
www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Chord uses a flat key space to associate the mapping between network nodes and

data objects/files/values.

CHORD

• Chord is a protocol proposed by Stoica that associates mapping of key/ value pairs in

distributed environment using a hash table.

• A distributed hash table (DHT) is a class of a decentralized distributed system that

provides a lookup service similar to a hash table: (key, value) pairs are storedin a DHT,

and any participating node can retrieve the value associated with a givenkey.

• Responsibility for maintaining the mapping from keys to values is distributed among the

nodes, in such a way that a change in the set of participants causes a minimal amount of

disruption.

• This allows a DHT to scale to extremely large numbers of nodes and to handle continual

node arrivals, departures, and failures.

Properties of DHT:

• Autonomy and decentralization: the nodes collectively form the system without any

central coordination.

• Fault tolerance: the system should be reliable even with nodes continuously joining,

leaving, and failing.

• Scalability: the system should function efficiently even with thousands or millions of

nodes.

CHORD

• Chord is a protocol and algorithm for a peer-to-peer distributed hash table.

• A distributed hash table stores key-value pairs by assigning keys to different

computers (known as “nodes”); a node will store the values for all the keys for

which it is responsible.

• Chord specifies how keys are assigned to nodes, and how a node can discover the

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• value for a given key by first locating the node responsible for that key.

• The node address as well as the data object/file/value is mapped to a logical identifier

in the common key space using a consistent hash function.

• Chord supports a single operation, lookup(x), that maps a given key x to a network

node.

• Chord stores a file/object/value at the node to which the file/object/value’s key

maps.

• The steps involved in lookup are:

1. Map the object/file/value to its key in the common address space.

2. Map the key to the node in its native address space using lookup. The

design oflookup is the main challenge.

Basic Querying

• The Chord protocol is used to query a key from a client i.e. to find successor(k).

• The basic approach is to pass the query to a node’s successor, if it cannot find the

key locally.

• This will lead to a O(N) query time where N is the number of machines in the ring.

• To avoid the linear search above, Chord implements a faster search method by

requiring each node to keep a finger table containing up to m entries, where m is

the number of bits in the hash key.

• In Chord, a node’s IP address is hashed to an m-bit identifier that serves as thenode

identifier in the common key (identifier) space.

• The file/data key is hashed to an m-bit identifier that serves as the key identifier.

• The value of m is sufficiently large so that the probability of collisions during the

hash is negligible.

• The Chord overlay uses a logical ring of size 2m.

• The identifier space is ordered on the logical ring modulo 2m.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• A key k gets assigned to the first node such that its node identifier equals or follows

the key identifier of k in the common identifier space.

Fig : Chord ring with m=7

• The node is the successor of k denoted as succ(k).

• N denoted the nodes and K denoted the keys stored by the nodes.

Succ(8)=18

Succ(15)=18

Succ(28)=28

Succ(53)=63

Succ(87)=99

Succ(121)=5

Simple lookup

• Each node tracks its successor on the ring, in the variable successor; a query for key

x is forwarded to the successors of nodes until it reaches the first node such that that

node’s identifier y is greater than the key x, modulo 2m.

• The result, which includes the IP address of the node with key y, is returned to the

querying node along the reverse of the path that was followed by the query.

• This mechanism requires O(1) local space but O(n) hops, where n is the number of

nodes in the P2P network.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

Scalable Lookup

(variables)

Integer: successor initial value;

(1) i .Locate_Successor(key), where keyi:

(1a) if key (i, successor] then

(1b) return(successor)

(1c) else return (successor.Locate_Successor(key)).

Fig : Simple object lookup algorithm

• A scalable look up algorithm that uses O(log n) message hops at the cost of O(m)

space in the local routing tables, uses the following idea.

• Each node i maintains a routing table, called the finger table, with at most O(log n)

distinct entries, such that the xth entry (1 ≤ x ≤ m) is the node identifier of the node

succ(i + 2x-1).

• This is the first node whose key is greater than the key of node i by at least 2x−1 mod

2m.

• The size of the finger table is bounded by m entries.

• Due to the logarithmic structure, the finger table has more information about nodes

closer ahead of it in the Chord overlay, than about nodes further away.

(variables)

Integer: successor initial value;

Integer: predecessor initial value;

Integer finger[1…..m];

(1) i .Locate_Successor(key), where keyi:

(1a) if key (i, successor] then

(1b) return(successor)

(1c) else

(1d) j Closest_Preceding_Node(key);

(1e) return(j.Locate_Successor(key)).

(2) i.Closest_Preceding_Node(key), where keyi:

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

(2a) for count = m down to 1 do

(2b) if finger[count] (i, key) then

(2c) break();

(2d) return (finger[count]).

Fig: A scalable object location algorithm

Fig : Query lookup using the logarithmically-structured finger tables

• For a query on key key at node i, if key lies between i and its successor, the key

would reside at the successor and the successor’s address is returned.

• If key lies beyond the successor, then node i searches through the m entries in its

finger table to identify the node j such that j most immediately precedes key,

among all the entries in the finger table.

• As j is the closest known node that precedes key, j is most likely to have the most

information on locating key, i.e., locating the immediate successor node to which

key has been mapped.

Managing Churn

The behavior of the protocol during node joins, failures and departures is discussed

here.

i) Node Join

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• To create a new ring, a node i executes Create_New_Ring which creates

a ringwith the singleton node.

• To join a ring that contains some node j, node i invokes Join_Ring(j).

• Node j locates i’s successor on the logical ring and informs i of its successor

• Before i can participate in the P2P exchanges, several actions need to happen: i’s successor

needs to update its predecessor entry to i, i’s predecessor needs to revise its successor field to i,

i needs to identify its predecessor, the finger table at i needs to be built, and the finger tables of

all nodes need to be updated to account for i’s presence.

• This is achieved by procedures Stabilize(), Fix_Fingers(), and Check_Predecessor() that

are periodically invoked by each node.

• A recent joiner node i that has executed Join_Ring() gets integrated into the ring isshown in

Fig

Fig : Steps in the integration of node i in the ring, where j > i > k

The following are the sequence:

1. The configuration after a recent joiner node i has executed Join_Ring().

2. Node i executes Stabilize(), which allows its successor j to adjust j’s variable

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

predecessor to i. Specifically, when node i invokes Stabilize(), it identifies the

successor’s predecessor k. If k ∈ (i, successor), then I updates its successor to k.

In either case, i notify its successor of itself via successor. Notify(i), so the successor

has a chance to adjust its predecessor variable to i.

3. The earlier predecessor k of j (i.e., the predecessor in Step 1) executes Stabilize()

and adjusts its successor pointer from j to i.

4. Node i executes Fix_Fingers() to build its finger table, and other nodes also execute the

procedure to update their finger tables if necessary.

• Once all the successor variables and finger tables have stabilized, a call by

anynode to Locate_Successor() will reflect the new joiner i.

• Until then, a call to Locate_ Successor() may result in the

Locate_Successor() call performing a conservative scan.

• The loop in Closest_Preceding_Node that scans the finger table will result

in a search traversal using smaller hops rather than truly logarithmic hops,

resultingin some

• It can be shown that for any set of concurrent join operations, at some point

after the last join operation completes, all the pointers and finger tables will

becorrect. This ensures the correctness.

• But the transit period can have the following outcomes:

1. The finger tables used in a search are up to date and the correct successor of

the key is sought in O(log n) hops.

2. The finger tables are not up to date but the successor pointers are correct.

The sought key will be located but may take more steps as the full

advantage of a logarithmic search space pruning cannot be used.

3. If the successor pointers are incorrect, or the key transfer to the new joiners

in procedure Notify has not completed, the search may fail. This is during a

transient duration, and the source has the choice of reissuing the query.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

ii) Node failures and departures

• When a node j fails abruptly, its successor i on the ring will discover the

failure when the successor i executes Check_Predecessor() periodically.

• Process i gets a chance to update its predecessor field when another node k

causes i

to execute Notify(k). But that can happen only if k’s successor variable is i.

• This requires the predecessor of the failed node to recognize that its successor

hasfailed, and get a new functioning successor.

• In fact, the successor pointers are required for object search; the predecessor

variables are required only to accommodate new joiners.

• A solution such as introducing a Check_Successor() procedure analogous to

Check_Predecessor procedure will not solve the problem because it does not

helpto identify the functional successor.

• The Chord protocol proposes that, rather than maintain a single successor,

each node maintains a list of successors, which are the node’s first

successors.

• If the first successor does not respond, the node can try the next successor

from thelist, and so on. Only the simultaneous failure of all the successors

can then causethe protocol to fail.

• The provision for a successor list at each node provides a natural mechanism

for the application to manage replicated objects.

• The replicas get placed at the node corresponding to the object key, as well

as at the nodes in the successor list of that node.

• As Chord is able to update its successor list as the successor list changes,

Chord can also interface with the application to let it track the locations of the

replicas.

• A voluntary departure from the ring can be treated as a failure. However, a

failed node causes all the data (keys) stored at that node to be lost until

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

corrective actionis taken.

• When a node departs voluntarily, it should first transfer all the keys it is

responsible for to its successor.

• The departing node should also inform its successor and predecessor.

• This will enable the successor to update its predecessor to the predecessor

of the departing node.

• The predecessor will also be able to update its successor list by deleting the

departing node and adding the last successor of the departing node’s

successor list to its own successor list.

Complexity

• For a Chord network with n nodes, each node is responsible for at most (1 +

/n keys.

• The search for a successor in Locate_Successor in a Chord network with n

nodes requires time complexity O(log n) with high probability.

• The size of the finger table is log(n) ≤ m

• The average lookup time is 1/2 log(n)

)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

A content-addressable network (CAN) is scalable indexing mechanism that maps objects to

their locations in the network.

CAN is a logical d-dimensional Cartesian coordinate space organized as a d-torus logical

topology, i.e., a virtual overlay d-dimensional mesh with wrap-around.

CONTENT ADDRESSABLE NETWORKS (CAN)

• The real motivation behind CAN is the existing networks are not scalable.

• CAN support basic hash table operations on key-value pairs (K,V): insert, search,delete

• CAN is composed of individual nodes and each node stores a chunk (zone) of the hash

table

• A hash table is formed as a subset of the (K,V) pairs in the table.

• Each node stores state information about neighbor zones.

• The requests (insert, lookup, or delete) for a key are routed by intermediate nodesusing

a greedy routing algorithm.

• It do not need any centralized control (completely distributed).

• The small per-node state is independent of the number of nodes in the system

(scalable) and also the nodes can route around failures (fault-tolerant).

Properties of CAN

i) Distributed

ii) fault-tolerant

iii) scalable

iv) independent of the naming structure

v) implementable at the application layer

vi) self-organizing and self-healing.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• A d-torus logical topology is a virtual overlay d-dimensional mesh with wrap-

around.

• The entire space is partitioned dynamically among all the nodes present, so that each

node i is assigned a disjoint region r(i) of the space.

• As nodes arrive, depart, or fail, the set of participating nodes, as well as the

assignment of regions to nodes

• For any object v, its key k(v) is mapped using a deterministic hash function to apoint p

in the Cartesian coordinate space.

Fig : d-Torus topology

• The (k, v) pair is stored at the node that is presently assigned the region that contains

the point p. This means the (k, v) pair is stored at node i if presently the point p

corresponding to (k, v) lies in region (r, i).

• To retrieve object v, the same hash function is used to map its key k to the same point

p.

• The node that is presently assigned the region that contains p- is accessed to retrieve

v.

• The three core components of a CAN design are the following:

1. Setting up the CAN virtual coordinate space, and partitioning it among the

nodes as they join the CAN.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

A bootstrap node is responsible for tracking a partial list of the nodes that itbelieves

are currently participating in the CAN.

2. Routing in the virtual coordinate space to locate the node that is assigned the

region containing p.

3. Maintaining the CAN due to node departures and failures.

Initialization of CAN

The following are the steps in CAN initialization:

1. Each CAN is assumed to have a unique DNS name that maps to the IP address of one

or a few bootstrap nodes of that CAN.

2. To join a CAN, the joiner node queries a bootstrap node via a DNS lookup, and the

bootstrap node replies with the IP addresses of some randomly chosen nodes that it

believes are participating in the CAN.

3. The joiner chooses a random point p in the coordinate space. The joiner sends a

request to one of the nodes in the CAN, of which it learnt in step 2, asking to be

assigned a region containing p. The recipient of the request routes the request to the

owner old_owner(p) of the region containing p, using the CAN routing algorithm.

4. The old_owner(p) node splits its region in half and assigns one half to the joiner. The

region splitting is done using an a priori ordering of all the dimensions, so asto decide

which dimension to split along. This also helps to methodically merge regions, if

necessary. The (k, v) tuples for which the key k now maps to the zone tobe transferred

to the joiner, are also transferred to the joiner.

5. The joiner learns the IP addresses of its neighbors from old_owner(p). The neighbors

are old_owner(p) and a subset of the neighbors of old_owner(p). The old_owner(p)

also updates its set of neighbors. The new joiner as well as old_owner(p) inform their

neighbors of the changes to the space allocation, so that they have correct information

about their neighborhood and can route correctly. Each node has to send an immediate

update of its assigned region, followed by periodic Heartbeat refresh messages, to all

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

its neighbors.

• When a node joins a CAN, only the neighboring nodes in the coordinate space are

required to participate in the joining process.

• The overhead is the order of the number of neighbors, which is O(d) and

independent of n, the number of nodes in the CAN.

CAN Routing

• CAN routing uses the straight-line path from the source to the destination in the

logical Euclidean space.

• Each node maintains a routing table that tracks its neighbor nodes in the logical

coordinate space.

• In d-dimensional space, nodes x and y are neighbors if the coordinate ranges of their

regions overlap in d − 1 dimensions, in one dimension.

• All the regions are convex.

• Let the region x be [[x1

min, x
1

max], …[xa
min,x

a]]maaxnd the region y be [[y1
min, y

1
max],

…[yd
min, y

d
max]].

• X and y are neighbors if there is some dimension j such that xj
max=yi

minand for all

dimensions, [xi
min, x

i
max]] and [yi

min, y
i
max]] overlap.

Fig : Two-dimensional CAN space

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• The routing table at each node tracks the IP address and the virtual coordinate region

of each neighbor.

• To locate value v, its key (k, v) is mapped to a point p- whose coordinates are usedin

the message header.

• Knowing the neighbors’ region coordinates, each node follows simple greedy routing by

forwarding the message to that neighbor having coordinates that are closest to the

destination’s coordinates.

• To implement greedy routing to a destination node x, the present node routes a

message to that neighbor among the neighbors k ∈ Neighbors:

• Assuming equal-sized zones in d-dimensional space, the average number ofneighbors

for a node is O(d).

• The average path length is (d/4) n1/d.

• The implication on scaling is that each node has about the same number of neighbors

and needs to maintain about the same amount of state information, irrespective of the

total number of nodes participating in the CAN.

• The CAN structure is superior to that of Chord.

• Unlike in Chord, there are typically many paths for any given source-destination pair.

• This greatly helps for fault-tolerance.

• Average path length in CAN scales as O(n1/d) as opposed to log n for Chord.

Maintenance in CAN

• When a node voluntarily departs from CAN, it hands over its region and the associated

database of (key, value) tuples to one of its neighbors.

• If the node’s region can be merged with that of one of its neighbors to form a valid

convex region, then such a neighbor is chosen.

• Otherwise the node’s region is handed over to the neighbor whose region has the

smallest volume or load – the regions are not merged and the neighbor handles both

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

zones temporarily until a periodic background region reassignment process runs to

integrate the regions and prevent further fragmentation.

• AN requires each node to periodically send a HEARTBEAT update message to each

neighbor, giving its assigned region coordinates, the list of its neighbors, and their

assigned region coordinates.

• When a node dies, the neighbors suspect its death and initiate a TAKEOVER protocol to

decide who will take over the crashed node’s region.

• Despite this TAKEOVER protocol, the (key, value) tuples in the crashed node’s

database remain lost until the primary sources of those tuples refresh the tuples.

• Requiring the primary sources to periodically issue such refreshes also serves the dual

purpose of updating stale or dirty objects in the CAN.

TAKEOVER protocol

• When a node suspects that a neighbor has died, it starts a timer in proportion to its

region’s volume.

• On timeout, it sends a TAKEOVER message, with its region volume piggybacked on

the message, to all the neighbors of the suspected failed node.

• When a TAKEOVER message is received, a node cancels its bid to take over the failed

node’s region if the received TAKEOVER message contains a smaller region volume than

that of the recipient’s region.

• This protocol thus helps in load balancing by choosing the neighbor whose region

volume is the smallest, to take over the failed node’s region. As all nodes initiate the

TAKEOVER protocol, the node taking over also discovers its neighbors andvice versa.

• In the case of multiple concurrent node failures in one vicinity of the Cartesian space,

a more complex protocol using an expanding ring search for the TAKEOVER messages

can be used.

• A graceful departure as well as a failure can result in a neighbor holding more than one

region if its region cannot be merged with that of the departed or failed node.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• To prevent the resulting fragmentation and restore the 1 → 1node to region

assignment, there is a background reassignment algorithm that is run periodically.

• Conceptually, consider a binary tree whose root represents the entire space. An

internal node represents a region that existed earlier but is now split into regions

represented by its children nodes.

• A leaf represents a currently existing region, and overloading the semantics and the

notation, also the node that represents that region.

• When a leaf node x fails or departs, there are two cases:

1. If its sibling node y is also a leaf, then the regions of x and y are merged

and assigned to y. The region corresponding to the parent of x and y

becomes a leafand it is assigned to node y.

2. If the sibling node y is not a leaf, run a depth-first search in the sub tree

rootedat y until a pair of sibling leaves (say, z1 and z2) is found. Merge the

regions ofz1 and z2, making their parent z a leaf node, assign the merged

region to nodez2, and the region of x is assigned to node z1.

• A distributed version of the above depth-first centralized tree traversal can be

performed by the neighbors of a departed node.

• The distributed traversal leverages the fact that when a region is split, it is done in

accordance to a particular ordering on the dimensions.

• Node i performs its part of the depth first traversal as follows:

1. Identify the highest ordered dimension dima that has the shortest

coordinate range [idima
min, i

dima
max]. Node i’s region was last halved along

dimension dima.

2. Identify neighbor j such that j is assigned the region that was split off

from i’sregion in the last partition along dimension dima. Node j’s region

i’s region along dimension dima.

3. If j’s region volume equals i’s region volume, the two nodes are siblings

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

and the regions can be combined. This is the terminating case of the depth

first treesearch for siblings. Node j is assigned the combined region, and

node i takes over the region of the departed node x. This take over by

node i is done by returning the recursive search request to the originator

node, and communicating i’s identity on the replies.

4. Otherwise, j’s region volume must be smaller than i’s region volume. Node i

forwards a recursive depth-first search request to j.

CAN Optimizations

The following are the design techniques to improve the performance of factors:

• Multiple dimensions: As the path length is O(d ·n1/d), increasing the number of

dimensions decreases the path length and increases routing fault tolerance at the

expense of larger state space per node.

• Multiple realities: A coordinate space is termed as a reality. The use of multiple

independent realities assigns to each node a different region in each different reality.

This implies that in each reality, the same node will store different (k, v) tuples

belonging to the region assigned to it in that reality, and will also have a different

neighbor set. The data contents (k, v) get replicated in each reality, leading to higher

data availability. The multiple copies of each (k, v) tuple, one in each reality, offer a

choice – the closest copy can be accessed. Routing fault tolerance improves because

each reality offers a set of different paths to the same(k, v) tuple. All these contribute

to more storage.

• Delay latency: The delay latency on each of the candidate logical links can also beused

in making the routing decision.

• Overloading coordinate regions: Each region can be shared by multiple nodes, up to

some upper limit. This reduces path length and path latency. The fault tolerance

improves because a region becomes empty only if all the nodes assignedto it depart or

fail concurrently. The per-hop latency decreases because a node can select the closest

node from the neighboring region to forward a message towards the destination. This

demands many of the aspects of the basic CAN protocol need to be reengineered to

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

accommodate overloading of coordinate regions.

• Multiple hash functions: The use of multiple hash functions maps each key to

different points in the coordinate space. This replicates each (k, v) pair for each hash

function used. The effect is similar to that of using multiple realities.

• Topologically sensitive overlay: The CAN overlay has no correlation to the physical

proximity or to the IP addresses of domains. Logical neighbors in the overlay may be

geographically far apart, and logically distant nodes may be physical neighbors. By

constructing an overlay that accounts for physical proximity in determining logical

neighbors, the average query latency can be significantly reduced.

CAN Complexity

• The time overhead for a new joiner is O(d) for updating the new neighbors in the

CAN, and O(d/4 log(n)) for routing to the appropriate location in the coordinate space.

• The time overhead and the overhead in terms of the number of messages for a node

departure is O(d2), because the TAKEOVER protocol uses a message exchange

between each pair of neighbors of the departed node.

.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

DATA INDEXING AND OVERLAYS

Data stored in distributed systems are located through indexing mechanisms. There are

three types of indexing:

1. Centralized: This indexing entails the use of one or a few central servers to store

references or indexes to the data on many peers. The DNS lookup as well as the

lookup by some early P2P networks such as Napster used a central directory lookup.

2. Local: This indexes to the objects at various peers being scattered across other peers

throughout the P2P network. To access the indexes, a structure is used in the P2P

overlay to access the indexes. Distributed indexing is the most challenging of

the indexing schemes, and many novel mechanisms have been proposed, most

notably the distributed hash table (DHT). Various DHT schemes differ in the hash

mapping, search algorithms, diameter for lookup, search diameter, fault-tolerance,and

resilience to churn.

3. Distributed: This requires each peer to index only the local data objects and remote

objects need to be searched for. This form of indexing is typically used inunstructured

overlays in conjunction with flooding search or random walk search.

Fig: Mapping between address space and object space

Another criterion for classifying indexing mechanism are based on their semantic

structure: semantic indexing and semantic free indexing.

Semantic indexing: A semantic index is human readable. A semantic index

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

The P2P network topology has a definite structure, and the placement of files or

data in this network is highly deterministic according to an algorithmic mapping.

mechanism supports keyword searches, range searches, and approximate searches.

• Semantic free indexing: This is not human readable and corresponds to the index

obtained by a hash mechanism. These searches are not supported by semantic free

index mechanisms.

Distributed IndexingStructured Overlay

• Deterministic mapping allows a very fast and deterministic lookup to satisfy

queries for the data. These lookup systems use a hash table for the mapping.

• The hash function maps keys to values, along with the regular structure of the

overlay. This facilitates fast search for the location of the file.

• An implicit characteristic of such a deterministic mapping of a file to a location isthat

the mapping can be based on a single characteristic of the file.

• The main drawback in this mapping is that arbitrary queries cannot be handled

directly.

• Another notable limitation is the overhead occurred due to insertions and deletions of

files in distributed environment.

Unstructured overlays

• This P2P network topology does not have any particular controlled structure.

• It do not have any control over where files or data is located.

• Each peer typically indexes only its local data objects, hence, it uses localindexing.

• Node joins and departures are easy since, the local overlay is simply adjusted.

• File placement is independent of the topology.

• But searching a file may incur high message overhead and high delays.

• The major advantage is that unstructured overlays support complex queriesbecause

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

the search criteria can be arbitrary.

• The lack of fixed topology paves way for the formation of new topology.

• Some of the topologies are:

Power law random graph (PLRG): This is a random graph where the node degrees

followthe power law

Normal random graph: This is a normal random graph where the nodes typically

have auniform degree.

Differences between structured and unstructured overlay networks

Structured overlay Unstructured overlay

The networks are constructed over a

predetermined topology.

There is no specific topology.

The connections are also predetermined. Random and dynamic connections can be

established.

The insertion and deletion of nodes

imposeshigh overhead over the network

performance.

They offer better resilience to network

dynamics. Insertion and deletions of nodesis

simpler.

This offers faster response time, better

performance and lower diameter.

This has comparatively worse performance,

node reachability, response time and no

guarantee for the diameter.

They are more scalable. They lack scalability.

They do not support arbitrary searches. They support arbitrary searches.

Vulnerable to attacks. Resilience to attacks.

EG: Chord EG: Gnutella

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Distributed Shared Memory is a resource management component of a distributed operating

system that implements the shared memory model in distributed systems, which have no

physically shared memory. The shared memory model provides a virtual address space that is

shared among all computers in a distributed system.

DISTRIBUTED SHARED MEMORY

Abstraction and its advantages

• It is an abstraction provided to the programmer of a distributed system.

• It gives the impression of a single memory. Programmers access the data across the

network using only read and write primitives.

• Programmers do not have to deal with send and receive communication primitives

and the ensuing complexity of dealing explicitly with synchronization and

consistency in the message passing model.

• A part of each computer’s memory is earmarked for shared space, and the

remainder is private memory.

• To provide programmers with the illusion of a single shared address space, a

memory mapping management layer is required to manage the shared virtual

memory space.

Fig : Abstract view of Distributed Shared MemoryAdvantages of DSM

• Communication across the network is achieved by the read/write abstraction that

simplifies the task of programmers.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• A single address space is provided, thereby providing the possibility of avoiding

data movement across multiple address spaces, and simplifying passing-by- reference

and passing complex data structures containing pointers.

• If a block of data needs to be moved, the system can exploit locality of reference to

reduce the communication overhead.

• DSM is economical than using dedicated multiprocessor systems, because it uses

simpler software interfaces and off-the-shelf hardware.

• There is no bottleneck presented by a single memory access bus.

• DSM effectively provides a large (virtual) main memory.

• DSM provides portability of programs written using DSM. This portability arises

due to a common DSM programming interface, which is independent of the

operating system and other low-level system characteristics

• When multiple processors wish to access the same data object, a decision about how

tohandle concurrent accesses needs to be made. If concurrent access is permitted by

different processors to different replicas, the problem of replica consistency needs to

be addressed.

Challenges in implementing replica coherency in DSM systems

1. Programmers are aware of the availability of replica consistency models and from

coding their distributed applications according to the semantics of these models.

2. As DSM is implemented as asynchronous message passing, it faces the overhead of

asynchronous synchronization.

3. Since the control is given to memory management, the programmers lose the ability

to use their own message-passing solutions for accessing shared objects.

Issues in designing a DSM system:

• Determining the semantics to allow for concurrent access to shared objects.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Determining the best way to implement the semantics of concurrent access to

shared data either to use read or write replication.

• Selecting the locations for replication to optimize efficiency from the system’s

viewpoint.

• Determining the location of remote data that the application needs to access, if full

replication is not used.

• Reducing communication delays and the number of messages that are involved under the

covers while implementing the semantics of concurrent access to shareddata.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

A memory consistency model is a set of rules which specify when a written value by one

thread can be read by another thread.

MEMORY CONSISTENCY MODELS

• These rules are essential to write a correct program.

• Memory coherence is the ability of the system to execute memory operations

correctly.

• The problem of ensuring memory coherence is identifying which of theinterleaving

are correct, which of course requires a clear definition of correctness.

• The memory consistency model defines the set of allowable memory access

orderings.

• In DSM system, the programmers write their programs keeping in mind the

allowable interleaving permitted by that specific memory consistency model.

• A program written for one model may not work correctly on a DSM system that

enforces a different model.

• The model can thus be viewed as a contract between the DSM system and the

programmer using that system.

• The memory consistency model affects:

i) System implementation: hardware, OS, languages, compilers

ii) Programming correctness

iii) Performance

Strict consistency, atomic consistency, linearizability

• According to Von Neumann architecture/ uniprocessor machine, any Read

operation to a location should return the value or variable written by the most recent

Write to that location or a variable.

• The system built over the above principle is called strict or atomic consistency

model.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Atomic Consistency Model:

i) Any Read to a location is required to return the value written by the most

recent Write to that location in accordance with global time reference. For

non overlapping operations, with respect to the global time reference, the

specification is clear. For overlapping operations the following further

specifications are necessary.

ii) All operations appear to be executed atomically and sequentially.

iii) All processors see the same ordering of events, which is equivalent to the

global-time occurrence of non-overlapping events.

• The features of the atomic consistency model area:

i) Common global time axis is implicitly available in a uniprocessor system

ii) The write operation is immediately visible to all processes

Fig : Invocations and responses in sequential system

The invocation and the response to each invocation can be viewed as being

atomic events. An execution sequence in global time is viewed as a sequence Seq of

such invocationsand responses. The Seq must satisfy the following conditions:

• Liveness: Each invocation must have a corresponding response.

• Correctness: The projection of Seq on any processor i, denoted Seqi, must

be a sequence of alternating invocations and responses if pipelining is

disallowed.

A linearizable execution needs to generate an equivalent global order on the

eventsthat is a permutation of Seq, satisfying the semantics of linearizability.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

Linearizability requires that each operation appears to occur atomically at some point

between its invocation and completion. This point is called the linearization point.

• Linearizability is a guarantee about single operations on single objects.

• It provides a real- guarantee on the behavior of a set of single operations on a

single object.

Implementation of Linearizability

• Implementing linearizability is expensive because a global time scale needs

to besimulated.

• As all processors need to agree on a common order, the implementation

needs touse total order.

• For simplicity, the algorithm described here assumes full replication of each

dataitem at all the processors.

• This demands the total ordering to be combined with a broadcast.

• The memory manager software is placed between the application above it

and thetotal order broadcast layer below it.

(shared var)

int: x:

(1) When the memory manager receives a Read or Write from application:

Linearizable property:

A sequence Seq of invocations and responses is linearizable (LIN) if there is a

permutation Seq’ of adjacent pairs of corresponding (invoc, resp) events satisfying:

1. For every variable v, the projection of Seq’ on v, denoted Seqv’ , is such that

every Read (adjacent (invoc, resp) event pair) returns the most recent Write

(adjacent, (nvoc, resp) event pair) that immediately preceded it.

2. If the response op1(resp) of operation op1 occurred before the invocation

op2(invoc) of operation op2 in Seq, then op1 (adjacent (invoc, resp)event

pair) occurs before op2 (adjacent (invoc, resp) event pair) in Seq.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Sequential consistency requires that a shared memory multiprocessor appear to be a

multiprogramming uniprocessor system to any program running on it.

(1a) total_order_broadcast the Read or Write request to all processors;(1b)

await own request that was broadcast;

(1c) perform pending response to the application as follows

(1d) case Read: return value from local replica;

(1e) case Write: write to local replica and return ack to application.

(2) When the memory manager receives a total_order_broadcast(Write, x,

val) from network;

(2a) write val to local replica of x.

(3) When the memory manager receives a total_order_broadcast(Read, x)

from network;

(3a) no operation,

Fig : Implementing Linearizability

The algorithm in Fig. ensures total order broadcast such that all processors follow the

same order:

1. For two non-overlapping operations at different processors, the response

to the former operation precedes the invocation of the latter in global

time.

2. For two overlapping operations, the total order ensures a common view

by allprocessors.

Sequential Consistency

Sequential consistency requires that:

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the system.

The main motivation behind sequential consistency is that the atomic

consistency is very difficult to implement since the it is very difficult for a

system to synchronize to global clock. Sequential consistency is specified as

follows:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• The result of any execution is the same as if all operations of the

processorswere executed in some sequential order.

• The operations of each individual processor appear in this sequence in

the localprogram order.

Implementation of Sequential Consistency

All processors are required to see the same global order, but global time ordering

neednot be preserved across processes. So it is sufficient to use total order broadcasts for

the Write operations only. In the simplified algorithm, no total order broadcast is

required for Read operations, because:

1. all consecutive operations by the same processor are ordered in the same

orderbecause pipelining is not used.

2. Read operations by different processors are independent of each other and

need tobe ordered only with respect to the Write operations in the execution.

(shared var)

int: x:

(1) When the memory manager receives a Read or Write from application:

(1a) case Read: return value from local replica;

(1b) case Write(x, val): total_order_broadcasti(Write(x, val)) to all processors

including itself.

(2) When the memory manager at Pi receives a total_order_broadcastsj(write, x,
val) from network;

Sequential Consistency:

A sequence Seq of invocation and response events is sequentially consistent if there is

a permutation Seq’ of adjacent pairs of corresponding (invoc, resp) events satisfying:

1. For every variable v, the projection of Seq’ on v, denoted Seqv’ , is such that

every Read (adjacent, (invoc,resp) event pair) returns the most recent Write

(adjacent, (invoc, resp) event pair) that immediately preceded it.

2. If the response op1(resp) of operation op1 at process Pi occurred before the

invocation op2(invoc) of operation op2 by process Pi in Seq, then op1

(adjacent (invoc, resp) event pair) occurs before op2 (adjacent (invoc,resp)

event pair) in Seq.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

(2a) Write val to local replica of x;

(2b) if i=j then return acknowledgement to application.

Fig : Sequential Consistency using Local Read algorithm

Local-read algorithm

• A Read operation completes atomically, whereas a Write operation does not.

• Between the invocation of a Write by Pi (line 1b) and its c knowledgement

(lines 2a, 2b), there may be multiple Write operations initiated by other

processors that take effect at Pi (line 2a).

• Thus, a Write issued locally has its completion locally delayed. Such an

algorithmis acceptable for Read intensive programs.

Local-write algorithm

• This does not delay acknowledgement of Writes.

• For Write intensive programs, it is desirable that a locally issued Write gets

acknowledged immediately even though the total order broadcast for the

Write, and the actual update for the Write may not go into effect by updating

the variableat the same time.

• The algorithm achieves this at the cost of delaying a Read operation by a

processor until all previously issued local Write operations by that same

processor have locally gone into effect.

• The variable counter is used to track the number of Write operations that have

beenlocally initiated but not completed at any time.

• A Read operation completes only if there are no prior locally initiated Write

operations that have not written to their variables.

• Else, a Read operation is delayed until after all previously initiated Write

operations have written to their local variables, which happens after the total

orderbroadcasts associated with the Write have delivered the broadcast message

locally.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

According to casual consistency model, only that Writes that are causally related must

be seen in that same order by all processors, whereas concurrent Writes may be seen by

different processors in different orders.

(shared var)int:x;

(1) When the memory manager at Pi receives a Read(x) from application:

(1a) if counter = 0 then

(1b) return x

(1c) else keep the Read pending

(2) When the memory manager at Pi receives a Write(x, val) from application:

(2a) count counter + 1;

(2b) total_order_broadcasti Write(x, val)

(2c) return acknowledgement to the application.

(3) When the memory manager at Pi receives a total_order_broadcastj Write(x,
val) from network:

(3a) write val to local replica of x;

(3b) if i=j then

(3c) counter counter – 1;

(3d) if (counter = 0 and any Reads are pending) then

(3e) perform pending responses for the Reads to the application.

Fig : Sequential Consistency using local write algorithm

Casual Consistency

• The causal consistency model represents a weakening of sequential

consistency inthat it makes a distinction between events that are potentially

causally related andthose that are not.

The causality relation is defined as follows:

• Local order: At a processor, the serial order of the events defines the local

causalorder.

• Inter-process order: A Write operation causally precedes a Read

operation issued by another processor if the Read returns a value written by

the Write.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Transitive closure: The transitive closure of the above two relations

defines the (global) causal order.

Pipelined RAM (PRAM) or Processor Consistency

• In causal consistency, the concurrent writes be seen in a different order on

different machines, although causally-related ones must be seen in the same

order by all machines.

• PRAM consistency or Pipelined RAM states that Writes done by a single

process are received by all other processes in the order in which they were

issued, but writes from different processes may be seen in a different order by

different processes.

• This is a weaker form of consistency requires only that Write operations issued

by the same processor are seen by all other processors in the same order that

they were issued, but Write operations issued by different processors may be

seen in different orders by different processors.

• The local causality relation, as defined by the local order of Write operations,

needs to be seen by other processors. Hence, this form of consistency is

termed processor consistency.

• An equivalent name for this consistency model is pipelined RAM (PRAM),

to capture the behavior that all operations issued by any processor appear to the

otherprocessors in a FIFO pipelined sequence.

Slow Memory

• The use of weakly consistent memories or slow memory in distributed shared

memory systems to combat unacceptable network delay and to allow such

systemsto scale is proposed.

• Slow memory is presented as a memory that allows the effects of writes to

propagate slowly through the system, eliminating the need for costly

consistency maintenance protocols that limit concurrency.

• Slow memory processes a valuable locality property and supports a reduction

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

from traditional atomic memory. Thus slow memory is as expressive as atomic

memory.

Fig : Hierarchy of memory consistency models

Models based on synchronization instructions

Synchronization instructions are like run-time library. The synchronization

statements across the various processors must satisfy the consistency conditions;

other program statements between synchronization statements may be executed by

the different processors without any conditions.

i) Weak Consistency

The protocol is said to support weak consistency if:

• All accesses to synchronization variables are seen by all processes (or

nodes, processors) in the same order (sequentially) - these are

synchronization operations. Accesses to critical sections are seen

sequentially.

• All other accesses may be seen in different order on different processes (or

nodes,processors).

• The set of both read and write operations in between different

synchronization operations is the same in each process.

Drawbacks:

When a synchronization variable is accessed, the memory does not know

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The barrier synchronization states that until all processes complete the previous phase,

none can enter the next phase.

whether this is being done because the process is finished writing the shared

variables or about to begin reading them.

ii) Release Consistency

The drawbacks of weak consistency are overcome by:

1. Ensuring that all locally initiated Writes have been completed, i.e., propagated

to all other processes.

2. Ensuring that all Writes from other machines have been locally reflected

To differentiate the entering and leaving of CS, release consistency

providesacquire and release operations.

Acquire:

• Acquire accesses are used to tell the memory system that a critical region

is about to be entered.

• The actions for case 2 need to be performed to ensure that local replicas of

variables are made consistent with remote ones.

Release:

• This accesses say that a critical region has just been exited.

• Hence, the actions for case 1 need to be performed to ensure that

remote replicas of variables are made consistent with the local ones that

have been updated.

The Acquire and Release operations can be defined to apply to a subset of the

variables. The accesses themselves can be implemented either as ordinary operationson

special variables or as special operations. If the semantics of a CS is not associated with the

Acquire and Release operations, then the operations effectively provide for barrier

synchronization.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

The lazy release consistency model is relaxation of the release consistency model in

which rather than propagating the updated values throughout the system as soon as a

process leaves a critical region, the updated values are propagated to the rest of the

system only on demand, i.e., only when they are needed.

This is implemented through protected variables which follows the given rules:

• All previously initiated Acquire operations must complete successfully before a

process can access a protected shared variable.

• All accesses to a protected shared variable must complete before a Releaseoperation

can be performed.

• The Acquire and Release operations effectively follow the PRAM consistency

model.

iii) Entry Consistency

• Entry consistency requires the programmer to use Acquire and Release at the

startand end of each CS, respectively.

• Entry consistency requires each ordinary shared variable to be associated with

some synchronization variable such as a lock or barrier.

• When an Acquire is performed on a synchronization variable, only access to

those ordinary shared variables that are guarded by that synchronization

variable is regulated.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

The prominent feature of P2P networks is their ability to provide a large combined

storage, CPU power, and other resources while imposing a low cost for scalability,

andfor entry into and exit from the network.

P2P & DISTRIBUTED SHARED MEMORY

PEER TO PEER COMPUTING AND OVERLAY GRAPHS

Peer to peer (P2P) systems refers to the applications that take advantage of

resources like storage, time cycles, content, manpower available at the end systems of

the internet. In other words, the peer to peer computing architecture contains nodes that

are equal participantsin data sharing. All the tasks are equally divided between all the

nodes. The nodes interact with each other as required as share resources. This deals

with application layer organization of network overlay for flexibility of sharing

resources.

The ongoing entry and exit of various nodes, as well as dynamic insertion and

deletionof objects in P2P network is called churn. The impact of churn should be as

transparent as possible. There are two types of P2P systems: structured and

unstructured.

Differences between structured and unstructured P2P

Unstructured P2P Structured P2P

The construction of overlay network is

highly flexible.

The construction of overlay network has

lowlevel of flexibility.

The resources are indexed locally. The resources are distributed remotely

andindexed using hash tables.

The messages can be broadcast or

randomwalk.

The messages are unicast.

The network puts best effort content

location.

The network guarantees the content location.

High overhead. Comparatively low overhead.

This supports high failure rates. Supports moderate failure rates.

This is suitable for small scale and

highlydynamic applications.

This is suitable for large scale and

relativelystable applications.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Overlay network is constructed over another network. For example, connecting

internet over telephone lines is an overlay network. The topology of the overlay network is

independent from the underlying network.

Characteristics of Peer to Peer Computing

• Peer to peer networks are usually formed by groups computers. These computers all store

their data using individual security but also share data with all the other nodes.

• The nodes in peer to peer networks both use resources and provide resources. So, ifthe nodes

increase, then the resource sharing capacity of the peer to peer networkincreases.

• The nodes in peer to peer networks act as both clients and servers. Hence, it is difficult to

provide adequate security for the nodes. This can lead to denial of service attacks.

• Most modern operating systems such as Windows and Mac OS contain software to

implement peer to peer networks.

• Efficient usage of resources.

• Self -organizing nature: because of scalable storage, CPU power and other resources.

• Distributed control: fast and efficient searching for data.

• Symmetric: highly scalable

• Anonymity: efficient management of churns

• Naming mechanism: selection of geographically close server.

• Security, authentication, trust: Redundancy in storage

Advantages of Peer to Peer Computing

• Each computer in the peer to peer network manages itself. The network is quite

easy to set up and maintain.

• The server handles all the requests of the clients. This provision is not required in

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

Napster used a server-mediated, central index architecture organized aroundclusters of

servers that store direct indices of the files in the system.

peer to peer computing and the cost of the server is saved.

• It is easy to scale the peer to peer network and add more nodes. This only increases

the data sharing capacity of the system.

• None of the nodes in the peer to peer network are dependent on the others for their

functioning. Hence the network is fault tolerant.

• Easy deployment and organization.

Disadvantages of Peer to Peer Computing

• It is difficult to back-up the data as it is stored in different computer systems

and there is no central server.

• It is difficult to provide overall security in the peer to peer network as each

systemis independent and contains its own data.

Napster P2P system

• The developers of the original Napster launched the service as a peer-to-peer (P2P)file

sharing network.

• The software application was easy to use with a free account, and it was specifically

designed for sharing digital music files (in the MP3 format) across a Web-connected

network.

• The central server maintains a table with the:

i) the client’s address (IP) and port, and offered bandwidth

ii) information about the files that the client can allow to share

• The basic steps of operation to search for content and to determine a node fromwhich

to download the content are the following:

- A client connects to a meta-server that assigns a lightly loaded server fromone of

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

the close-by clusters of servers to process the client’s query.

- The client connects to the assigned server and forwards its query along withits own

identity.

- The server responds to the client with information about the usersconnected to

it and the files they are sharing.

- On receiving the response from the server, the client chooses one of the users

from whom to download a desired file. The address to enable the P2Pconnection

between the client and the selected user is provided by the server to the client.

- The directory serves to provide the mapping from a particular host thatcontains

the required content, to the IP address needed to download from it.

Application Layer Overlays

• The fundamental mechanism in P2P networks is data searching.

• This depends on the organization of data and networks.

• The search algorithms for P2P networks tend to be data-centric.

• P2P search uses the P2P overlay, a logical graph among the peers that is used

for the object search and object storage and management algorithms.

• Overlays can be thought as a network built over another network.

• Above the P2P overlay is the application layer overlay, where

communication between peers is point-to-point once a connection is

established.

• The P2P overlay can be structured or unstructured, i.e., no particular graph

structure is used.

• Structured overlays use some rigid organizational principles based on the

properties of the P2P overlay graph structure, for the object storage algorithms

andthe object search algorithms.

• Unstructured overlays use very loose guidelines for object storage. As there

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

is nodefinite structure to the overlay graph, the search mechanisms are more

ad-hoc, and use some forms of flooding or random walk strategies.

• Thus, object storage and search strategies are intricately linked to the overlay

structure as well as to the data organization mechanism

• On receiving the response from the server, the client chooses one of the users from

whom to download a desired file. The address to enable the P2Pconnection between the

client and the selected user is provided by the server to the client.

• The directory serves to provide the mapping from a particular host that

contains the required content, to the IP address needed to download from it.

Application Layer Overlays

• The fundamental mechanism in P2P networks is data searching.

• This depends on the organization of data and networks.

• The search algorithms for P2P networks tend to be data-centric.

• P2P search uses the P2P overlay, a logical graph among the peers that is used

for the object search and object storage and management algorithms.

• Overlays can be thought as a network built over another network.

• Above the P2P overlay is the application layer overlay, where

communication between peers is point-to-point once a connection is

established.

• The P2P overlay can be structured or unstructured, i.e., no particular

graphstructure is used.

• Structured overlays use some rigid organizational principles based on the

properties of the P2P overlay graph structure, for the object storage

algorithms andthe object search algorithms.

• Unstructured overlays use very loose guidelines for object storage. As

there is no definite structure to the overlay graph, the search mechanisms

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

are more ad-hoc, and use some forms of flooding or random walk

strategies.

• Thus, object storage and search strategies are intricately linked to the

overlay structure as well as to the data organization mechanisms.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

SHARED MEMORY MUTUAL EXCLUSION

Shared memory model is implemented in operating systems through

semaphoresmonitors and atomically executable special purpose hardware.

Lamport’s bakery algorithm

• Lamport proposed the classical bakery algorithm for n-process mutual

exclusion inshared memory systems.

• This algorithm satisfies the requirements of the critical section problem

namelymutual exclusion, bounded waiting, and progress.

• All process threads must take a number and wait their turn to use a

sharedcomputing resource or to enter their critical section.

• The number can be any of the global variables, and processes with the

lowestnumber will be processed first.

• If there is a tie or similar number shared by both processes, it is managed

throughtheir process ID.

• If a process terminates before its turn, it has to start over again in the

processqueue.

• A process wanting to enter the critical section picks a token number that

is onegreater than the elements in the array choosing [1…n].

• Processes enter the critical section in the increasing order of the token numbers.

• In case of concurrent accesses to choosing by multiple processes, the

processesmay have the same token number.

• Then, a unique lexicographic order is defined on the tuple (token, pid)

and thisdictates the order in which processes enter the critical section.

(shared vars)

boolean: choosing[1…n];

integer: timestamp[1….n];

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

repeat

(1) Pi executes the following for the entry section:

(1a) choosing[i] 1;

(1b) timestamp[i] max k1...n (timestamp[k]) + 1;

(1c) choosing[i] 0;

(1d) for count = 1 to n do

(1e) while choosing[count] do no-op;

(1f) while timestamp[count] 0 and (timestamp[count], count)

<(timestamp[i], i) do

(1g) no-op.

(2) Pi executes the critial section (CS) after the entry section

(3) Pi executes the following exit section after the CS:

(3a) timestamp[i] 0

(4) Pi executes the remainder section after the exit section until false;

until false;

Fig : Lamport’s Bakery algorithm for shared memory exclusionMutual exclusion

• In the entry section, a process chooses a timestamp for itself, and resets it

to 0when it leaves the exit section.

• These steps are non-atomic in the algorithm. Thus multiple processes could

bechoosing timestamps in overlapping durations.

• When process i reaches line 1d, it has to check the status of each other process

j, todeal with the effects of any race conditions in selecting timestamps.

• In lines 1d–1f, process i serially checks the status of each other process j.

• If j is selecting a timestamp for itself, j’s selection interval may have

overlappedwith that of i, leading to an unknown order of timestamp values.

• Process i needs to make sure that any other process j(j < i) that had begun to

execute line 1b concurrently with itself and may still be executing line 1b

does notassign itself the same timestamp.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• If this is not done mutual exclusion could be violated as i would enter the CS,

andsubsequently, j, having a lower process identifier and hence a

lexicographically lower time stamp, would also enter the CS.

• The i waits for j’s timestamp to stabilize, i.e., choosing [j] to be set to false.

• Once j’s timestamp is stabilized, i moves from line 1e to line 1f.

• Either j is not requesting or j is requesting. Line 1f determines the relative

prioritybetween i and j.

• The process with a lexicographically lower timestamp has higher priority and

enters the CS; the other process has to wait (line 1g).

• Thus mutual exclusion is satisfied by the algorithm.

Bounded Waiting

• Bounded waiting is satisfied because each other process j can overtake

process i atmost once after i has completed choosing its timestamp.

Progress

• The second time j chooses a timestamp, the value will necessarily be larger

than i’s

timestamp if i has not yet entered its CS.

• Progress is guaranteed because the lexicographic order is a total order and the

process with the lowest timestamp at any time in the loop is guaranteed to

enter theCS.

Improvements in Lamport’s Bakery Algorithm

i) Space complexity

• A lower bound of n registers, specifically, the timestamp array, has been

shown forthe shared memory critical section problem.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

ii) Time complexity

• When the level of contention is low, the overhead of the entry section does

not scale.

• This issue is addressed his concern is addressed by fast mutual exclusion

with O(1).

• The limitation of this approach is that it does not guarantee bounded delay.

Lamport’s WRWR mechanism and fast mutual exclusion

• This algorithm illustrates an important technique – the (W − R − W – R)

sequencethat is a necessary and sufficient sequence of operations to check

for contention and to ensure safety in the entry section, by employing just

two registers.

• The basic sequence of operations for W(x)–R(y)–W(y)–R(x):

1. The first operation needs to be a Write to x. If it were a Read, then all

contending processes could find the value of the variable even outside

the entrysection.

2. The second operation cannot be a Write to another variable, for that

could equally be combined with the first Write to a larger variable. The

second operation should not be a Read of x because it follows Write of x

and if there isno interleaved operation from another process, the Read

does not provide anynew information. So the second operation must be

a Read of another variable,say y.

3. The sequence must also contain Read(x) and Write(y) because there is

no pointin reading a variable that is not written to, or writing a variable

that is never read.

4. The last operation in the minimal sequence of the entry section must be a

Read,as it will help determine whether the process can enter CS. So the last

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

operation should be Read(x), and the second-last operation should be the

Write(y).

(shared variable among the processes)

integer: x, y; // shared register initialized

 (3b) b[i] false

Forever.

Fig : Lamport’s fast mutual exclusion algorithm

boolean b[1….n]; //flags to indicate interest in critical section

repeat

(1) Pi(1 i n) executes entry section:

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

(1g)

(1h)

(1i)

(1j)

(1k)

(1l)

(1m)

(1n)

b[i] true; x

 i;

if y 0 then

b[i] false;

await y=0;

goto(1a);

y i;

if x i then

b[i] false; for

j = 1 to n do

await y = 0;

if y i then

await y = 0;

goto(1a);

(2) Pi(1 i n) executes entry section:

(3) Pi(1 i n) executes exit section:

(3a) y 0;

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

Hardware Support for Mutual Exclusion

• Hardware support can allow for special instructions that perform two ormore

operations atomically.

• Two such instructions, Test &Set and Swap are defined and implemented.

• The atomic execution of two actions, a Read and a Write operation can

simplify amutual exclusion algorithm.

(shared variables among the processes accessing each of the different object types)

register: Reg initial value; // shared register initialized

(local variables)

integer: old initial value; // value to be returned

(1) Test & Set(Reg) return value:

(1a) old Reg;

(1b) Reg 1;

(1c) return(old).

(2) Swap(Reg, new) return value:

(2a) old Reg;

(2b) Reg new;

(2c) return(old).

Fig : Definitions for Test&Set, Swap operations

(shared variables)

register: Reg false; // shared register initialized

(local variables)

integer: blocked 0 // variable to be checked before entering CS

repeat

(1) Pi executes the following for the entry section:

(1a) blocked true;

(1b) repeat

(1c) blocked Swap(reg, blocked);

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

(1d) until blocked = false;

(2) Pi executes the critical section (CS) after the entry section

(3) Pi executes the following exit section after the CS:

(3a) Reg false;

(4) Pi executes the remainder section after the exit section

until false;

Fig : Code for Swap operation

(shared variable)

register: Reg false; // shared register initialized

boolean: waiting[1…n];

(local variables)

integer: blocked initial value // value to be checked before // entering CS

repeat

(1) Pi executes the following for the entry section:

(1a) waiting[i] true;

(1b) blocked true;

(1c) repeat waiting[i] and blocked do

(1d) blocked Test&Set(Reg);

(1e) waiting[i] false;

(2) Pi executes the critical section (CS) after the entry section

(3) Pi executes the following exit section after the CS:

(3a) next (i + 1) mod n;

(3b) while next 1 and waiting [next] = false do

(3c) next (next + 1) mod n;

(3d) if next = i then

(3e) Reg false;

(3f) else waiting[j] false;

(4) Pi executes the remainder section after the exit section

until false;

Fig : Code for Test & Set operation

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

Tapestry is a peer-to-peer overlay network which provides a distributed hash table, routing,

and multicasting infrastructure for distributed applications. The Tapestry peer- to-peer

system offers efficient, scalable, self-repairing, location-aware routing to nearby resources.

Routing and overlay are the terms coined for looking objects and nodes in any distributed

system.

TAPESTRY

• Tapestry is a decentralized distributed system.

• It is an overlay network that implements simple key-based routing.

• It is a prototype of a decentralized, scalable, fault-tolerant, adaptive location and

routing infrastructure

• Each node serves as both an object store and a router that applications can contactto

obtain objects.

• In a Tapestry network, objects are published at nodes, and once an object has been

successfully published, it is possible for any other node in the network to find the

location at which that object is published.

• The difference between Chord and Tapestry is that in Tapestry the application

chooses where to store data, rather than allowing the system to choose a node to store

the object at.

• The application only publishes a reference to the object.

• The Tapestry P2P overlay network provides efficient scalable location independent

routing to locate objects distributed across the Tapestry nodes.

• The hashed node identifiers are termed VIDs (Virtual ID) and the hashed object

identifiers are termed as GUIDs (Globally Unique ID).

Routing and Overlays

• It is a middleware that takes the form of a layer which processes the route requestsfrom

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

the clients to the host that holds the objects.

• The objects can be placed and relocated without the information from the clients.

Functionalities of routing overlays:

• A client requests an object with GUID to the routing overlay, which routes therequest

to a node at which the object replica resides.

• A node that wishes to make the object available to peer-to-peer service computes the

GUID for the object and announces it to the routing overlay that ensures that the object

is reachable by all other clients.

• When client demands object removal, then the routing overlays must make them

unavailable.

• Nodes may join or leave the service.

Routing overlays in Tapestry

• Tapestry implements Distributed Hash Table (DHT) and routes the messages to thenodes

based on GUID associated with resources through prefix routing.

• Publish (GUID) primitive is issued by the nodes to make the network aware of its

possession of resource.

• Replicated resources also use the same publish primitive with same GUID. This results

in multiple routing entries for the same GUID.

• This offers an advantage that the replica of objects is close to the frequent users toavoid

latency, network load, improve tolerance and host failures.

Roots and Surrogate roots

• Tapestry uses a common identifier space specified using m bit values and presently

Tapestry recommends m = 160.

• Each identifier OG in this common overlay space is mapped to a set of unique nodes that

exists in the network, termed as the identifier’s root set denoted OGR.

• If there exists a node v such that vid = OGR, then v is the root of identifier OG.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

Prefix routing at any node to select the next hop is done by increasing the prefix match of

the next hop’s VID with the destination OGR.

• If such a node does not exist, then a globally known deterministic rule is used to

identify another unique node sharing the largest common prefix with OG, that acts as the

surrogate root.

• To access object O, the goal is to reach the root OGR.

• Routing to OGR is done using distributed routing tables that are constructed using prefix

routing information.

Prefix Routing

• Let M = 2m. The routing table at node vid contains b · logb M entries, organized inlogb M

levels i = 1,…, logb M.

• Each entry is of the form <wid, IP address>.

• The following is the property of entry (b) at level i:

Each entry denotes some neighbor node VIDs with an (i – 1) digit prefix match with v id

. Further, in level i, for each digit j in the chosen base, there is an entry for which the ith

digit position is j. The jth entry (counting from 0) in level i has value j for digit position i.

Let an i digit prefix of vid be denoted as prefix (vid, i). Then the jth entry (counting from

0) in level i begins with an i-digit prefix prefix (vid,i– 1). j.

Routing Table

• The nodes in the router table at vid are the neighbors in the overlay, and these are

exactly the nodes with which vid communicates.

• For each forward pointer from node v to v’, there is a backward pointer from v’ to

v.

• There is a choice of which entry to add in the router table. The jth entry in level i can

be the VID of any node whose i-digit prefix is determined; the (m – i) digit suffix can

vary.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• The flexibility is useful to select a node that is close, as defined by some metric

space.

• This choice also allows a more fault-tolerant strategy for routing.

• Multiple VIDs can be stored in the routing table.

• The jth entry in level i may not exist because no node meets the criterion. This is a

hole in the routing table.

• Surrogate routing can be used to route around holes. If the jth entry in level i should

be chosen but is missing, route to the next non-empty entry in level i, using

wraparound if needed.

• All the levels from 1 to logb 2
m need to be considered in routing, thus requiring

logb2
m hops.

(variables)

Integer Table[1…logb2
m, 1….b]; //routing table

(1) NEXT_HOP(i, OG = d1 o d2 … o dlogbm) executed at node vid to

route to OG:

// i is (1 + Length of longest common prefix), also level of the table

(1a) while Table[i, di] = ⊥do // dj is the ith digit of destination

(1b) di (di+1) mod b;

(1c) if Table[i, di] = v then // node v also acts as next hop

// (special case)

(1d) return (NEXT_HOP(i+1, OG) // locally examine next digit of

//destination

(1e) else return (Table[i, di]). // node Table[i, di] is next hop

Fig : NEXT_HOP(i, OG)

Object Publication and object searching

• The unique spanning tree used to route to vid is used to publish and locate an object

whose unique root identifier OGR is vid.

• A server S that stores object O having GUID OG and root OGR periodically publishes

the object by routing a publish message from S towards OGR.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• At each hop and including the root node OGR, the publish message creates a pointerto

the object.

• Each node between O and OGR must maintain a pointer to O despite churn.

• If a node lies on the path from two or more servers storing replicas, that node will

store a pointer to each replica, sorted in terms of a distance metric.

• This is the directory information for objects, and is maintained as a soft-state, i.e., it

requires periodic updates from the server, to deal with changes and to provide fault-

tolerance.

• To search for an object O with GUID OG, a client sends a query destined for the root

OGR

• Along the logb 2
m hops, if a node finds a pointer to the object residing on server S,the

node redirects the query directly to S. Otherwise, it forwards the query towardsthe root

OGR which is guaranteed to have the pointer for the location mapping.

• A query gets redirected directly to the object as soon as the query path overlaps the

publish path towards the same root.

• Each hop towards the root reduces the choice of the selection of its next node by a

factor of b; hence, the more likely by a factor of b that a query path and a publishpath

will meet.

• As the next hop is chosen based on the network distance metric whenever there is a

choice, it is observed that the closer the client is to the server in terms of the distance

metric, the more likely that their paths to the object root will meet sooner, and the

faster the query will be redirected to the object.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Fig : Publishing of object with identifier 72EA1 at two replicas 1F329 and C2B40Node Insertion

• When nodes join the network, the result should be the same as though the networkand

the routing tables had been initialized with the nodes as part of the network.

• The procedure for the insertion of node X should maintain the following property of

Tapestry: For any node Y on the path between a publisher of object O and the root

OGR, node Y should have a pointer to O.

Properties for node insertion:

• Nodes that have a hole in their routing table should be notified if the insertion of node X can

fill that hole.

• If X becomes the new root of existing objects, references to those objects should now lead to

X.

• The routing table for node X must be constructed.

• The nodes near X should include X in their routing tables to perform more efficientrouting.

Steps in insertion

• Node X uses some gateway node into the Tapestry network to route a message toitself.

This leads to its surrogate, i.e., the root node with identifier closest to that of itself

(which is Xid). The surrogate Z identifies the length of the longest common prefix

that Zid shares with Xid.

• Node Z initiates a MULTICAST-CONVERGECAST on behalf of X by creating a

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

logical spanning tree as follows. Acting as a root, Z contacts all the (, j) nodes, for all

j ∈ {0, 1, …, b – 1}.

• These are the nodes with prefix followed by digit j. Each such (level 1) node Z1

contacts all the prefix ((Z1, || + 1),j) nodes, for all j ∈ {0, 1,…,b – 1}. This continues up

to level logb2
m and completes the MULTICAST.

• The nodes at this level are the leaves of the tree, and initiate the CONVERGECAST,

which also helps to detect the termination of this phase.

• The insertion protocols are fairly complex and deal with concurrent insertions.

Node Deletion

When a node A leaves the Tapestry overlay:

1. Node A informs the nodes to which it has back pointers. It also provides them with

replacement entries for each level from its routing table. This is to prevent holes in

their routing tables.

2. The servers to which A has object pointers are also notified. The notified servers

send object republish messages.

3. During the above steps, node A routes messages to objects rooted at itself to theirnew

roots. On completion of the above steps, node A informs the nodes reachable via its

back pointers and forward pointers that it is leaving, and then leaves.

• Node failures are handled by using the redundancy that is built in to the routing

tables and object location pointers.

• A node X detects a failure of another node A by using soft-state beacons or when a

node sends a message but does not get a response.

• Node X updates its routing table entry for A with a suitable substitute node, running

the nearest neighbor algorithm if necessary.

• If A’s failure leaves a hole in the routing table of X, then X contacts the suggorate of A

in an effort to identify a node to fill the hole.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• To repair the routing mesh, the object location pointers also have to be adjusted.

• Objects rooted at the failed node may be inaccessible until the object is

republished.

• The protocols for doing so essentially have to:

i) maintain path availability

ii) optionally collect garbage/dangling pointers that would otherwise persist until

the next soft-state refresh and timeout

Complexity

• A search for an object is expected to take logb2
m hops. The routing tables are

optimized to identify nearest neighbor hops.

• The size of the routing table at each node is c · b · log b2
m where c is the constant

that limits the size of the neighbor set that is maintained for fault-tolerance.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

