
 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

AGREEMENT IN A FAILURE-FREE SYSTEM

• In a failure-free system, consensus can be reached by collecting information from

the different processes, arriving at a decision, and distributing this decision in the

system.

• A distributed mechanism would have each process broadcast its values to others,

andeach process computes the same function on the values received.

• The decision can be reached by using an application specific function.

• Algorithms to collect the initial values and then distribute the decision may be

based on the token circulation on a logical ring, or the three-phase tree-based

broadcast converge cast: broadcast, or direct communication with all nodes.

• In a synchronous system, this can be done simply in a constant number of rounds.

• Further, common knowledge of the decision value can be obtained using an

additionalround.

• In an asynchronous system, consensus can similarly be reached in a constant

numberof message hops.

• Further, concurrent common knowledge of the consensus value can also be attained.

AGREEMENT IN (MESSAGE-PASSING) SYNCHRONOUS SYSTEMS WITH

FAILURES

Consensus algorithm for crash failures (synchronous system)

• Consensus algorithm for crash failures message passing synchronous system.

• The consensus algorithm for n processes where up to f processes where f < n may

fail in a fail stop failure model.

• Here the consensus variable x is integer value; each process has initial value xi. If

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

up to f failures are to be tolerated than algorithm has f+1 rounds, in each round a

process i sense the value of its variable xi to all other processes if that value has not

been sent before.

• So, of all the values received within that round and its own value xi at that start of

the round the process takes minimum and updates xi occur f + 1 rounds the local

value xi guaranteed to be the consensus value.

• In one process is faulty, among three processes then f = 1. So the agreement requires f + 1

that is equal to two rounds.

• If it is faulty let us say it will send 0 to 1 process and 1 to another process i, j and k.

Now, on receiving one on receiving 0 it will broadcast 0 over here and this

particular process on receiving 1 it will broadcast 1 over here.

• So, this will complete one round in this one round and this particular process on

receiving 1 it will send 1 over here and this on the receiving 0 it will send 0 over

here.

(global constants)

integer: f; // maximum number of crash failures tolerated

(local variables)

Integer: x  local value;

(1) Process Pi (1 i n) execute the consensus algorithm for up to f crash failures:

(1a) for round from 1 to f + 1 do

(1b) if the current value of x has not been broadcast then

(1c) broadcast(x);

(1d) yi  value (if any) received from process j in this round;

(1e) x  minj (x, y j) ;

(1f) output x as the consensus value.

Fig : Consensus with up to f fail-stop processes in a system of n processes, n > f

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

r

r

• The agreement condition is satisfied because in the f+ 1 rounds, there must be at least

one round in which no process failed.

• In this round, say round r, all the processes that have not failed so far succeed in

broadcasting their values, and all these processes take the minimum of the values

broadcast and received in that round.

• Thus, the local values at the end of the round are the same, say xi for all non-failed

processes.

• In further rounds, only this value may be sent by each process at most once, and no

process i will update its value xi .

• The validity condition is satisfied because processes do not send fictitious values inthis

failure model.

• For all i, if the initial value is identical, then the only value sent by any process is the

value that has been agreed upon as per the agreement condition.

• The termination condition is seen to be satisfied.

Complexity

• The complexity of this particular algorithm is it requires f + 1 rounds where f < n and

the number of messages is O(n2)in each round and each message has one integers

hence the total number of messages is O((f +1)· n2) is the total number ofrounds and in

each round n2 messages are required.

Lower bound on the number of rounds

• At least f + 1 rounds are required, where f < n.

• In the worst-case scenario, one process may fail in each round; with f + 1 rounds,

there is at least one round in which no process fails. In that guaranteed failure-free

round, all messages broadcast can be delivered reliably, and all processes that have

not failed can compute the common function of the received values to reach an

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

agreement value.

Consensus algorithms for Byzantine failures (synchronous system)

Upper bound on Byzantine processes

• In a system of n processes, the Byzantine agreement problem can be solved in a synchronous

system only if the number of Byzantine processes f is such that

f 
n −1

 3 

Fig: Impossibility of achieving Byzantine agreement with n = 3 processes and f = 1

malicious process

• The condition where f < (n – 1) / 2 is violated over here; that means, if f = 1 andn = 2

this particular assumption is violated

• (n – 1) / 2 is not 1 in that case, but we are assuming 1 so obviously, as per the previous

condition agreement byzantine agreement is not possible.

• Here P 0 is faulty is non faulty and here P 0 is faulty so that means P 0 is the source,

the source is faulty here in this case and source is non faulty in the other case.

• So, source is non faulty, but some other process is faulty let us say that P 2 is faulty. P

1 will send because it is non faulty same values to P 1 and P 2 and as far as the P 2s

concerned it will send a different value because it is a faulty.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• Agreement is possible when f = 1 and the total number of processor is 4. So, agreement

we can see how it is possible we can see about the commander P c.

• So, this is the source it will send the message 0 since it is faulty. It will send 0 to Pd 0

to P b, but 1 to pa in the first column. So, P a after receiving this one it will send one to

both the neighbors, similarly P b after receiving 0 it will send 0 since itis not faulty.

• Similarity P d will send after receiving 0 at both the ends.

• If we take these values which will be received here it is 1 and basically it is 0 and this

is also 0.

• So, the majority is basically 0 here in this case here also if you see the values 10 and 0.

The majority is 0 and here also majority is 0.

• In this particular case even if the source is faulty, it will reach to an agreement, reach

an agreement and that value will be agreed upon value or agreement variable will be

equal to 0.

Fig : Achieving Byzantine agreement when n = 4 processes and f = 1

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

ALGORITHM FOR ASYNCHRONOUS CHECKPOINTING AND RECOVERY

(JUANG-VENKATESAN)

• This algorithm helps in recovery in asynchronous checkpointing.

• The following are the assumptions made:

➢ communication channels are reliable

➢ delivery messages in FIFO order

➢ infinite buffers

➢ message transmission delay is arbitrary but finite

• The underlying computation or application is event-driven: When process P is at states,

receives message m, it processes the message; moves to state s’ and send messages out.

So the triplet (s, m, msgs_sent) represents the state of P.

• To facilitate recovery after a process failure and restore the system to a consistent

state, two types of log storage are maintained:

➢ Volatile log: It takes short time to access but lost if processor crash.

Thecontents of volatile log are moved to stable log periodically.

➢ Stable log: longer time to access but remained if crashed.

Asynchronous checkpointing

• After executing an event, a processor records a triplet (s, m, msg_sent) in its volatile

storage.

− s:state of the processor before the event

− m: message

− msgs_sent: set of messages that were sent by the processor during the

event.

• A local checkpoint at a processor consists of the record of an event occurring at the

processor and it is taken without any synchronization with other processors.

• Periodically, a processor independently saves the contents of the volatile log in the

stable storage and clears the volatile log.

• This operation is equivalent to taking a local checkpoint.

Recovery Algorithm

The data structures followed in the algorithm are:

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

RCVDi→ j (CkPti)This represents the number of messages received by processor pi

from processor pj,from the beginning of the computation until the checkpoint CkPti.

SENTi→ j (CkPti)

This represents the number of messages sent by processor pi to processor pj, from the

beginning of the computation until the checkpoint CkPti.

• The main idea of the algorithm is to find a set of consistent checkpoints, from theset

of checkpoints.

• This is done based on the number of messages sent and received.

• Recovery may involve multiple iterations of roll backs by processors.

• Whenever a processor rolls back, it is necessary for all other processors to find outif

any message sent by the rolled back processor has become an orphan message.

• The orphan messages are identified by comparing the number of messages sent to

and received from neighboring processors.

• When a processor restarts after a failure, it broadcasts a ROLLBACK message thatit

has failed.

• The recovery algorithm at a processor is initiated when it restarts after a failure or

when it learns of a failure at another processor.

• Because of the broadcast of ROLLBACK messages, the recovery algorithm is

initiated at all processors.

Procedure RollBack_Recovery: processor pi executes the following:STEP (a)

if processor pi is recovering after a failure then

Ck Pti := latest event logged in the stable storage

else

Ck Pti := latest event that look place in pi {The latest event at pi can be either instable or in

volatile storage}

end if

STEP(b)

for k=1 to N {N is the number of processors in the system} do

for each neighboring processor pj do

compute SENTi→ j (Ck Pti)

send a ROLLBACK(i, SENTi→ j (Ck Pti)) message to pj

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

end for

for every ROLLBACK(j,c) message received from a neighbor j do

if RCVD i→ j (Ck Pti) > c {Implies the presence of orphan message}

then

find the latest event e such that RCVD i→ j (e) = c {Such an event e may be in

the volatile storage or stable storage}

Ck Pti := e

end if

end for

end for {for k}

Fig : Algorithm for Asynchronous Check pointing and Recovery (Juang- Venkatesan)

• The rollback starts at the failed processor and slowly diffuses into the entire

systemthrough ROLLBACK messages.

• During the kth iteration (k != 1), a processor pi does the following:

(i) based on the state CkPti it was rolled back in the (k − 1)th iteration, it

computes SENTi→j (CkPti) for each neighbor pj and sends this value in a

ROLLBACK message to that neighbor

(ii) pi waits for and processes ROLLBACK messages that it receives from its

neighbors in kth iteration and determines a new recovery point CkPti for pi

based on information in these messages.

Fig : Asynchronous Checkpointing And Recovery

At the end of each iteration, at least one processor will rollback to its final recovery point,

unless the current recovery points are already consistent.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

A consensus algorithm is a process that achieves agreement on a single data

value among distributed processes or systems.

CONSENSUS AND AGREEMENT

• Consensus algorithms necessarily assume that some processes and systems will be

unavailable and that some communications will be lost.

• Hence these algorithms must be fault-tolerant.

Examples of consensus algorithm:

• Deciding whether to commit a distributed transaction to a database.

• Designating node as a leader for some distributed task.

• Synchronizing state machine replicas and ensuring consistency among them.

Assumptions in Consensus algorithms

• Failure models:

− Some of the processes may be faulty in distributed systems.

− A faulty process can behave in any manner allowed by the failure model assumed.

− Some of the well known failure models includes fail-stop, send omission and receive

omission, and Byzantine failures.

− Fail stop model: a process may crash in the middle of a step, which could be the

execution of a local operation or processing of a message for a send or receive event.

it may send a message to only a subset of the destination set before crashing.

− Byzantine failure model: a process may behave arbitrarily.

− The choice of the failure model determines the feasibility and complexity of solving

consensus.

• Synchronous/asynchronous communication:

− If a failure-prone process chooses to send a message to process but fails, then

intended process cannot detect the non-arrival of the message.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

− This is because scenario is indistinguishable from the scenario in which the message

− takes a very long time in transit. This is a major hurdle in asynchronous system.

− In a synchronous system, a unsent message scenario can be identified by the intended

recipient, at the end of the round.

− The intended recipient can deal with the non-arrival of the expected message by

assuming the arrival of a message containing some default data, and then proceeding

with the next round of the algorithm.

• Network connectivity:

− The system has full logical connectivity, i.e., each process can communicate with any

other by direct message passing.

• Sender identification:

− A process that receives a message always knows the identity of the sender process.

− When multiple messages are expected from the same sender in a single round, a

scheduling algorithm is employed that sends these messages in sub-rounds, so that each

message sent within the round can be uniquely identified.

• Channel reliability:

− The channels are reliable, and only the processes may fail.

• Authenticated vs. non-authenticated messages:

− With unauthenticated messages, when a faulty process relays a message to other

processes

(i) it can forge the message and claim that it was received from anotherprocess,

(ii) it can also tamper with the contents of a received message before relayingit.

− When a process receives a message, it has no way to verify its authenticity. This is

known as un authenticated message or oral message or an unsignedmessage.

− Using authentication via techniques such as digital signatures, it is easier to solve the

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

agreement problem because, if some process forges a message or tampers with the

contents of a received message before relaying it, the recipient can detect the forgery or

tampering.

− Thus, faulty processes can inflict less damage.

• Agreement variable:

− The agreement variable may be boolean or multivalued, and need not be aninteger.

− This simplifying assumption does not affect the results for other data types, but helps in

the abstraction while presenting the algorithms.

Byzantine General problem

• The Byzantine Generals’ Problem (BGP) is a classic problem faced by any

distributed computer system network.

• Imagine that the grand Eastern Roman empire aka Byzantine empire has decided to

capture a city.

• There is fierce resistance from within the city.

• The Byzantine army has completely encircled the city.

• The army has many divisions and each division has a general.

• The generals communicate between each as well as between all lieutenants within their

division only through messengers.

• All the generals or commanders have to agree upon one of the two plans of action.

• Exact time to attack all at once or if faced by fierce resistance then the time toretreat

all at once. The army cannot hold on forever.

• If the attack or retreat is without full strength then it means only one thing —

Unacceptable brutal defeat.

• If all generals and/or messengers were trustworthy then it is a very simple solution.

• However, some of the messengers and even a few generals/commanders are

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

traitors. They are spies or even enemy soldiers.

• There is a very high chance that they will not follow orders or pass on the incorrect

message. The level of trust in the army is very less.

• Consider just a case of 1 commander and 2 Lieutenants and just 2 types of

messages- ‘Attack’ and ‘Retreat’.

Fig : BGP algorithm

• In Fig, the Lieutenant 2 is a traitor who purposely changes the message that is to be

passed to Lieutenant 1.

• Now Lieutenant 1 has received 2 messages and does not know which one to follow.

Assuming Lieutenant 1 follows the Commander because of strict hierarchyin the army.

• Still, 1/3rd of the army is weaker by force as Lieutenant 2 is a traitor and this creates a

lot of confusion.

• However what if the Commander is a traitor (as explained in Fig). Now 2/3rdof the total

Fig: BGP algorithm

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

army has followed the incorrect order and failure is certain. After adding 1 more

Lieutenant and 1 more type of message (Let’s say the 3rd message is ‘Not sure’), the

complexity of finding a consensus between all the Lieutenants and the Commander is

increased.

• Now imagine the exponential increase when there are hundreds of Lieutenants.

Fig : Adding one more lieutenant

Fig : 1 commandant, 3 lieutenant and 3 types of messages

• This is BGP. It is applicable to every distributed network. All participants or nodes

(‘Lieutenant’) are exactly of equal hierarchy. If agreement is reachable, then protocols to

reach it need to be devised.

• All participating nodes have to agree upon every message that is transmitted between

the nodes.

• If a group of nodes is corrupt or the message that they transmit is corrupt then still the

network as a whole should not be affected by it and should resist this ‘Attack’.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

The Byzantine agreement problem requires a designated source process, with an

initial value, to reach agreement with the other processes about its initial value,

subject to:

• Agreement: All non-faulty processes must agree on the same value.

• Validity: If the source process is non-faulty, then the agreed upon value by

all the non-faulty processes must be the same as the initial value of the

• The network in its entirety has to agree upon every message transmitted in the network.

This agreement is called as consensus.

There are two other versions of the Byzantine agreement problem:

• Consensus problem

• Interactive consistency problem.

• A correct process is a process that does not exhibit a Byzantine behaviour.

• A process is Byzantine if, during its execution, one of the following faults occurs:

− Crash: The process stops executing statements of its program and halts.

− Corruption: The process changes arbitrarily the value of a local variable with respect to

its program specification. This fault could be propagated toother processes by including

incorrect values in the content of a message sent by the process.

− Omission: The process omits to execute a statement of its program. If a process omits

to execute an assignment, this could lead to a corruption fault.

− Duplication: The process executes more than one time a statement of its program. If a

process executes an assignment more than one time, this could lead to a corruption fault.

− Misevaluation: The process misevaluates an expression included in its program. This

fault is different from a corruption fault: misevaluating an expression does not imply the

update of the variables involved in the expression and, in some cases the result of an

evaluation is not as-signed toa variable.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

All the process has an initial value and all the correct processes must agree on single

value. This is consensus problem.

All the process has an initial value, and all the correct processes must agree upon a set

of values, with one value for each process. This is interactive consistency problem.

Consensus Problem

Consensus is a fundamental paradigm for fault-tolerant asynchronous distributed

systems. Each process proposes a value to the others. All correct processes have to agree

(Termination) on the same value (Agreement) which must be one of the initially proposed

values (Validity).

The requirements of the consensus problem are:

• Agreement: All non-faulty processes must agree on the same (single) value.

• Validity: If all the non-faulty processes have the same initial value, then the

agreed upon value by all the non-faulty processes must be that same value.

• Termination: Each non-faulty process must eventually decide on a value.

Interactive Consistency Problem

The formal specifications are:

• Agreement: All non-faulty processes must agree on the same array of values A

[v1, …,vn].

• Validity: If process i is non-faulty and its initial value is vi, then all non faulty

processes agree on vi as the ith element of the array A. If process jis faulty, then the

non-faulty processes can agree on any value for A[j].

• Termination: Each non-faulty process must eventually decide on the array A.

The difference between the agreement problem and the consensus problem is that, in

the agreement problem, a single process has the initial value, whereas in the

consensus problem, all processes have an initial value.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

RESULTS OF CONSENSUS PROBLEM

Some important facts to remember are:

• Consensus is not solvable in asynchronous systems even if one process can fail by

crashing. Consensus is attainable for no failure case.

• In a synchronous system, common knowledge of the consensus value is also

attainable.In asynchronous case, concurrent common knowledge of the consensus

value is attainable.

The results are tabulated below. f indicates the number of processes that can failand n

indicates the total number of processes.

S.No Failure Mode Synchronous System Asynchronous System

1.

No failure

Agreement is attainable.

Common knowledge is also

attainable.

Agreement is attainable.

Concurrent common

knowledge is also

attainable.

2.

Crash failure

Agreement is attainable.

f < n process

(f+1) rounds

Agreement is not

attainable.

3.

Byzantine

(malicious)

failure

Agreement is attainable.

f<= floor((n-1)/3)

Byzantine process

(f+1) rounds

Agreement is not

attainable.

Solvable variants of agreement problem

Fig : Circumventing the impossibility results

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• A synchronous message passing system and a shared memory system can be used

solve the consensus problem. The following are the weaker consensus problem in

asynchronous system:

• Terminating reliable broadcast: A correct process will always get a message even

if the sender crashes while sending. If the sender crashes while sending the message,

the message may be even null, but still it has to be delivered to the correct process.

• K-set consensus: It is solvable as long as the number of crashes is less than the

parameter k, which indicates the non-faulty processes that agree on different values,

as long as the size of the set of values agreed upon is bounded by k.

• Approximate agreement: The consensus value is from multi valued domain. The

agreed upon values by the non-faulty processes be within of each other.

• Renaming problem: It requires the processes to agree on necessarily distinct values.

• Reliable broadcast: A weaker version of reliable terminating broadcast (RTB), isthe

one in which the terminating condition is dropped and is solvable under crash

failures.

Fig : Solvable variants of agreement problem in asynchronous system

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

COORDINATED CHECKPOINTING ALGORITHM (KOO-TOUEG)

• Koo and Toueg coordinated check pointing and recovery technique takes a consistent set

of checkpoints and avoids the domino effect and live lock problems during the recovery.

• Includes 2 parts: the check pointing algorithm and the recovery algorithm

A. The Check pointing Algorithm

The checkpoint algorithm makes the following assumptions about the distributed system:

• Processes communicate by exchanging messages through communication channels.

• Communication channels are FIFO.

• Assume that end-to-end protocols (the sliding window protocol) exist to handle with

message loss due to rollback recovery and communication failure.

• Communication failures do not divide the network.

• The checkpoint algorithm takes two kinds of checkpoints on the stable storage:

Permanent and Tentative.

• A permanent checkpoint is a local checkpoint at a process and is a part of a consistent

global checkpoint.

• A tentative checkpoint is a temporary checkpoint that is made a permanent checkpoint on

the successful termination of the checkpoint algorithm.

The algorithm consists of two phases.

First Phase

1. An initiating process Pi takes a tentative checkpoint and requests all other processes to

take tentative checkpoints. Each process informs Pi whether it succeeded in taking a

tentative checkpoint.

2. A process says “no” to a request if it fails to take a tentative checkpoint

3. If Pi learns that all the processes have successfully taken tentative checkpoints, Pi decides

that all tentative checkpoints should be made permanent; otherwise, Pi decides that all the

tentative checkpoints should be thrown-away.

Second Phase

1. Pi informs all the processes of the decision it reached at the end of the first phase.

2. A process, on receiving the message from Pi will act accordingly.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

3. Either all or none of the processes advance the checkpoint by taking permanent

checkpoints.

4. The algorithm requires that after a process has taken a tentative checkpoint, it cannot

send messages related to the basic computation until it is informed of Pi’s decision.

Correctness: for two reasons

i. Either all or none of the processes take permanent checkpoint

ii. No process sends message after taking permanent checkpoint

An Optimization

The above protocol may cause a process to take a checkpoint even when it is not necessary for

consistency. Since taking a checkpoint is an expensive operation, we avoid taking checkpoints.

B. The Rollback Recovery Algorithm

The rollback recovery algorithm restores the system state to a consistent state after a failure. The

rollback recovery algorithm assumes that a single process invokes the algorithm. It assumes that

the checkpoint and the rollback recovery algorithms are not invoked concurrently. The rollback

recovery algorithm has two phases.

First Phase

1. An initiating process Pi sends a message to all other processes to check if they all are

willing to restart from their previous checkpoints.

2. A process may reply “no” to a restart request due to any reason (e.g., it is already

participating in a check pointing or a recovery process initiated by some other process).

3. If Pi learns that all processes are willing to restart from their previous checkpoints, Pi

decides that all processes should roll back to their previous checkpoints. Otherwise,

4. Pi aborts the roll back attempt and it may attempt a recovery at a later time.

Second Phase

1. Pi propagates its decision to all the processes.

2. On receiving Pi’s decision, a process acts accordingly.

3. During the execution of the recovery algorithm, a process cannot send messages related

to the underlying computation while it is waiting for Pi’s decision.

Correctness: Resume from a consistent state

Optimization: May not to recover all, since some of the processes did not change anything

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

Optimization: May not to recover all, since some of the processes did not change

anything

The above protocol, in the event of failure of process X, the above protocol will require

processes X, Y, and Z to restart from checkpoints x2, y2, and z2, respectively. Process Z need

not roll back because there has been no interaction between process Z and the other two

processes since the last checkpoint at Z.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

ISSUES IN FAILURE RECOVERY

In a failure recovery, we must not only restore the system to a consistent state, but also

appropriately handle messages that are left in an abnormal state due to the failure and recovery

The computation comprises of three processes Pi, Pj , and Pk, connected through a

communication network. The processes communicate solely by exchanging messages over fault-

free, FIFO communication channels.

Processes Pi, Pj , and Pk have taken checkpoints

• The rollback of process 𝑃𝑖 to checkpoint 𝐶𝑖,1 created an orphan message H

• Orphan message I is created due to the roll back of process 𝑃𝑗 to checkpoint 𝐶𝑗,1

• Messages C, D, E, and F are potentially problematic

– Message C: a delayed message

– Message D: a lost message since the send event for D is recorded in the

restored state for 𝑃𝑗, but the receive event has been undone at process 𝑃𝑖.

– Lost messages can be handled by having processes keep a message log of all

the sent messages

– Messages E, F: delayed orphan messages. After resuming execution from their

checkpoints, processes will generate both of these messages

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

CHECKPOINT-BASED RECOVERY

Checkpoint-based rollback-recovery techniques can be classified into three categories:

1. Uncoordinated check pointing

2. Coordinated check pointing

3. Communication-induced check pointing

1. Uncoordinated Check pointing

• Each process has autonomy in deciding when to take checkpoint

• Advantage: The lower runtime overhead during normal execution

• Disadvantages

1. Domino effect during a recovery

2. Recovery from a failure is slow because processes need to iterate to find a

consistent set of checkpoints

3. Each process maintains multiple checkpoints and periodically invoke a

garbage collection algorithm

4. Not suitable for application with frequent output commits

• The processes record the dependencies among their checkpoints caused by message

exchange during failure-free operation

• The following direct dependency tracking technique is commonly used in uncoordinated

check pointing.

Direct dependency tracking technique

• Assume each process 𝑃𝑖 starts its execution with an initial checkpoint 𝐶𝑖,0

• 𝐼𝑖,𝑥 : checkpoint interval, interval between 𝐶𝑖,𝑥−1 and 𝐶𝑖,𝑥

• When 𝑃𝑗 receives a message m during 𝐼𝑗,𝑦 , it records the dependency from 𝐼𝑖,𝑥 to 𝐼𝑗,𝑦,
which is later saved onto stable storage when 𝑃𝑗 takes 𝐶𝑗,𝑦

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• When a failure occurs, the recovering process initiates rollback by broadcasting a

dependency request message to collect all the dependency information maintained by

each process.

• When a process receives this message, it stops its execution and replies with the

dependency information saved on the stable storage as well as with the dependency

information, if any, which is associated with its current state.

• The initiator then calculates the recovery line based on the global dependency

information and broadcasts a rollback request message containing the recovery line.

• Upon receiving this message, a process whose current state belongs to the recovery line

simply resumes execution; otherwise, it rolls back to an earlier checkpoint as indicated by

the recovery line.

2. Coordinated Checkpointing

In coordinated check pointing, processes orchestrate their checkpointing activities so that all

local checkpoints form a consistent global state

Types

1. Blocking Checkpointing: After a process takes a local checkpoint, to prevent orphan

messages, it remains blocked until the entire checkpointing activity is complete

Disadvantages: The computation is blocked during the checkpointing

2. Non-blocking Checkpointing: The processes need not stop their execution while taking

checkpoints. A fundamental problem in coordinated checkpointing is to prevent a process

from receiving application messages that could make the checkpoint inconsistent.

Example (a) : Checkpoint inconsistency

• Message m is sent by 𝑃0 after receiving a checkpoint request from the checkpoint

coordinator

• Assume m reaches 𝑃1 before the checkpoint request

• This situation results in an inconsistent checkpoint since checkpoint 𝐶1,𝑥 shows the

receipt of message m from 𝑃0, while checkpoint 𝐶0,𝑥 does not show m being sent from

𝑃0

Example (b) : A solution with FIFO channels

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint

message on each channel by a checkpoint request, forcing each process to take a

checkpoint before receiving the first post-checkpoint message

Impossibility of min-process non-blocking checkpointing

• A min-process, non-blocking checkpointing algorithm is one that forces only a minimum

number of processes to take a new checkpoint, and at the same time it does not force any

process to suspend its computation.

Algorithm

• The algorithm consists of two phases. During the first phase, the checkpoint initiator

identifies all processes with which it has communicated since the last checkpoint and

sends them a request.

• Upon receiving the request, each process in turn identifies all processes it has

communicated with since the last checkpoint and sends them a request, and so on, until

no more processes can be identified.

• During the second phase, all processes identified in the first phase take a checkpoint. The

result is a consistent checkpoint that involves only the participating processes.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• In this protocol, after a process takes a checkpoint, it cannot send any message until the

second phase terminates successfully, although receiving a message after the checkpoint

has been taken is allowable.

3. Communication-induced Checkpointing

Communication-induced checkpointingis another way to avoid the domino effect, while allowing

processes to take some of their checkpoints independently. Processes may be forced to take

additional checkpoints

Two types of checkpoints

1. Autonomous checkpoints

2. Forced checkpoints

The checkpoints that a process takes independently are called local checkpoints, while those that

a process is forced to take are called forced checkpoints.

• Communication-induced checkpointing piggybacks protocol- related information on each

application message

• The receiver of each application message uses the piggybacked information to determine

if it has to take a forced checkpoint to advance the global recovery line

• The forced checkpoint must be taken before the application may process the contents of

the message

• In contrast with coordinated checkpointing, no special coordination messages are

exchanged

Two types of communication-induced checkpointing

1. Model-based checkpointing

2. Index-based checkpointing.

Model-based checkpointing

• Model-based checkpointing prevents patterns of communications and checkpoints

that could result in inconsistent states among the existing checkpoints.

• No control messages are exchanged among the processes during normal operation.

All information necessary to execute the protocol is piggybacked on application

messages

• There are several domino-effect-free checkpoint and communication model.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• The MRS (mark, send, and receive) model of Russell avoids the domino effect by

ensuring that within every checkpoint interval all message receiving events precede

all message-sending events.

Index-based checkpointing.

• Index-based communication-induced checkpointing assigns monotonically increasing

indexes to checkpoints, such that the checkpoints having the same index at different

processes form a consistent state.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

LOG-BASED ROLLBACK RECOVERY

A log-based rollback recovery makes use of deterministic and nondeterministic events in a

computation.

Deterministic and non-deterministic events

• Log-based rollback recovery exploits the fact that a process execution can be modeled

as a sequence of deterministic state intervals, each starting with the execution of a

non-deterministic event.

• A non-deterministic event can be the receipt of a message from another process or an

event internal to the process.

• Note that a message send event is not a non-deterministic event.

• For example, in Figure, the execution of process P0 is a sequence of four

deterministic intervals. The first one starts with the creation of the process, while the

remaining three start with the receipt of messages m0, m3, andm7, respectively.

• Send event of message m2 is uniquely determined by the initial state of P0 and by the

receipt of message m0, and is therefore not a non-deterministic event.

• Log-based rollback recovery assumes that all non-deterministic events can be

identified and their corresponding determinants can be logged into the stable storage.

• Determinant: the information need to “replay” the occurrence of a non-deterministic

event (e.g., message reception).

• During failure-free operation, each process logs the determinants of all non-

deterministic events that it observes onto the stable storage. Additionally, each

process also takes checkpoints to reduce the extent of rollback during recovery.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

The no-orphans consistency condition

Let e be a non-deterministic event that occurs at process p.

We define the following:

• Depend(e): the set of processes that are affected by a non-deterministic event e.

• Log(e): the set of processes that have logged a copy of e’s determinant in their volatile

memory.

• Stable(e): a predicate that is true if e’s determinant is logged on the stable storage.

Types

1. Pessimistic Logging

• Pessimistic logging protocols assume that a failure can occur after any non-deterministic

event in the computation. However, in reality failures are rare

• Pessimistic protocols implement the following property, often referred to as synchronous

logging, which is a stronger than the always-no-orphans condition

• Synchronous logging

– ∀e: ￢Stable(e) ⇒ |Depend(e)| = 0

• Thai is, if an event has not been logged on the stable storage, then no process can depend

on it.

Example:

Suppose processes 𝑃1 and 𝑃2 fail as shown, restart from checkpoints B and C, and roll

forward using their determinant logs to deliver again the same sequence of messages as in the

pre-failure execution

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• Once the recovery is complete, both processes will be consistent with the state of 𝑃0 that

includes the receipt of message 𝑚7 from 𝑃1

• Disadvantage: performance penalty for synchronous logging

• Advantages:

• immediate output commit

• restart from most recent checkpoint

• recovery limited to failed process(es)

• simple garbage collection

• Some pessimistic logging systems reduce the overhead of synchronous logging without

relying on hardware. For example, the sender-based message logging (SBML) protocol

keeps the determinants corresponding to the delivery of each message m in the volatile

memory of its sender.

• The sender-based message logging (SBML) protocol

Two steps.

1. First, before sending m, the sender logs its content in volatile memory.

2. Then, when the receiver of m responds with an acknowledgment that includes the

order in which the message was delivered, the sender adds to the determinant the

ordering information.

2. Optimistic Logging

• Processes log determinants asynchronously to the stable storage

• Optimistically assume that logging will be complete before a failure occurs

• Do not implement the always-no-orphans condition

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• To perform rollbacks correctly, optimistic logging protocols track causal dependencies

during failure free execution

• Optimistic logging protocols require a non-trivial garbage collection scheme

• Pessimistic protocols need only keep the most recent checkpoint of each process, whereas

optimistic protocols may need to keep multiple checkpoints for each process

• Consider the example shown in Figure. Suppose process P2 fails before the determinant

for m5 is logged to the stable storage. Process P1 then becomes an orphan process and

must roll back to undo the effects of receiving the orphan message m6. The rollback of

P1 further forces P0 to roll back to undo the effects of receiving message m7.

• Advantage: better performance in failure-free execution

• Disadvantages:

• coordination required on output commit

• more complex garbage collection

• Since determinants are logged asynchronously, output commit in optimistic logging

protocols requires a guarantee that no failure scenario can revoke the output. For

example, if process P0 needs to commit output at state X, it must log messages m4 and

m7 to the stable storage and ask P2 to log m2 and m5. In this case, if any process fails,

the computation can be reconstructed up to state X.

3. Causal Logging

• Combines the advantages of both pessimistic and optimistic logging at the expense of a more

complex recovery protocol

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• Like optimistic logging, it does not require synchronous access to the stable storage except

during output commit

• Like pessimistic logging, it allows each process to commit output independently and never

creates orphans, thus isolating processes from the effects of failures at other processes

• Make sure that the always-no-orphans property holds

• Each process maintains information about all the events that have causally affected its state

• Consider the example in Figure Messages m5 and m6 are likely to be lost on the failures

of P1 and P2 at the indicated instants. Process

• P0 at state X will have logged the determinants of the nondeterministic events that

causally precede its state according to Lamport’s happened-before relation.

• These events consist of the delivery of messages m0, m1, m2, m3, and m4.

• The determinant of each of these non-deterministic events is either logged on the stable

storage or is available in the volatile log of process P0.

• The determinant of each of these events contains the order in which its original receiver

delivered the corresponding message.

• The message sender, as in sender-based message logging, logs the message content.

Thus, process P0 will be able to “guide” the recovery of P1 and P2 since it knows the

order in which P1 should replay messages m1 and m3 to reach the state from which P1

sent message m4.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

• Similarly, P0 has the order in which P2should replay message m2 to be consistent with

both P0 and P1.

• The content of these messages is obtained from the sender log of P0 or regenerated

deterministically during the recovery of P1 and P2.

• Note that information about messages m5 and m6 is lost due to failures. These messages

may be resent after recovery possibly in a different order.

• However, since they did not causally affect the surviving process or the outside world,

the resulting state is consistent.

• Each process maintains information about all the events that have causally affected its

state.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

free execution

form a system-wide consistent state

deterministic events • relies on piecewise deterministic (PWD) assumption.

RECOVERY & CONSENSUS

CHECK POINTING AND ROLLBACK RECOVERY: INTRODUCTION

• Rollback recovery protocols restore the system back to a consistent state after a failure,

• It achieves fault tolerance by periodically saving the state of a process during the failure-

• It treats a distributed system application as a collection of processes that communicate

Checkpoints

The saved state is called a checkpoint, and the procedure of restarting from a previously check

pointed state is called rollback recovery. A checkpoint can be saved on either the stable storage

or the volatile storage

Why is rollback recovery of distributed systems complicated?

Messages induce inter-process dependencies during failure-free operation

Rollback propagation

The dependencies among messages may force some of the processes that did not fail to roll

back.This phenomenon of cascaded rollback is called the domino effect.

Uncoordinated check pointing

If each process takes its checkpoints independently, then the system cannot avoid the domino

effect – this scheme is called independent or uncoordinated checkpointing

Techniques that avoid domino effect

1. Coordinated checkpointing rollback recovery - Processes coordinate their checkpoints to

2. Communication-induced checkpointing rollback recovery - Forces each process to take

3. Log-based rollback recovery - Combines checkpointing with logging of non-

BACKGROUND AND DEFINITIONS

System model

• A distributed system consists of a fixed number of processes, P1, P2,…_ PN , which

communicate only through messages.

checkpoints based on information piggybacked on the application.

over a network

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

interactions among processes and also the external interactions with the outside world.

– A process is able to roll back to any of its existing local checkpoints

• Processes cooperate to execute a distributed application and interact with the outside

world by receiving and sending input and output messages, respectively.

• Rollback-recovery protocols generally make assumptions about the reliability of the

inter-process communication.

• Some protocols assume that the communication uses first-in-first-out (FIFO) order, while

other protocols assume that the communication subsystem can lose, duplicate, or reorder

• Rollback-recovery protocols therefore must maintain information about the internal

An example of a distributed system with three processes.

A local checkpoint

•

•

•

– A process stores all local checkpoints on the stable storage

• 𝐶𝑖,𝑘 – The kth local checkpoint at process 𝑃𝑖

• 𝐶𝑖,0 – A process 𝑃𝑖 takes a checkpoint 𝐶𝑖,0 before it starts execution

Consistent states

• A global state of a distributed system is a collection of the individual states of all

participating processes and the states of the communication channels

• Consistent global state

messages.

All processes save their local states at certain instants of time

A local check point is a snapshot of the state of the process at a given instance

Assumption

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

– a global state that may occur during a failure-free execution of distribution of

distributed computation

– if a process‟s state reflects a message receipt, then the state of the

corresponding sender must reflect the sending of the message

•

• A consistent global checkpoint is a global checkpoint such that no message is sent by a

process after taking its local point that is received by another process before taking its

• For instance, Figure shows two examples of global states.

• The state in fig (a) is consistent and the state in Figure (b) is inconsistent.

• Note that the consistent state in Figure (a) shows message m1 to have been sent but not

yet received, but that is alright.

• The state in Figure (a) is consistent because it represents a situation in which every

message that has been received, there is a corresponding message send event.

• The state in Figure (b) is inconsistent because process P2 is shown to have received m2

but the state of process P1 does not reflect having sent it.

• Such a state is impossible in any failure-free, correct computation. Inconsistent states

occur because of failures.

checkpoint.

A global checkpoint is a set of local checkpoints, one from each process

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

Interactions with outside world

A distributed system often interacts with the outside world to receive input data or deliver

the outcome of a computation. If a failure occurs, the outside world cannot be expected to roll

back. For example, a printer cannot roll back the effects of printing a character

Outside World Process (OWP)

• It is a special process that interacts with the rest of the system through message passing.

• It is therefore necessary that the outside world see a consistent behavior of the system

despite failures.

• Thus, before sending output to the OWP, the system must ensure that the state from

which the output is sent will be recovered despite any future failure.

A common approach is to save each input message on the stable storage before allowing the

application program to process it. An interaction with the outside world to deliver the outcome of

a computation is shown on the process-line by the symbol “||”.

Different types of Messages

1. In-transit message

• messages that have been sent but not yet received

2. Lost messages

• messages whose “send‟ is done but “receive‟ is undone due to rollback

3. Delayed messages

• messages whose “receive‟ is not recorded because the receiving process was

either down or the message arrived after rollback

4. Orphan messages

• messages with “receive‟ recorded but message “send‟ not recorded

• do not arise if processes roll back to a consistent global state

5. Duplicate messages

• arise due to message logging and replaying during process recovery

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

In-transit messages

In Figure , the global state {C1,8 , C2, 9 , C3,8, C4,8} shows that message m1 has been

sent but not yet received. We call such a message an in-transit message. Message m2 is also an

in-transit message.

Delayed messages

Messages whose receive is not recorded because the receiving process was either down

or the message arrived after the rollback of the receiving process, are called delayed messages.

For example, messages m2 and m5 in Figure are delayed messages.

Lost messages

Messages whose send is not undone but receive is undone due to rollbackare called

lostmessages. This type of messages occurs when the processrolls back to a checkpoint prior to

reception of the message while the senderdoes not rollback beyond the send operation of the

message. In Figure ,message m1 is a lost message.

Duplicate messages

• Duplicate messages arise due to message logging and replaying during process

recovery. For example, in Figure, message m4 was sent and received before the

rollback. However, due to the rollback of process P4 to C4,8 and process P3 to C3,8,

both send and receipt of message m4 are undone.

• When process P3 restarts from C3,8, it will resend message m4.

• Therefore, P4 should not replay message m4 from its log.

• If P4 replays message m4, then messagem4 is called a duplicate message.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

