failures

Increased performance/cost ratio: The resource sharing and remote access features of DS

naturally increase the performance / cost ratio.

Scalable: The number of systems operating in a distributed environment can be increased as the

demand increases.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Parallel Processing Systems divide the program into multiple segments and process them

simultaneously.

RELATION TO PARALLEL SYSTEMS

The main objective of parallel systems is to improve the processing speed. They are

sometimes known as multiprocessor or multi computers or tightly coupled systems. They

refer to simultaneous use of multiple computer resources that can include a single computer

with multiple processors, a number of computers connected by a network to form a parallel

processing cluster or a combination of both.

Characteristics of parallel systems

A parallel system may be broadly classified as belonging to one of three types:

1. A multiprocessor system

2. A multicomputer parallel system

3. Array processors

1. A multiprocessor system

A multiprocessor system is a parallel system in which the multiple processors have direct access

to shared memory which forms a common address space. The architecture is shown in Figure

(a). Such processors usually do not have a common clock.

Figure: Two standard architectures for parallel systems. (a) Uniform memory access

(UMA) multiprocessor system. (b) Non-uniform memory access (NUMA) multiprocessor.

i) Uniform Memory Access (UMA)

• Here, all the processors share the physical memory in a centralized manner with equal

access time to all the memory words.

• Each processor may have a private cache memory. Same rule is followed for peripheral

devices.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• When all the processors have equal access to all the peripheral devices, the system is

called a symmetric multiprocessor.

• When only one or a few processors can access the peripheral devices, the system is

called an asymmetric multiprocessor.

• When a CPU wants to access a memory location, it checks if the bus is free, then it

sends the request to the memory interface module and waits for the requested data to be

available on the bus.

• Multicore processors are small UMA multiprocessor systems, where the first shared

cache is actually the communication channel.

ii) Non-uniform Memory Access (NUMA)

• In NUMA multiprocessor model, the access time varies with the location of the memory

word.

• Here, the shared memory is physically distributed among all the processors, called local

memories.

• The collection of all local memories forms a global address space which can be accessed

by all the processors.

• NUMA systems also share CPUs and the address space, but each processor has a local

memory, visible to all other processors.

• In NUMA systems access to local memory blocks is quicker than access to remote

memory blocks.

Figure shows two popular interconnection networks – the Omega network and the Butterfly

network, each of which is a multi-stage network formed of 2×2 switching elements. Each 2×2

switch allows data on either of the two input wires to be switched to the upper or the lower

output wire. In a single step, however, only one data unit can be sent on an output wire. So if the

data from both the input wires is to be routed to the same output wire in a single step, there is a

collision.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Figure: Interconnection networks for shared memory multiprocessor systems

Omega interconnection function

The Omega network which connects n processors to n memory units has n/2log2 n

switching elements of size 2×2 arranged in log2 n stages. Between each pair of adjacent stages

of the Omega network, a link exists between output i of a stage and the input j to the next stage

according to the following perfect shuffle pattern which is a left-rotation operation on the binary

representation of i to get j. The generation function is given as:

The routing function from input line i to output line j considers only j and the stage

number s, where s ∈ [0, log n – 1]. In a stage s switch, if the s + 1th most significant bit of j is 0,

the data is routed to the upper output wire, otherwise it is routed to the lower output wire.

Butterfly network

A butterfly network links multiple computers into a high-speed network. For a butterfly

network with n processor nodes, there need to be n (log n + 1) switching nodes. The generation

of the interconnection pattern between a pair of adjacent stages depends not only on n but also

on the stage numbers.In a stage (s) switch, if the s + 1th MSB of j is 0, the data is routed to the

upper output wire, otherwise it is routed to the lower output wire.

2. A multicomputer parallel system

It is a parallel system in which the multiple processors do not have direct access to

shared memory. The memory of the multiple processors may or may not form a common

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

They are a class of processors that executes one instruction at a time in an array or

table of data at the same time rather than on single data elements on a common clock.

address space. Such computers usually do not have a common clock. The architecture is shown

in Figure (b).

Torus or 2D Mesh Topology

A k X k mesh will contain k2processor with maximum path length as 2*(k/2 -1). Every

unit in the torus topology is identified using a unique label, with dimensions distinguished as bit

positions.

Fig : 2-D Mesh

Hypercube

The path between any two nodes in 4-D hypercube is found by Hamming distance. Routing is

done in hop to hop fashion with each adjacent node differing by one bit label. This topology has

good congestion control and fault tolerant mechanism.

Fig : 4-D Hypercube

3. ArrayProcessors

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Flynn's taxonomy is a specific classification of parallel computer architectures that are based on

the number of concurrent instruction (single or multiple) and data streams (single or multiple)

available in the architecture.

They are also known as vector processors. An array processor implement the instruction set

where each instruction is executed on all data items associated and then move on the other

instruction. Array elements are incapable of operating autonomously, and must be driven by the

control unit.

Flynn’s Taxonomy

Flynn's taxonomy based on the number of instruction streams and data streams are the

following:

1. (SISD) single instruction, single data

2. (MISD) multiple instruction, single data

3. (SIMD) single instruction, multiple data

4. (MIMD) multiple instruction, multiple data

1. SISD (Single Instruction, Single Data stream)

• Single Instruction, Single Data (SISD) refers to an Instruction Set Architecture in which

a single processor (one CPU) executes exactly one instruction stream at a time.

• It also fetches or stores one item of data at a time to operate on data stored in a single

memory unit.

• Most of the CPU design is based on the von Neumann architecture and the follow SISD.

• The SISD model is a non-pipelined architecture with general-purpose registers, Program

Counter (PC), the Instruction Register (IR), Memory Address Registers (MAR) and

Memory Data Registers (MDR).

Fig : Single Instruction, Single Data Stream

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

SIMD (Single Instruction, Multiple Data streams)

• Single Instruction, Multiple Data (SIMD) is an Instruction Set Architecture that have a

single control unit (CU) and more than one processing unit (PU) that operates like a von

Neumann machine by executing a single instruction stream over PUs, handled through

the CU.

• The CU generates the control signals for all of the PUs and by which executes the same

operation on different data streams. The SIMD architecture is capable of achieving data

level parallelism.

Fig :Single Instruction, Multiple Data streams

MISD (Multiple Instruction, Single Data stream)

• Multiple Instruction, Single Data (MISD) is an Instruction Set Architecture for parallel

computing where many functional units perform different operations by executing

different instructions on the same data set.

• This type of architecture is common mainly in the fault-tolerant computers executing the

same instructions redundantly in order to detect and mask errors.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Fig : Multiple Instruction, Single Data stream

MIMD (Multiple Instruction, Multiple Data streams)

• Multiple Instruction stream, Multiple Data stream (MIMD) is an Instruction Set

Architecture for parallel computing that is typical of the computers with

multiprocessors.

• Using the MIMD, each processor in a multiprocessor system can execute

asynchronously different set of the instructions independently on the different set of data

units.

• The MIMD based computer systems can used the shared memory in a memory pool or

work using distributed memory across heterogeneous network computers in a distributed

environment.

• The MIMD architectures is primarily used in a number of application areas such as

computer-aided design/computer-aided manufacturing, simulation, modelling,

communication switches etc.

Fig :Multiple Instruction, Multiple Data streams

Single Multiple

Single

Multiple

SISD

Von Neumann Single computer

MISD

May be pipelined

computers

SIMD MIMD

Vector processors Multi computers

Fine grained data Multiprocessors

Parallel computers

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The degree of coupling among a set of modules, whether hardware or software, is measured in

terms of the interdependency and binding and/or homogeneity

among the modules.

Coupling, parallelism, concurrency, and granularity

Coupling

The term coupling is associated with the configuration and design of processors in a

multiprocessor system.

The multiprocessor systems are classified into two types based on coupling:

1. Loosely coupled systems

2. Tightly coupled systems

Tightly Coupled systems:

• Tightly coupled multiprocessor systems contain multiple CPUs that are connected at the

bus level with both local as well as central shared memory.

• Tightly coupled systems perform better, due to faster access to memory and

intercommunication and are physically smaller and use less power. They are

economically costlier.

• Tightly coupled multiprocessors with UMA shared memory may be either switch-based

(e.g., NYU Ultracomputer, RP3) or bus-based (e.g., Sequent, Encore).

• Some examples of tightly coupled multiprocessors with NUMA shared memory or that

communicate by message passing are the SGI Origin 2000

Loosely Coupled systems:

• Loosely coupled multiprocessors consist of distributed memory where each processor

has its own memory and IO channels.

• The processors communicate with each other via message passing or interconnection

switching.

• Each processor may also run a different operating system and have its own bus control

logic.

• Loosely coupled systems are less costly than tightly coupled systems, but are physically

bigger and have a low performance compared to tightly coupled systems.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• The individual nodes in a loosely coupled system can be easily replaced and are usually

inexpensive.

• The extra hardware required to provide communication between the individual

processors makes them complex and less portable.

• Loosely coupled multicomputers without shared memory are physically co-located.

These may be bus-based (e.g., NOW connected by a LAN or Myrinet card) or using a

more general communication network.

• These processors neither share memory nor have a common clock.

• Loosely coupled multicomputers without shared memory and without common clock

and that are physically remote, are termed as distributed systems.

Parallelism or speedup of a program on specific system

• It is the use of multiple processing elements simultaneously for solving any problem.

• Problems are broken down into instructions and are solved concurrently as each resource

which has been applied to work is working at the same time.

• This is a measure of the relative speedup of a specific program, on a given machine. The

speedup depends on the number of processors and the mapping.

• It is expressed as the ratio of the time T(1) witha single processor, to the time T(n) with

n processors.

Parallelism within a parallel/distributed program

• This is an aggregate measure of the percentage of time that all the processors are

executing CPU instructions productively, as opposed to waiting for communication

operations.

Concurrency

• Concurrent programming refer to techniques for decomposing a task into subtasks that

can execute in parallel and managing the risks that arise when the program executes

more than one task at the same time.

• The parallelism or concurrency in a parallel or distributed program can be measured by

the ratio of the number of local non-communication and non-shared memory access

operations to the total number of operations, including the communication or shared

memory access operations.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Granularity or grain size is a measure of the amount of work or computation that is performed

by that task.

Granularity

• Granularity is also the communication overhead between multiple processors or

processing elements.

• In this case, granularity as the ratio of computation time to communication time,

wherein, the computation time is the time required to perform the computation of a

task and communication time is the time required to exchange data between

processors.

Parallelism can be classified into three categories based on work distribution among the parallel

tasks:

1. Fine-grained: Partitioning the application into small amounts of work done leading to a

low computation to communication ratio.

2. Coarse-grained parallelism: This has high computation to communication ratio.

3. Medium-grained: Here the task size and communication time greater than fine-grained

parallelism and lower than coarse-grained parallelism.

Programs with fine-grained parallelism are best suited for tightly coupled systems.

Classes of OS of Multiprocessing systems:

• Network Operating Systems: The operating system running on loosely coupled

processors which are themselves running loosely coupled software

• Distributed Operating systems: The OS of the system running on loosely coupled

processors, which are running tightly coupled software.

• Multiprocessor Operating Systems: The OS will run on tightly coupled

processors, which are themselves running tightly coupled software.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

A MODEL OF DISTRIBUTED COMPUTATIONS: DISTRIBUTED PROGRAM

• A distributed program is composed of a set of asynchronous processes that communicate

by message passing over the communication network. Each process may run on

different processor.

• The processes do not share a global memory and communicate solely by passing

messages. These processes do not share a global clock that is instantaneously accessible

to these processes.

• Process execution and message transfer are asynchronous – a process may execute an

action spontaneously and a process sending a message does not wait for the delivery of

the message to be complete.

• The global state of a distributed computation is composed of the states of the processes

and the communication channels. The state of a process is characterized by the state of

its local memory and depends upon the context.

• The state of a channel is characterized by the set of messages in transit in the channel.

A MODEL OF DISTRIBUTED EXECUTIONS

• The execution of a process consists of a sequential execution of its actions.

• The actions are atomic and the actions of a process are modeled as three types of events:

internal events, message send events, and message receive events.

• The occurrence of events changes the states of respective processes and channels, thus

causing transitions in the global system state.

• An internal event changes the state of the process at which it occurs.

• A send event changes the state of the process that sends the message and the state of the

channel on which the message is sent.

• The execution of process pi produces a sequence of events e1, e2, e3, …, and it is

denoted by Hi: Hi =(hi→i). Here hiare states produced by pi and →are the casual

dependencies among events pi.

• →msgindicates the dependency that exists due to message passing between two events.

•

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

It places a restriction on communication between processes by requiring that if the transmission of

message mi to process pk necessarily preceded the transmission of message mj to the same process,

then the delivery of these messages to that process must be ordered such that mi is delivered before

mj.

Fig: Space time distribution of distributed systems

• An internal event changes the state of the process at which it occurs. A send event

changes the state of the process that sends the message and the state of the channel on

which the message is sent.

• A receive event changes the state of the process that receives the message and the state

of the channel on which the message is received.

Casual Precedence Relations

Causal message ordering is a partial ordering of messages in a distributed computing

environment. It is the delivery of messages to a process in the order in which they were

transmitted to that process.

Happen Before Relation

The partial ordering obtained by generalizing the relationship between two process is

called as happened-before relation or causal ordering or potential causal ordering. This term

was coined by Lamport. Happens-before defines a partial order of events in a distributed

system. Some events can’t be placed in the order. If say A →B if A happens before B. A→B is

defined using the following rules:

✓ Local ordering:A and B occur on same process and A occurs before B.

✓ Messages: send(m) → receive(m) for any message m

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

✓ Transitivity: e → e’’ if e → e’ and e’ → e’’

• Ordering can be based on two situations:

1. If two events occur in same process then they occurred in the order observed.

2. During message passing, the event of sending message occurred before the event of receiving

it.

Lamports ordering is happen before relation denoted by →

• a→b, if a and b are events in the same process and a occurred before b.

• a→b, if a is the vent of sending a message m in a process and b is the event of the same

message m being received by another process.

• If a→b and b→c, then a→c. Lamports law follow transitivity property.

When all the above conditions are satisfied, then it can be concluded that a→b is casually

related. Consider two events c and d; c→d and d→c is false (i.e) they are not casually related,

then c and d are said to be concurrent events denoted as c||d.

Fig: Communication between processes

Fig 1.22 shows the communication of messages m1 and m2 between three processes p1, p2 and

p3. a, b, c, d, e and f are events. It can be inferred from the diagram that, a→b; c→d; e→f; b-

>c; d→f; a→d; a→f; b→d; b→f. Also a||e and c||e.

Logical vs physical concurrency

Physical as well as logical concurrency is two events that creates confusion in distributed

systems.

Physical concurrency: Several program units from the same program that execute

simultaneously.

Logical concurrency: Multiple processors providing actual concurrency. The actual execution

of programs is taking place in interleaved fashion on a single processor.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Differences between logical and physical concurrency

Logical concurrency Physical concurrency

Several units of the same program execute

simultaneously on same processor, giving an

illusion to the programmer that they are

executing on multiple processors.

Several program units of the same program

execute at the same time on different processors.

They are implemented through interleaving. They are implemented as uni-processor with I/O

channels, multiple CPUs, network of uni or

multi CPU machines.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Logical clocks are based on capturing chronological and causal relationships of processes and

ordering events based on these relationships.

A system of logical clocks consists of a time domain T and a logical clock C. Elements of T form a

partially ordered set over a relation <. This relation is usually called the happened before or

causal precedence.

LOGICAL TIME

Precise physical clocking is not possible in distributed systems. The asynchronous

distributed systems spans logical clock for coordinating the events.Three types of logical

clock are maintained in distributed systems:

• Scalar clock

• Vector clock

• Matrix clock

In a system of logical clocks, every process has a logical clock that is advanced using a set

of rules. Every event is assigned a timestamp and the causality relation between events can

be generally inferred from their timestamps.

The timestamps assigned to events obey the fundamental monotonicity property; that is, if

an event a causally affects an event b, then the timestamp of a is smaller than the timestamp

of b.

Differences between physical and logical clock

Physical Clock Logical Clock

A physical clock is a physical procedure

combined with a strategy for measuring that

procedure to record the progression of time.

A logical clock is a component for catching

sequential and causal connections in a dispersed

framework.

The physical clocks are based on cyclic

processes such as a

celestial rotation.

A logical clock allows global ordering on

events from different processes.

A Framework for a system of logical clocks

The logical clock C is a function that maps an event e in a distributed system to an element

in the time domain T denoted as C(e).

such that

for any two events ei and ej,. ei→ej C(ei)< C(ej).

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

This monotonicity property is called the clock consistency condition.When T and C satisfy

the following condition,

Then the system of clocks is strongly consistent.

Implementing logical clocks

The two major issues in implanting logical clocks are:

Data structures: representation of each process

Protocols: rules for updating the data structures to ensure consistent conditions.

Data structures:

Each process pimaintains data structures with the given capabilities:

• A local logical clock (lci), that helps process pi measure itsown progress.

• A logical global clock (gci), that is a representation of process pi’s local view of the logical

global time. It allows this process to assignconsistent timestamps to its local events.

Protocol:

The protocol ensures that a process’s logical clock, and thus its view of theglobal time, is

managed consistently with the following rules:

Rule 1: Decides the updates of the logical clock by a process. It controls send, receive and

other operations.

Rule 2: Decides how a process updates its global logical clock to update its view of the

global time and global progress. It dictates what information about the logical time is

piggybacked in a message and how this information is used by the receiving process to

update its view of the global time.

SCALAR TIME

Scalar time is designed by Lamport to synchronize all the events in distributed

systems. A Lamport logical clock is an incrementing counter maintained in each process.

This logical clock has meaning only in relation to messages moving between processes.

When a process receives a message, it resynchronizes its logical clock with that sender

maintainingcausal relationship.

The Lamport’s algorithm is governed using the following rules:

• The algorithm of Lamport Timestamps can be captured in a few rules:

• All the process counters start with value 0.

• A process increments its counter for each event (internal event, message sending,

message receiving) in that process.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Rule 1: Ci(b) = Ci(a) + d1, where d1 > 0

Rule 2: The following actions are implemented when pi receives a message m with timestamp Cm:

a) Ci= max(Ci, Cm)

b) Execute Rule 1

c) deliver the message

• When a process sends a message, it includes its (incremented) counter value with the

message.

• On receiving a message, the counter of the recipient is updated to the greater of its

current counter and the timestamp in the received message, and then incremented by

one.

• If Ci is the local clock for process Pi then,

• if a and b are two successive events in Pi, then Ci(b) = Ci(a) + d1, where d1 > 0

• if a is the sending of message m by Pi, then m is assigned timestamp tm = Ci(a)

• if b is the receipt of m by Pj, then Cj(b) = max{Cj(b), tm + d2}, where d2 > 0

Rules of Lamport’s clock

Fig : Evolution of scalar time

Basic properties of scalar time:

1. Consistency property: Scalar clock always satisfies monotonicity. A monotonic clock

only increments its timestamp and never jump.Hence it is consistent.

2. Total Reordering:Scalar clocks order the events in distributed systems.But all the events

do not follow a common identical timestamp. Hence a tie breaking mechanism is essential to

order the events. The tie breaking is done through:

• Linearly order process identifiers.

• Process with low identifier value will be given higher priority.

The term (t, i) indicates timestamp of an event, where t is its time of occurrence and i is the

identity of the process where it occurred.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The time domain is represented by a set of n-dimensional non-negative integer vectors in vector

time.

Rule 1: Before executing an event, process pi updates its local logical time

as follows:

A total order is generally used to ensure liveness properties in distributed algorithms.

3. Event Counting

If event e has a timestamp h, then h−1 represents the minimum logical duration,

counted in units of events, required before producing the event e. This is called height of the

event e. h-1 events have been produced sequentially before the event e regardless of the

processes that produced these events.

4. No strong consistency

The scalar clocks are not strongly consistent is that the logical local clock and logical

global clock of a process are squashed into one, resulting in the loss causal dependency

information among events at different processes.

VECTOR TIME

The ordering from Lamport's clocks is not enough to guarantee that if two events

precede one another in the ordering relation they are also causally related. Vector Clocks use

a vector counter instead of an integer counter. The vector clock of a system with N processes

is a vector of N counters, one counter per process. Vector counters have to follow the

following update rules:

• Initially, all counters are zero.

• Each time a process experiences an event, it increments its own counter in the vector

by one.

• Each time a process sends a message, it includes a copy of its own (incremented)

vector in the message.

• Each time a process receives a message, it increments its own counter in the vector by

one and updates each element in its vector by taking the maximum of the value in its

own vector counter and the value in the vector in the received message.

Rules of Vector Time

The total order relation () over two events x and y with timestamp (h, i) and (k, j) is given by:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Fig : Evolution of vector scale

Basic properties of vector time

1. Isomorphism:

• “→” induces a partial order on the set of events that are produced by a distributed

execution.

• If events x and y are timestamped as vh and vk then,

•

• There is an isomorphism between the set of partially ordered events produced by a

distributed computation and their vector timestamps.

• If the process at which an event occurred is known, the test to compare two

timestamps can be simplified as:

2. Strong consistency

The system of vector clocks is strongly consistent; thus, by examining the vector timestamp

of two events, we can determine if the events are causally related.

3. Event counting

Rule 2: Each message m is piggybacked with the vector clock vt of the sender

process at sending time. On the receipt of such a message (m,vt), process

pi executes the following sequence of actions:

1. update its global logical time

2. execute R1

3. deliver the message m

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

t[i]- timestamp of process i.

If an event e has timestamp vh, vh[j] denotes the number of events executed by process pj

that causally precede e.

Vector clock ordering relation

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

MESSAGE-PASSING SYSTEMS VERSUS SHARED MEMORY SYSTEMS

Communication among processors takes place via shared data variables, and control

variables for synchronization among the processors. The communications between the tasks in

multiprocessor systems take place through two main modes:

Message passing systems:

• This allows multiple processes to read and write data to the message queue without

being connected to each other.

• Messages are stored on the queue until their recipient retrieves them. Message

queues are quite useful for inter process communication and are used by most

operating systems.

Shared memory systems:

• The shared memory is the memory that can be simultaneously accessed by multiple

processes. This is done so that the processes can communicate with each other.

• Communication among processors takes place through shared data variables, and

control variables for synchronization among the processors.

• Semaphores and monitors are common synchronization mechanisms on shared

memory systems.

• When shared memory model is implemented in a distributed environment, it is

termed as distributed shared memory.

a) Message Passing Model b) Shared Memory Model

Fig : Inter-process communication models

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Differences between message passing and shared memory models

Message Passing Distributed Shared Memory

Services Offered:

Variables have to

from one process,

unmarshalled into other

receiving process.

be marshalled

transmitted and

variables at the

The processes share variables directly, so no

marshalling and unmarshalling. Shared

variables can be named, stored and accessed in

DSM.

Processes can communicate with other

processes. They can be protected from one

another by having private address spaces.

Here, a process does not have private address

space. So one process can alter the execution

of other.

This technique can be used in heterogeneous

computers.

This cannot

computers.

be used to heterogeneous

Synchronization between processes is through

message passing primitives.

Synchronization is through locks and

semaphores.

Processes communicating via message passing

must execute at the same time.

Processes communicating through DSM

may execute with non-overlapping lifetimes.

Efficiency:

All remote data accesses are explicit and

therefore the programmer is always aware of

whether a particular operation is in-process or

involves the expense of communication.

Any particular read or update may or may not

involve communication by the underlying

runtime support.

Emulating message-passing on a shared memory system (MP → SM)

• The shared memory system can be made to act as message passing system. The

shared address space can be partitioned into disjoint parts, one part being assigned to

each processor.

• Send and receive operations care implemented by writing to and reading from the

destination/sender processor’s address space. The read and write operations are

synchronized.

• Specifically, a separate location can be reserved as the mailbox for each ordered pair

of processes.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Emulating shared memory on a message-passing system (SM → MP)

• This is also implemented through read and write operations. Each shared location

can be modeled as a separate process. Write to a shared location is emulated by

sending an update message tothe corresponding owner process and read operation to

a shared location is emulated by sending a query message to the owner process.

• This emulation is expensive as the processes have to gain access to other process

memory location. The latencies involved in read and write operations may be high

even when using shared memory emulation because the read and write operations

are implemented by using network-wide communication.

PRIMITIVES FOR DISTRIBUTED COMMUNICATION

Blocking / Non blocking / Synchronous / Asynchronous

• Message send and message receive communication primitives are done through

Send() and Receive(), respectively.

• A Send primitive has two parameters: the destination, and the buffer in the user

space that holds the data to be sent.

• The Receive primitive also has two parameters: the source from which the data is to

be received and the user buffer into which the data is to be received.

There are two ways of sending data when the Send primitive is called:

• Buffered: The standard option copies the data from the user buffer to the kernel

buffer. The data later gets copied from the kernel buffer onto the network. For the

Receive primitive, the buffered option is usually required because the data may

already have arrived when the primitive is invoked, and needs a storage place in the

kernel.

• Unbuffered: The data gets copied directly from the user buffer onto the network.

Blocking primitives

• The primitive commands wait for the message to be delivered. The execution of the

processes is blocked.

• The sending process must wait after a send until an acknowledgement is made by the

receiver.

• The receiving process must wait for the expected message from the sending process

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• The receipt is determined by polling common buffer or interrupt

• This is a form of synchronization or synchronous communication.

• A primitive is blocking if control returns to the invoking process after the processing

for the primitive completes.

Non Blocking primitives

• If send is nonblocking, it returns control to the caller immediately, before the

message is sent.

• The advantage of this scheme is that the sending process can continue computing in

parallel with the message transmission, instead of having the CPU go idle.

• This is a form of asynchronous communication.

• A primitive is non-blocking if control returns back to the invoking process

immediately after invocation, even though the operation has not completed.

• For a non-blocking Send, control returns to the process even before the data is

copied out of the user buffer.

• For anon-blocking Receive, control returns to the process even before the datamay

have arrived from the sender.

Synchronous

• A Send or a Receive primitive is synchronous if both the Send() and Receive()

handshake with each other.

• The processing for the Send primitive completes only after the invoking processor

learns

• that the other corresponding Receive primitive has also been invoked andthat the

receive operation has been completed.

• The processing for the Receive primitive completes when the data to be received is

copied into the receiver’s user buffer.

Asynchronous

• A Send primitive is said to be asynchronous, if control returns back to the invoking

process after the data item to be sent has been copied out of the user-specified buffer.

• It does not make sense to define asynchronous Receive primitives.

• Implementing non -blocking operations are tricky.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• For non-blocking primitives, a return parameter on the primitive call returns a

system-generated handle which can be later used to check the status of completion of

the call.

• The process can check for the completion:

o checking if the handle has been flagged or posted

o issue a Wait with a list of handles as parameters: usually blocks until one of

the parameter handles is posted.

The send and receive primitives can be implemented in four modes:

• Blocking synchronous

• Non- blocking synchronous

• Blocking asynchronous

• Non- blocking asynchronous

Four modes of send operation

Blocking synchronous Send:

• The data gets copied from the user buffer to the kernel buffer and is then sent over the

network.

• After the data is copied to the receiver’s system buffer and a Receive call has been

issued, an acknowledgement back to the sender causes control to return to the process

that invoked the Send operation and completes the Send.

Non-blocking synchronous Send:

• Control returns back to the invoking process as soon as the copy of data from the user

buffer to the kernel buffer is initiated.

• A parameter in the non-blocking call also gets set with the handle of a location that the

user process can later check for the completion of the synchronous send operation.

• The location gets posted after an acknowledgement returns from the receiver.

• The user process can keep checking for the completion of the non-blocking synchronous

Send by testing the returned handle, or it can invoke the blocking Wait operation on the

returned handle

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Blocking asynchronous Send:

• The user process that invokes the Send is blocked until the data is copied from the user’s

buffer to the kernel buffer.

Non-blocking asynchronous Send:

• The user process that invokes the Send is blocked until the transfer of the data from the

user’s buffer to the kernel buffer is initiated.

• Control returns to the user process as soon as this transfer is initiated, and a parameter in

the non-blocking call also gets set with the handle of a location that the user process can

check later using the Wait operation for the completion of the asynchronous Send.

Fig a) Blocking synchronous send and blocking receive Fig b) Non-blocking synchronous send and

blocking receive

Fig c) Blocking asynchronous send Fig d) Non-blocking asynchronous send

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Processor synchrony indicates that all the processors execute in lock-step with their clocks

synchronized.

• The asynchronous Send completes when the data has been copied out of the user’s buffer.

The checking for the completion may be necessary if the user wants to reuse the buffer from

which the data was sent.

Modes of receive operation

Blocking Receive:

The Receive call blocks until the data expected arrives and is written in the specified user

buffer. Then control is returned to the user process.

Non-blocking Receive:

• The Receive call will cause the kernel to register the call and return the handle of

a location that the user process can later check for the completion of the non-

blocking Receive operation.

• This location gets posted by the kernel after the expected data arrives and is

copied to the user-specified buffer. The user process can check for the completion

of the non-blocking Receive by invoking the Wait operation on the returned

handle.

Processor Synchrony

Since distributed systems do not follow a common clock, this abstraction is implemented using

some form of barrier synchronization to ensure that no processor begins executing the next step

of code until all the processors have completed executing the previous steps of code assigned to

each of the processors.

Libraries and standards

There exists a wide range of primitives for message-passing. The message-passing interface

(MPI) library and the PVM (parallel virtual machine) library are used largely by the scientific

community

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Message Passing Interface (MPI): This is a standardized and portable message-passing

system to function on a wide variety of parallel computers. MPI primarily addresses the

message-passing parallel programming model: data is moved from the address space of

one process to that of another process through cooperative operations on each process.

• The primary goal of the Message Passing Interface is to provide a widely used standard

for writing message passing programs.

• Parallel Virtual Machine (PVM): It is a software tool for parallel networking of

computers. It is designed to allow a network of heterogeneous Unix and/or Windows

machines to be used as a single distributed parallel processor.

• Remote Procedure Call (RPC): The Remote Procedure Call (RPC) is a common model

of request reply protocol. In RPC, the procedure need not exist in the same address

space as the calling procedure. The two processes may be on the same system, or they

may be on different systems with a network connecting them.

• Remote Method Invocation (RMI): RMI (Remote Method Invocation) is a way that a

programmer can write object-oriented programming in which objects on different

computers can interact in a distributed network. It is a set of protocols being developed

by Sun's JavaSoft division that enables Java objects to communicate remotely with other

Java objects.

• Remote Procedure Call (RPC): RPC is a powerful technique for constructing

distributed, client-server based applications. In RPC, the procedure need not exist in the

same address space as the calling procedure. The two processes may be on the same

system, or they may be on different systems with a network connecting them. By using

RPC, programmers of distributed applications avoid the details of the interface with the

network. RPC makes the client/server model of computing more powerful and easier to

program.

Differences between RMI and RPC

RMI RPC

RMI uses an object oriented paradigm

where the user needs to know the object

and the method of the object he needs to

invoke.

RPC is not object oriented and does not

deal with objects. Rather, it calls specific

subroutines that are already established

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

With RPC looks like a local call. RPC

handles the complexities involved with

passing the call from the local to the

remote computer.

RMI handles the complexities of passing

along the invocation from the local to the

remote computer. But instead of passing

a procedural call, RMI passes a reference

to the object and the method that is being

called.

The commonalities between RMI and RPC are as follows:

✓ They both support programming with interfaces.

✓ They are constructed on top of request-reply protocols.

✓ They both offer a similar level of transparency.

• Common Object Request Broker Architecture (CORBA): CORBA describes a

messaging mechanism by which objects distributed over a network can communicate with each

other irrespective of the platform and language used to develop those objects. The data

representation is concerned with an external representation for the structured and primitive

types that can be passed as the arguments and results of remote method invocations in CORBA.

It can be used by a variety of programming languages.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Distributed Snapshot represents a state in which the distributed system might have been in. A

snapshot of the system is a single configuration of the system.

MODELS OF COMMUNICATION NETWORK

The three main types of communication models in distributed systems are:

FIFO (first-in, first-out): each channel acts as a FIFO message queue.

Non-FIFO (N-FIFO): a channel acts like a set in which a sender process adds messages and

receiver removes messages in random order.

Causal Ordering (CO): It follows Lamport’s law.

o The relation between the three models is given by CO FIFO N-FIFO.

A system that supports the causal ordering model satisfies the following property:

GLOBAL STATE

• The global state of a distributed system is a collection of the local states of its

components, namely, the processes and the communication channels.

• The state of a process at any time is defined by the contents of processor registers,

stacks, local memory, etc. and depends on the local context of the distributed

application.

• The state of a channel is given by the set of messages in transit in the channel.

The state of a channel is difficult to state formally because a channel is a distributed entity

and its state depends upon the states of the processes it connects. Let

denote the state of a channel Cij defined as follows:

A distributed snapshot should reflect a consistent state. A global state is consistent if it could

have been observed by an external observer. For a successful Global State, all states must be

consistent:

• If we have recorded that a process P has received a message from a process Q, then

we should have also recorded that process Q had actually send that message.

• Otherwise, a snapshot will contain the recording of messages that have been received

but never sent.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

i i

A cut is a set of cut events, one per node, each of which captures the state of the node on

which it occurs.

• The reverse condition (Q has sent a message that P has not received) is allowed.

The notion of a global state can be graphically represented by what is called a cut. A cut

represents the last event that has been recorded for each process.

The history of each process if given by:

Each event either is an internal action of the process. We denote by s k the state of process p

immediately before the kth event occurs. The state si in the global state S corresponding to

the cut C is that of pi immediately after the last event processed by pi in the cut – eici . The

set of events eici is called the frontier of the cut.

Fig : Types of cuts

Consistent states: The states should not violate causality. Such states are called consistent

global states and are meaningful global states.

Inconsistent global states: They are not meaningful in the sense that a distributed system

can never be in an inconsistent state.

CUTS OF A DISTRIBUTED COMPUTATION

Cut is pictorially a line slices the space–time diagram, and thus the set of events in the

distributed computation, into a PAST and a FUTURE. The PAST contains all the events to

the left of the cut and the FUTURE contains all the events to theright of the cut. For a cut C,

let PAST(C) and FUTURE(C) denote the set ofevents in the PAST and FUTURE of C,

respectively.

Consistent cut: A consistent global state corresponds to a cut in which every message

received in the PAST of the cut was sent in the PAST of that cut.

Inconsistent cut: A cut is inconsistent if a message crosses the cut from the FUTURE to the

PAST.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

PAST AND FUTURE CONES OF AN EVENT

In a distributed computation, an event ej could have been affected only by all events

ei, such that ei → ej and all the information available at ei could be made accessible at ej. In

other word ei and ej should have a causal relationship. Let Past(ej) denote all events in the

past of ej in any computation.

The term max(past(ei)) denotes the latest event of process pi that has affected ej. This will

always be a message sent event.

Fig : Past and future cones of event

A cut in a space-time diagram is a line joining an arbitrary point on each process line that

slices the space-time diagram into a PAST and a FUTURE. A consistent global state

corresponds to a cut in which every message received in the PAST of the cut was sent in the

PAST of that cut.

The future of an event ejdenoted by Future(ej) contains all the events ei that are

casually affected by ej.

Futurei(ei) is the set of those events of Future (ej) are the process pi and min(Futurei(ej)) as

the first event on process pi that is affected by ej. All events at a process pi that occurred

afterMax(Past(ej)) but before min(Futurei(ej)) are concurrent with ej.

MODELS OF PROCESS COMMUNICATIONS

There are two basic models of process communications

Synchronous: The sender process blocks until the message has been received by the

receiver process. The sender process resumes executiononly after it learns that the receiver

process has accepted the message. The sender and the receiver processes must synchronize

to exchange a message.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Asynchronous: It is non- blocking communication where the sender and the receiver do not

synchronize to exchange a message. The sender process does not wait for the message to be

delivered to the receiver process. The message is buffered by the system and is delivered to

the receiver process when it is ready to accept the message. A buffer overflow may occur if

a process sends a large number of messages in a burst to another process, thus causing a

message burst.

Asynchronous communication achieves high degree of parallelism and non- determinism at

the cost of implementation complexity with buffers. On the other hand, synchronization is

simpler with low performance. The occurrence of deadlocks and frequent blocking of events

prevents it from reaching higher performance levels.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Clock synchronization is the process of ensuring that physically distributed processors have a

common notion of time.

PHYSICAL CLOCK SYNCHRONIZATION: NEWTWORK TIME PROTOCOL

(NTP)

Centralized systems do not need clock synchronization, as they work under a common

clock. But the distributed systems do not follow common clock: each system functions based

on its own internal clock and its own notion of time.The time in distributed systems is

measured in the following contexts:

• The time of the day at which an event happened on a specific machine in the network.

• The time interval between two events that happened on different machines in the

network.

• The relative ordering of events that happened on different machines in the network.

Due to different clocks rates, the clocks at various sites may diverge with time, and

periodically a clock synchronization must be performed to correct this clock skew in

distributed systems. Clocks are synchronized to an accurate real-time standard like UTC

(Universal Coordinated Time). Clocks that must not only be synchronized with each other

but also have to adhere to physical time are termed physical clocks. This degree of

synchronization additionally enables to coordinate and schedule actions between multiple

computers connected to a common network.

Basic terminologies:

If Ca and Cb are two different clocks, then:

• Time: The time of a clock in a machine p is given by the function Cp(t),where Cp(t)= t

for a perfect clock.

• Frequency: Frequency is the rate at which a clock progresses. The frequency at time t

of clock CaisCa
’(t).

• Offset:Clock offset is the difference between the time reported by a clockand the real

time. The offset of the clock Ca is given by Ca(t)− t. Theoffset of clock C a relative to

Cb at time t ≥ 0 is given by Ca(t)- Cb(t)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

b

• Skew: The skew of a clock is the difference in the frequencies of the clockand the

perfect clock. The skew of a clock Ca relative to clock Cb at timet is Ca
’(t)- C ’(t).

• Drift (rate): The drift of clock Ca the second derivative of the clockvalue with respect

to time. The drift is calculated as:

Clocking Inaccuracies

Physical clocks are synchronized to an accurate real-time standard like UTC

(Universal Coordinated Time). Due to the clock inaccuracy discussed above, a timer (clock)

is said to be working within its specification if:

- maximum skew rate.

1. Offset delay estimation

A time service for the Internet - synchronizes clients to UTC Reliability from

redundant paths, scalable, authenticates time sources Architecture. Thedesign of NTP

involves a hierarchical tree of time servers with primary serverat the root synchronizes with

the UTC. The next level contains secondaryservers, which act as a backup to the primary

server. At the lowest level isthe synchronization subnet which has the clients.

2. Clock offset and delay estimation

A source node cannot accurately estimate the local time on thetarget node due to varying

message or network delays between the nodes.This protocol employs a very common

practice of performing several trialsand chooses the trial with the minimum delay.

Fig : Behavior of clocks

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Figa) Offset and delay estimation between Fig b) Offset and delay estimation between

processes from same server processes from different servers

Let T1, T2, T3, T4 be the values of the four mostrecent timestamps. The clocks A and B are stable

andrunning at the same speed. Let a = T1 − T3 and b = T2 − T4. If the networkdelay difference from A to

B and from B to A, called differential delay, is small, the clock offset

and roundtrip delay of B relative to A at time T4are approximately given by the

following:

Each NTP message includes the latest three timestamps T1, T2, andT3, while T4 is

determined upon arrival.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

SYNCHRONOUS VS ASYNCHRONOUS EXECUTIONS

The execution of process in distributed systems may be synchronous or asynchronous.

Asynchronous Execution:

A communication among processes is considered asynchronous, when every

communicating process can have a different observation of the order of the messages being

exchanged. In an asynchronous execution:

• there is no processor synchrony and there is no bound on the drift rate of processor clocks

• message delays are finite but unbounded

• no upper bound on the time taken by a process

Fig : Asynchronous execution in message passing system

Synchronous Execution:

A communication among processes is considered synchronous when every process

observes the same order of messages within the system. In the same manner, the execution is

considered synchronous, when every individual process in the system observes the same total

order of all the processes which happen within it. In an synchronous execution:

• processors are synchronized and the clock drift rate between any two processors is

bounded

• message delivery times are such that they occur in one logical step or round

• upper bound on the time taken by a process to execute a step.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Fig: Synchronous execution

Emulating an asynchronous system by a synchronous system (A → S)

An asynchronous program can be emulated on a synchronous system fairly trivially as

the synchronous system is a special case of an asynchronous system – all communication

finishes within the same round in which it is initiated.

Emulating a synchronous system by an asynchronous system (S → A)

A synchronous program can be emulated on an asynchronous system using a tool called

synchronizer.

Emulation for a fault free system

Fig : Emulations in a failure free message passing system

If system A can be emulated by system B, denoted A/B, and if a problem is not solvable

in B, then it is also not solvable in A. If a problem is solvable in A, it is also solvable in B.

Hence, in a sense, all four classes are equivalent in terms of computability in failure-free

systems.

DESIGN ISSUES AND CHALLENGES IN DISTRIBUTED SYSTEMS

The design of distributed systems has numerous challenges. They can be categorized

into:

• Issues related to system and operating systems design

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Issues related to algorithm design

• Issues arising due to emerging technologies

The above three classes are not mutually exclusive.

Issues related to system and operating systems design

The following are some of the common challenges to be addressed in designing a

distributed system from system perspective:

➢ Communication: This task involves designing suitable communication mechanisms

among the various processes in the networks.

Examples: RPC, RMI

➢ Processes: The main challenges involved are: process and thread management at both

client and server environments, migration of code between systems, design of software and

mobile agents.

➢ Naming: Devising easy to use and robust schemes for names, identifiers, and addresses

is essential for locating resources and processes in a transparent and scalable manner. The

remote and highly varied geographical locations make this task difficult.

➢ Synchronization: Mutual exclusion, leader election, deploying physical clocks, global

state recording are some synchronization mechanisms.

➢ Data storage and access Schemes: Designing file systems for easy and efficient data

storage with implicit accessing mechanism is very much essential for distributed operation

➢ Consistency and replication: The notion of Distributed systems goes hand in hand with

replication of data, to provide high degree of scalability. The replicas should be handed with

care since data consistency is prime issue.

➢ Fault tolerance: This requires maintenance of fail proof links, nodes, and processes.

Some of the common fault tolerant techniques are resilience, reliable communication,

distributed commit, check pointing and recovery, agreement and consensus, failure detection,

and self-stabilization.

➢ Security: Cryptography, secure channels, access control, key management – generation

and distribution, authorization, and secure group management are some of the security measure

that is imposed on distributed systems.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

➢ Applications Programming Interface (API) and transparency: The user friendliness

and ease of use is very important to make the distributed services to be used by wide

community. Transparency, which is hiding inner implementation policy from users, is of the

following types:

▪ Access transparency: hides differences in data representation

▪ Location transparency: hides differences in locations y providing uniform access to

data located at remote locations.

▪ Migration transparency: allows relocating resources without changing names.

▪ Replication transparency: Makes the user unaware whether he is working on original or

replicated data.

▪ Concurrency transparency: Masks the concurrent use of shared resources for the user.

▪ Failure transparency: system being reliable and fault-tolerant.

➢ Scalability and modularity: The algorithms, data and services must be as distributed as

possible. Various techniques such as replication, aching and cache management, and

asynchronous processing help to achieve scalability.

Algorithmic challenges in distributed computing

➢ Designing useful execution models and frameworks

The interleaving model, partial order model, input/output automata model and the Temporal

Logic of Actions (TLA) are some examples of models that provide different degrees of

infrastructure.

➢ Dynamic distributed graph algorithms and distributed routing algorithms

• The distributed system is generally modeled as a distributed graph.

• Hence graph algorithms are the base for large number of higher level communication,

data dissemination, object location, and object search functions.

• These algorithms must have the capacity to deal with highly dynamic graph

characteristics. They are expected to function like routing algorithms.

• The performance of these algorithms has direct impact on user-perceived latency, data

traffic and load in the network.

➢ Time and global state in a distributed system

• The geographically remote resources demands the synchronization based on logical time.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Logical time is relative and eliminates the overheads of providing physical time for

applications .Logical time can

(i) capture the logic and inter-process dependencies

(ii) track the relative progress at each process

• Maintaining the global state of the system across space involves the role of time

dimension for consistency. This can be done with extra effort in a coordinated manner.

• Deriving appropriate measures of concurrency also involves the time dimension, as the

execution and communication speed of threads may vary a lot.

➢ Synchronization/coordination mechanisms

• Synchronization is essential for the distributed processes to facilitate concurrent

execution without affecting other processes.

• The synchronization mechanisms also involve resource management and concurrency

management mechanisms.

• Some techniques for providing synchronization are:

✓ Physical clock synchronization: Physical clocks usually diverge in the values due to

hardware limitations. Keeping them synchronized is a fundamental challenge to maintain

common time.

✓ Leader election: All the processes need to agree on which process will play the role of a

distinguished process or a leader process. A leader is necessary even for many distributed

algorithms because there is often some asymmetry.

✓ Mutual exclusion: Access to the critical resource(s) has to be coordinated.

✓ Deadlock detection and resolution: This is done to avoid duplicate work, and deadlock

resolution should be coordinated to avoid unnecessary aborts of processes.

✓ Termination detection: cooperation among the processes to detect the specific global

state of quiescence.

✓ Garbage collection: Detecting garbage requires coordination among the processes.

➢ Group communication, multicast, and ordered message delivery

• A group is a collection of processes that share a common context and collaborate on a

common task within an application domain. Group management protocols are needed for

group communication wherein processes can join and leave groups dynamically, or fail.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• The concurrent execution of remote processes may sometimes violate the semantics and

order of the distributed program. Hence, a formal specification of the semantics of ordered

delivery need to be formulated, and then implemented.

➢ Monitoring distributed events and predicates

• Predicates defined on program variables that are local to different processes are used for

specifying conditions on the global system state.

• On-line algorithms for monitoring such predicates are hence important.

• An important paradigm for monitoring distributed events is that of event streaming,

wherein streams of relevant events reported from different processes are examined collectively

to detect predicates.

• The specification of such predicates uses physical or logical time relationships.

➢ Distributed program design and verification tools

Methodically designed and verifiably correct programs can greatly reduce the overhead of

software design, debugging, and engineering. Designing these is a big challenge.

➢ Debugging distributed programs

Debugging distributed programs is much harder because of the concurrency and replications.

Adequate debugging mechanisms and tools are need of the hour.

➢ Data replication, consistency models, and caching

• Fast access to data and other resources is important in distributed systems.

• Managing replicas and their updates faces concurrency problems.

• Placement of the replicas in the systems is also a challenge because resources usually

cannot be freely replicated.

➢ World Wide Web design – caching, searching, scheduling

• WWW is a commonly known distributed system.

• The issues of object replication and caching, pre fetching of objects have to be done on

WWW also.

• Object search and navigation on the web are important functions in the operation of the

web.

➢ Distributed shared memory abstraction

• A shared memory is easier to implement since it does not involve managing the

communication tasks.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• The communication is done by the middleware by message passing.

• The overhead of shared memory is to be dealt by the middleware technology.

• Some of the methodologies that does the task of communication in shared memory

distributed systems are:

✓ Wait-free algorithms: The ability of a process to complete its execution irrespective of

the actions of other processes is wait free algorithm. They control the access to shared resources

in the shared memory abstraction. They are expensive.

✓ Mutual exclusion: Concurrent access of processes to a shared resource or data is

executed in mutually exclusive manner. Only one process is allowed to execute the critical

section at any given time. In a distributed system, shared variables or a local kernel cannot be

used to implement mutual exclusion. Message passing is the sole means for implementing

distributed mutual exclusion.

✓ Register constructions: Architectures must be designed in such a way that, registers

allows concurrent access without any restrictions on the concurrency permitted.

➢ Reliable and fault-tolerant distributed systems

The following are some of the fault tolerant strategies:

✓ Consensus algorithms: Consensus algorithms allow correctly functioning processes to

reach agreement among themselves in spite of the existence of malicious processes. The goal of

the malicious processes is to prevent the correctly functioning processes from reaching

agreement. The malicious processes operate by sending messages with misleading information,

to confuse the correctly functioning processes.

✓ Replication and replica management: The Triple Modular Redundancy (TMR)

technique is used in software and hardware implementation. TMR is a fault-tolerant form of N-

modular redundancy, in which three systems perform a process and that result is processed by a

majority-voting system to produce a single output.

✓ Voting and quorum systems: Providing redundancy in the active or passive

components in the system and then performing voting based on some quorum criterion is a

classical way of dealing with fault-tolerance. Designing efficient algorithms for this purpose is

the challenge.

✓ Distributed databases and distributed commit: The distributed databases should also

follow atomicity, consistency, isolation and durability (ACID) properties.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

✓ Self-stabilizing systems: All system executions have associated good(or legal) states and

bad (or illegal) states; during correct functioning, the system makes transitions among the good

states. A self-stabilizing algorithm guarantee to take the system to a good state even if a bad

state were to arise due to some error. Self-stabilizing algorithms require some in-built

redundancy to track additional variables of the state and do extra work.

✓ Checkpointing and recovery algorithms: Check pointing is periodically recording the

current state on secondary storage so that, in case of a failure. The entire computation is not lost

but can be recovered from one of the recently taken checkpoints. Check pointing in a distributed

environment is difficult because if the checkpoints at the different processes are not

coordinated, the local checkpoints may become useless because they are inconsistent with the

checkpoints at other processes.

✓ Failure detectors: The asynchronous distributed do not have a bound on the message

transmission time. This makes the message passing very difficult, since the receiver do not

know the waiting time. Failure detectors probabilistically suspect another process as having

failed and then converge on a determination of the up/down status of the suspected process.

➢ Load balancing: The objective of load balancing is to gain higher throughput, and

reduce the user perceived latency. Load balancing may be necessary because of a variety off

actors such as high network traffic or high request rate causing the network connection to be a

bottleneck, or high computational load. The following are some forms of load balancing:

✓ Data migration: The ability to move data around in the system, based on the access

pattern of the users

✓ Computation migration: The ability to relocate processes in order to perform a

redistribution of the workload.

✓ Distributed scheduling: This achieves a better turnaround time for the users by using

idle processing power in the system more efficiently.

➢ Real-time scheduling

Real-time scheduling becomes more challenging when a global view of the system state is

absent with more frequent on-line or dynamic changes. The message propagation delays which

are network-dependent are hard to control or predict. This is an hindrance to meet the QoS

requirements of the network.

➢ Performance

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

User perceived latency in distributed systems must be reduced. The common issues in

performance:

✓ Metrics: Appropriate metrics must be defined for measuring the performance of

theoretical distributed algorithms and its implementation.

✓ Measurement methods/tools: The distributed system is a complex entity appropriate

methodology and tools must be developed for measuring the performance metrics.

Applications of distributed computing and newer challenges

The deployment environment of distributed systems ranges from mobile systems to cloud

storage. All the environments have their own challenges:

➢ Mobile systems

o Mobile systems which use wireless communication in shared broadcast medium

have issues related to physical layer such as transmission range, power, battery

power consumption, interfacing with wired internet, signal processing and

interference.

o The issues pertaining to other higher layers include routing, location management,

channel allocation, localization and position estimation, and mobility

management.

o Apart from the above mentioned common challenges, the architectural differences

of the mobile network demands varied treatment. The two architectures are:

✓ Base-station approach (cellular approach): The geographical region is divided into

hexagonal physical locations called cells. The powerful base station transmits signals to all

other nodes in its range

✓ Ad-hoc network approach: This is an infrastructure-less approach which do not have

any base station to transmit signals. Instead all the responsibility is distributed among the

mobile nodes.

✓ It is evident that both the approaches work in different environment with different

principles of communication. Designing a distributed system to cater the varied need is a great

challenge.

➢ Sensor networks

o A sensor is a processor with an electro-mechanical interface that is capable of

sensing physical parameters.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

o They are low cost equipment with limited computational power and battery life.

They are designed to handle streaming data and route it to external computer

network and processes.

o They are susceptible to faults and have to reconfigure themselves.

o These features introduces a whole new set of challenges, such as position

estimation and time estimation when designing a distributed system .

➢ Ubiquitous or pervasive computing

o In Ubiquitous systems the processors are embedded in the environment to

perform application functions in the background.

o Examples: Intelligent devices, smart homes etc.

o They are distributed systems with recent advancements operating in wireless

environments through actuator mechanisms.

o They can be self-organizing and network-centric with limited resources.

➢ Peer-to-peer computing

o Peer-to-peer (P2P) computing is computing over an application layer network

where all interactions among the processors are at a same level.

o This is a form of symmetric computation against the client sever paradigm.

o They are self-organizing with or without regular structure to the network.

o Some of the key challenges include: object storage mechanisms, efficient object

lookup, and retrieval in a scalable manner; dynamic reconfiguration with nodes as

well as objects joining and leaving the network randomly; replication strategies to

expedite object search; tradeoffs between object size latency and table sizes;

anonymity, privacy, and security.

➢ Publish-subscribe, content distribution, and multimedia

o The users in present day require only the information of interest.

o In a dynamic environment where the information constantly fluctuates there is

great demand for

o Publish: an efficient mechanism for distributing this information

o Subscribe: an efficient mechanism to allow end users to indicate interest in

receiving specific kinds of information

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

o An efficient mechanism for aggregating large volumes of published information

and filtering it as per the user’s subscription filter.

o Content distribution refers to a mechanism that categorizes the information based

on parameters.

o The publish subscribe and content distribution overlap each other.

o Multimedia data introduces special issue because of its large size.

➢ Distributed agents

o Agents are software processes or sometimes robots that move around the system

to do specific tasks for which they are programmed.

o Agents collect and process information and can exchange such information with

other agents.

o Challenges in distributed agent systems include coordination mechanisms among

the agents, controlling the mobility of the agents, their software design and

interfaces.

➢ Distributed data mining

o Data mining algorithms process large amount of data to detect patterns and trends

in the data, to mine or extract useful information.

o The mining can be done by applying database and artificial intelligence

techniques to a data repository.

➢ Grid computing

• Grid computing is deployed to manage resources. For instance, idle CPU cycles

of machines connected to the network will be available to others.

• The challenges includes: scheduling jobs, framework for implementing quality of

service, real-time guarantees, security.

➢ Security in distributed systems

The challenges of security in a distributed setting include: confidentiality, authentication

and availability. This can be addressed using efficient and scalable solutions.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

