www.binils.com for Anna University | Polytechnic and Schools

CODE IMPROVING TRANSFORMATIONS

Algorithms for performing the code improving transformations rely on data-flow information.
Here we consider common sub-expression elimination, copy propagation and transformations for
moving loop invariant computations out of loops and for eliminating induction variables. Global
transformationsare not substitute forlocal transformations; both must be performed.

Elimination of global common sub expressions:

* The available expressions data-flow problem discussed in the last section allows us to determine if an
expression at point p in a flow graph is a common sub-expression. The following algorithm formalizes the
intuitive ideas presented for eliminating common sub-expressions.

ALGORITHM: Global common sub expression elimination.

INPUT: A flow graph with available expression information.

OUTPUT: Arevised flow graph.

METHOD: For every statement s of the form x := y+z6 such that y+zis available at the beginning of block and
neitherynorrzisdefined prior to statement sinthat block, do the following.

1. To discover the evaluations of y+z that reach s’s block, we follow flow graph edges, searching
backward from s’s block. However, we do not go through any block that evaluates y+z. The last
evaluationofy+zineachblockencounteredisan evaluationofy+zthatreachess.

2. Createnewvariable u.

3. Replaceeachstatement w:=y+zfoundin (1)by

d. [ui=y+z
h. w:=u
4." Replace statement's byx:=u.

Some remarks about this algorithm are in order:

1. Thesearchinstep(1) of the algorithm for the evaluations of y+z that reach statement s can also be
formulated as a data-flow analysis problem. However, it does not make sense to solve it for all
expressions y+z and all statements or blocks because too much irrelevantinformation is gathered.

2. Not all changes made by algorithm are improvements. We might number of different
evaluationsreaching sfoundinstep (1), probably toone.

3. Algorithm will miss the fact that a*z and c*z must have the same valuein

ai=x+y C:=x+y
Vs
b :=a*zd :=c*z

Because this simple approach to common sub expressions considers only the literal expressions
themselves, ratherthanthe values computed by expressions.

Copy propagation:

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Various algorithms introduce copy statements such as x :=copies may also be generated directly by the
intermediate code generator, although most of these involve temporaries local to one block and can be
removed by the dag construction. We may substitute y for x in all these places, provided the following
conditions are met every such use u of x.

1. Statementsmustbethe only definition of x reachingu.

2. On every path from s to including paths that go through u several times, there are no
assignments toy.

Condition (1) can be checked using ud-changing information. We shall set up a new data- flow
analysis problem in which in[B] is the set of copies s: x:=y such that every path from initial node to the
beginning of B contains the statement s, and subsequent to the last occurrence of s, there are no
assighments toy.

ALGORITHM: Copy propagation.

INPUT: a flow graph G, with ud-chains giving the definitions reaching block B, and with c_in[B]
representingthesolutiontoequationsthatisthesetofcopiesx:=ythatreachblockBalongeverypath, with no
assignmenttoxoryfollowingthelastoccurrence ofx:=y onthe path. Wealso need ud-chains giving the uses
of each definition.

OUTPUT: A revised flow graph.
METHOD: For each copy s : x:=y do the following:

1. Determinethoseusesofxthatarereachedbythisdefinition of namely, s: x:=y.

2. Determine whether for every use of x found/in (1), sis in c_in[B], where/B is the/block of this
particularuse, and moreover, no definitionsofxory occurprior to thisuse of xwithin B. Recall thatif s
isinc_in[B]thens'is the only definition of x that reachesB.

3. Ifsmeetsthe conditionsof (2), thenremove sandreplace allu byy.

Detection of loop-invariant computations:

Ud-chains can be used to detect those computationsin aloop that are loop-invariant, thatis, whose
valuedoesnotchangeaslongascontrolstayswithintheloop.Loopisaregionconsistingofset of blocks witha
headerthatdominatesallthe otherblocks,sotheonlywaytoentertheloopisthrough the header.

Ifanassignmentx:=y+zisatapositionintheloop whereall possible definitionsof yand zare outside
the loop, then y+z is loop-invariant because its value will be the same each time x:=y+z is encountered.
Having recognized that value of x will not change, consider v:=x+w, where w could only have been defined
outside theloop, then x+w is also loop-invariant.

ALGORITHM: Detection of loop-invariant computations.
INPUT:AloopLconsistingofasetofbasicblocks,eachblockcontainingsequenceofthree- address
statements.Weassumeud-chainsareavailablefortheindividualstatements.
OUTPUT:thesetofthree-addressstatementsthatcomputethesamevalueeachtimeexecuted,fromthe time
controlentersthe loop L until control nextleaves L.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

METHOD:weshallgive aratherinformalspecification of the algorithm, trustingthat the principles will be
clear.

1. Mark “invariant” those statements whose operands are all either constant or have alltheir
reaching definitions outside L.

2. Repeatstep (3)untilatsomerepetition no new statements are marked“invariant”.

3. Mark “invariant” all those statements not previously so marked all of whose operands either are
constant, have all their reaching definitions outside L, or have exactly one reaching definition, and
that definition is a statement in Lmarkedinvariant.

Performing code motion:

Having found the invariant statements within a loop, we can apply to some of them an
optimization known as code motion, in which the statements are moved to pre-header of the loop. The
following three conditions ensure that code motion does not change what the program computes.

Consider s: x:=y+z.
1. Theblockcontainingsdominatesallexitnodesoftheloop,whereanexitofaloopisanode with a
successor notinthe loop.
2. Thereisnootherstatementintheloopthatassignstox.Again,ifxisatemporaryassignedonly once,
this conditionis surely satisfied and need not be changed.
3. Nouseofxintheloopisreachedbyany definitionofx otherthanwill be satisfied,
normally, if xis temporary.

ALGORITHM: Code:motion.
INPUT: A loop L with ud-chaining information and dominator information.

OUTPUT: A revised version of the loop with a pre-header and some statements moved to:the pre-
header.

METHOD:
1. Useloop-invariant computation algorithm to find loop-invariant statements.
2. Foreachstatements defining x found in step(1),check:
i) Thatitisinablock that dominates all exits ofL,
ii) Thatxisnotdefined elsewhereinL,and
iii) ThatallusesinLofxcanonlybereached by the definition of xin statements.

3. Move, in the order found by loop-invariant algorithm, each statement s found in (1) and meeting
conditions (2i), (2ii), (2iii) , to a newly created pre-header, provided any operands of s that are
definedinloopLhave previously had theirdefinitionstatementsmovedtothe pre-header.

To understand why no change to what the program computes can occur, condition (2i) and (2ii) of this
algorithm assure that the value of x computed at s must be the value of x after any exit block of L. When we
move sto a pre-header, s will still be the definition of x that reaches the end of any exit block of L. Condition
(2iii) assures that any uses of x within L did, and will continue to, use the value of x computed bys.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Alternative code motion strategies:

The condition (1) can be relaxed if we are willing to take the risk that we may actually increase the
running time of the program a bit; of course, we never change what the program computes. The relaxed
versionof code motion condition (1)isthatwe maymoveastatementsassigningxonlyif:

1’. The block containing s either dominates all exists of the loop, or x is not used outside the loop.

For example, if x is a temporary variable, we can be sure that the value will be used only in its own

block.

If code motion algorithm is modified to use condition (1’), occasionally the running time will
increase, but we can expect to do reasonably well on the average. The modified algorithm may move to pre-
header certain computations that may not be executed in the loop. Not only does this risk slowing down the
program significan an errorin certain circumstances.

Even if none of the conditions of (2i), (2ii), (2iii) of code motion algorithm are met by an
assignmentx: =y+z, we can still take the computationy+z outside aloop. Create a new temporaryt, and set t:
=y+zinthe pre-header. Thenreplace x: =y+z by x: =tinthe loop. Inmany cases we can propagate out the copy
statementx: =t.

Maintaining data-flow information after code motion:

The transformations of code motion algorithm do not change ud-chaining information, since by
condition(2i),(2ii),and(2iii),allusesofthevariableassignedbyamovedstatementsthatwerereached bysare
stillreached bysfromits new position. Definitionsofvariablesused bysareeitheroutsidel, in whichcasethey
reachthepre-header,ortheyareinsidel,inwhichcasebystep(3)theyweremovedto pre-header ahead of s.

If the ud-chains are represented by lists of pointers to pointers to statements, we can maintain ud-
chainswhenwe move statement s by simply changing the pointerto swhenwe move it. Thatis, we create for
each statement s pointer ps, which always points to s. We put the pointer on each ud-chain containing s.
Then, no matter where we movess, we haveonlyto change ps, regardless of how many ud-chains sison.

The dominator information is changed slightly by code motion. The pre-header is now the
immediate dominator of the header, and the immediate dominator of the pre-header is the node that
formerly was the immediate dominator of the header. That is, the pre-header is inserted into the
dominatortree asthe parent of the header.

Elimination of induction variable:

Avariable x is called an induction variable of a loop L if every time the variable x changes values, itis
incremented or decremented by some constant. Often, an induction variable is incremented by the same
constant each time around the loop, asin aloop headed by fori:=1to 10. However, our methods deal with
variables that are incremented or decremented zero, one, two, or more times as we go around a loop. The
numberofchangestoaninductionvariable mayeven differ atdifferentiterations.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Acommonsituationisonein which aninductionvariable, sayi, indexes an array,
andsome other inductionvariable, say t, whose value is a linear function ofi, is the actual
offset used to access the array. Often, the only use made of i is in the test for loop
termination. We can then get rid of i by replacing its test by one on t. We shall look for
basic induction variables, which are those variables i whose only assignments within
loopLareoftheformi:=i+cori-c,where cisaconstant.

ALGORITHM: Elimination of Induction variable
INPUT:AloopLwithreachingdefinitioninformation, loop-ininformationandlive variable
information.

OUTUT: A revised

loop. METHOD:

1. Consider each basic induction variable i whose only uses are to compute other
induction variables in its family and in conditional branches. Take some j in i’s
family, preferably one such that cand d inits triple are as simple as possibleand
modifyeachtestthatiappearsintousejinstead.Weassumein the following that c
is positive. A test of the form ‘if i relop x goto B’, where x is not an induction
variable, is replaced by

a. r=c*x /*r:=xifcis1.*/
b. r=r+d /*omitifdis0*/
C._ ifjreloprgotoB

where, r/is a new temporary. The case ‘if x relop i goto B’ is handled
analogously. If there are two induction variablesilandi2 in the testif il relop i2
goto B, thenwe checkif bothilandi2 can be replaced. The easy case is whenwe
have j1 with triple and j2 with triple, and c1=c2 and d1=d2. Then, i1 relop i2 is
equivalenttojl relopj2.

2. Now, consider each induction variable j for which a statement j: =s was
introduced. First check that there can be no assignment to s between the
introduced statement j:=s and any use of j. In the usual situation, j is used in the
block in which it is defined, simplifying this check; otherwise, reaching
definitions information, plus some graph analysis is needed to implement the
check.Thenreplaceallusesofjbyusesofsanddeletestatement;j:=s.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

INTRODUCTION TO GLOBAL DATAFLOWANALYSIS

In order to do code optimization and a good job of code generation , compiler needs to collect
information about the program as a whole and to distribute this information to each block in the flow
graph.Acompilercouldtakeadvantage of “reachingdefinitions”,suchasknowingwhereavariablelike debug
was last defined before reachingagivenblock,inorderto performtransformationsare justafew examplesof
data-flowinformationthatanoptimizingcompilercollectsbyaprocessknownasdata-flow analysis.

Data-flow information can be collected by setting up and solving systems of equations of the
form:

out [S] = gen [S] U (in [S] - kill [S])

This equation can be read as “ the information at the end of a statement is either generated within
the statement , or enters at the beginning and is not killed as control flows through the statement.”
Such equations are called data-flowequation.

1. The details of how data-flow equations are set and solved depend on three factors. The notions of
generating and killing depend on the desired information, i.e., on the data flow analysis problem
to be solved. Moreover, for some problems, instead of proceeding along with flow of control and
definingout[S]intermsofin([S], we needto proceed backwardsanddefinein[S]in terms ofout[S].

2. Since data flows along control paths, data-flow analysis is affected by the constructs in a
program. In/fact, when we write out[s] we implicitly assume that there'is unique end point
wherecontrol leavesthe statement;ingeneral, equationsaresetup atthe level of basicblocks rather
than statements, because blocks do have unique endpoints.

3. There are subtleties that go along with such statements as procedure calls, assignments through pointer
variables, and even assignments to arrayvariables.

Points and Paths:

Withinabasicblock, wetalkofthe pointbetweentwo adjacentstatements,aswellasthepoint before
the first statement and after the last. Thus, block B1 has four points: one before any of the assignments
and one after each of the three assignments.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

B1
dl:i=m-1
d2:j=n
d3:a:=ul
R | B2
d4:1:=i+1
v B3
ds:i =il
L 2 B4

/ \ B6

R R~ 2

Nowletustakeaglobalviewandconsiderallthepointsinalltheblocks.Apathfrompl topnisa
sequenceofpointspl, p2,....,pnsuchthatforeachibetweenlandn-1,either

1. Piisthepointimmediatel?/precedingastatementandpi+1isthepointimmediatelyfollowingthat
statement in the same block,or

2. Piistheendofsomeblockand pi+1isthebeginning ofasuccessorblock.

Reaching definitions:

A definition of variable x is a statement that assigns, or may assign, a value to x. The most
common forms of definition are assignments to x and statements that read a value from ani/o device and
store it in x. These statements certainly define a value for x, and the?/ are referred to as unambiguous
definitionsofx. There are certainkinds of statementsthat may defineavalue forx; they are called ambiguous

definitions.

The most usual forms of ambiguous definitions of x are:

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

1. Acallofaprocedurewithxasaparameteroraprocedurethatcanaccessxbecausexisinthe scope of
the procedure.

2. An assignment through a pointer that could refer to x. For example, the assignment *q:=y is a
definition of xifitis possible that g pointstox. we mustassumethatanassignmentthrougha pointer
is a definition of every variable.

We ssay adefinition dreachesa point pifthereisa path fromthe pointimmediately following d to p, such
that d is not “killed” along that path. Thus a point can be reached by an unambiguous definition and an
ambiguous definition of the appearing later along onepath.

S1
IfEgotosl
\ 4
S2
If Egotosl
O
)
§1;82
IF Ethen S1else S2 do S1whileE

Data-flow analysis of structured programs:

Flow graphs for control flow constructs such as do-while statements have a useful property: there
is a single beginning point at which control enters and a single end point that control leaves from when
execution of the statement is over. We exploit this property when we talk of the definitions reaching the
beginning and the end of statements with the following syntax.

SAd:=E| S;S | ifEthenSelseS | doSwhile EEAd +id| id

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Expressions in this language are similar to those in the intermediate code, but the flow graphs for
statements have restricted forms.

Wedefineaportionofaflowgraphcalledaregiontobeasetofnodes Nthatincludesaheader, which
dominatesallother nodesintheregion. Alledges between nodesin Nareintheregion, except for some that
enter the header. The portion of flow graph corresponding to a statement S is a region that obeys the
further restriction that control can flow to just one outside block when it leaves the region.

We say that the beginning points of the dummy blocks at the statement’s region are the
beginningand end points, respective equations are inductive, or syntax-directed, definition of the sets in[S],
out[S],gen[S],andkill[S]forallstatementsS.gen[S]isthesetofdefinitions“generated”bySwhile kill[S]is the set
of definitions that never reach theend of S.

* Consider the following data-flow equations for reaching definitions:

i)

gen [S]={d}
kill[S]=Da-{d}
out [S] = gen [S] U (in[S] - kill[S])

O

Fig.Dataflow equations for reaching definitions

Observetherulesforasingleassignmentofvariablea.Surelythatassignmentisadefinitionof a, say d.

Thus
gen[S]={d}

Ontheotherhand, d “kills” allotherdefinitionsofa, sowe write
Kill[S] = Da-{d}

Where, Da is the set of all definitions in the program for variable a.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

i))

gen[S]=gen[S2] U (gen[S1]-
kill[S2])
Kill[S] = kill[S2] U (kill[S1] -

in [S1] =in [S]
in [S2] = out [S1]
out [S] = out[S2]

Fig. Data flow equations for reaching definitions

UnderwhatcircumstancesisdefinitiondgeneratedbyS=S1;S2?Firstofall,ifitisgeneratedby S2, then
itissurely generated by S. if dis generated by S1, it will reach the end of S provided itis not killed by S2. Thus,
wewrite

gen[S]=gen[S2] U (gen[S1]-kill[S2])
Similar reasoning applies to the killing of a definition, so we have Kill[S]
= kill[S2] U (kill[S1] - gen[S2])

Conservative estimation of data-flow information:

There is a subtle miscalculation in the rules for gen and kill. We have made the assumption that the
conditional expression E in the if and do statements are “uninterpreted”; that is, there exists inputs to the
program that make their branches go either way.

Weassumethatanygraph-theoreticpathintheflowgraphisalsoanexecutionpath,i.e.,apath that is
executed when the program is run with least one possible input. When we compare the computedgen
withthe “true” genwediscoverthatthetruegenisalwaysasubsetofthecomputed gen.ontheotherhand,
thetruekill is always a superset of the computedkill.

Thesecontainmentsholdevenafterweconsidertheotherrules.Itisnaturaltowonderwhether these
differencesbetweenthetrueandcomputedgenandkillsetspresentaseriousobstacletodata- flow analysis.
The answer liesinthe use intended for these data.

Overestimating the set of definitions reaching a point does not seem serious; it merely stops us from
doinganoptimizationthatwe couldlegitimatelydo.Onthe otherhand, underestimating the setof definitions
is a fatal error; it could lead us into making a change in the program that changes what the program
computes. For the case of reaching definitions, then, we call a set of definitions safe or conservative if
the estimate is a superset of the true set of reaching definitions. We call the estimate unsafe, if it is not
necessarily a superset of the truth.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Returning now to the implications of safety on the estimation of gen and kill for reaching
definitions, notethatourdiscrepancies,supersetsforgenandsubsetsforkillarebothinthesafe direction.
Intuitively,increasinggenaddstothesetofdefinitionsthatcanreachapoint,andcannot preventadefinition
fromreachingaplacethatittrulyreached.Decreasingkillcanonlyincreasetheset of definitions reaching any
given point.

Computation of in and out:

Many data-flow problems can be solved by synthesized translation to compute gen and kill. It can
be used, for example, to determine computations. However, there are other kinds of data-flow
information, suchasthereaching-definitions problem. Itturnsoutthatinisaninherited attribute, and outisa
synthesized attribute dependingonin.weintendthatin[S] be the set of definitionsreachingthe beginning of
S, taking into account the flow of control throughout the entire program, including statements outside of
Sorwithinwhich Sisnested.

Thesetout[S]isdefinedsimilarlyfortheendofs.itisimportanttonotethedistinctionbetween out[S]
and gen[S]. The latter is the set of definitions that reach the end of S without following paths outside S.
Assuming we know in[S]we compute out by equation, thatis

Out[S] = gen[S] U (in[S] - kill[S])

Consideringcascade oftwostatementsS1;S2,asinthesecondcase. Westart by
observingin[S1]=in[S]. Then,werecursivelycomputeout[S1],whichgivesusin[S2],
since a definition reaches the beginning of S2.if and only if it reaches the end of S1. Now we can
compute out[S2], and this set is equal to out|[S].

Consider the if-statement. we have conservatively assumed that control can follow either branch,
a definition reaches the beginning of S1 or S2 exactly when it reaches the beginning of
S. That is,

in[S1] = in[S2] = in[S]

If a definition reaches the end of S if and only if it reaches the end of one or both
substatements; i.e,

out[S]=out[S1] U out[S2]

Representation of sets:

Sets of definitions, such as gen[S] and kill[S], can be represented compactly using bit vectors. We assign a
number to each definition of interest in the flow graph. Then bit vector representing a set of definitions will
have 1linpositionlifand onlyifthe definition numberedlisintheset.

The number of definition statement can be taken as the index of statement in an array holding
pointersto statements. However, not all definitions may be of interest during global

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

data-flow analysis. Therefore the number of definitions of interest will typically be
recordedinaseparate table.

A bit vector representation for sets also allows set operations to be
implemented efficiently. The union and intersection of two sets can be implemented by
logical or and logical and, respectively, basic operations in most systems-oriented
programming languages. The difference A-B of sets A and B can be implement
complement of Bandthen using logicaland to compute A

Local reaching definitions:

Spacefordata-flowinformationcanbetradedfortime, bysavinginformation only
at certain points and, as needed, recomputing information at intervening points. Basic
blocks are usually treated as a unit during global flow analysis, with attention restricted
toonlythose pointsthat are the beginnings of blocks.

Since there are usually many more points than blocks, restricting our effort to
blocks is a significant savings. When needed, the reaching definitions for all points in a block
canbecalculatedfromthereachingdefinitionsforthebeginningofablock.

Use-definition chains:

It is often convenient to store the reaching definition information as” use-
definition chains” or “ud-chains”, which are lists, for each use of a variable, of all the
definitions that reaches that use. If aruse of variable a in block:B is preceded by no
unambiguousdefinition ofa, then ud-chainforthat use ofaisthe set of definitionsin in[B]
thatare definitionsofa.inaddition, ifthereareambiguousdefinitionsofa,then all of these
forwhich no'unambiguous definition of a lies between it and the use of a are on the ud-
chain for this use ofa.

Evaluation order:

The techniques for conserving space during attribute evaluation, also apply to the
computation of data-flow information using specifications. Specifically, the only
constraint on the evaluation order for the gen, kill, in and out sets for statements is that
imposed by dependencies between these sets. Having chosen an evaluation order, we
are free to release the space for a set after all uses of it have occurred. Earliercircular
dependencies between attributes were not allowed, but we have seen that data-flow
equations may have circular dependencies.

General control flow:

Data-flow analysis must take all control paths into account. If the control
pathsare evident from the syntax, then data-flow equations can be setupandsolved in a
syntax directed manner. When programs can contain goto statements or even the more
disciplined break and continue statements, the approach we have taken must be
modified to take the actual control pathsintoaccount.

Several approaches may be taken. The iterative method works arbitrary flow
graphs. Since the flow graphs obtained in the presence of break and continue
statements are reducible, such constraints can be handled systematically using the
interval-based methods. However, the syntax-directed approach need not be
abandoned when break and continue statements are allowed.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

OPTIMIZATION OF BASICBLOCKS

There are two types of basic block optimizations. They are :
Structure-Preserving Transformations

Algebraic Transformations

Structure-Preserving Transformations:

The primary Structure-Preserving Transformation on basic blocks are:

Common sub-expressionelimination
Dead codeelimination
Renaming of temporary variables

£y

Interchange of two independent adjacent statements.

Common sub-expression elimination:
Commonsubexpressionsneednotbecomputedoverandoveragain.Insteadtheycanbe
computedonceandkeptinstorefromwhereit’'sreferenced.Example:a:=b+cb:=a-dc:=b+c d: =a-d

The 2nd and 4th statements compute the same

expression:b+canda-dBasicblockcanbetransformed

to
a = b+c b:=a-dec: =ad: =b

Dead code elimination:

It is possible that a 'large.amount of dead (useless) code may exist in the
program. This might be especially caused when introducing variables and procedures as
part of construction or error-correction of a program - once declared and defined, one
forgets to remove them in case they serve no purpose. Eliminating these will definitely
optimize the code.

Renaming of temporary variables:

A statement t:=b+c where t is a temporary name can be changed to u:=b+c
where u is another temporary name, and change all uses of t to u. In this a basic block is
transformedtoitsequivalent block called normal-form block.

Interchange of two independent adjacent statements:

* Twostatementstl:=b+ct2:=x+y

canbeinterchangedorreorderedinitscomputationinthebasicblockwhenvalueof t1
does not affect the value of t2.

Algebraic Transformations:
Algebraic identities represent another important class of optimizations on

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

basic blocks. This includes simplifying expressions or replacing expensive operation by
cheaper ones i.e. reduction in strength. Another class of related optimizations is
constant folding. Here we evaluate constant expressions at compile time and replace the
constant expressions by their values. Thus the expression 2*3.14 would be replaced

by6.28.

The relational operators <=, >=, <, >, + and = sometimes generate unexpected
common sub expressions. Associative laws may also be applied to expose common sub
expressions. Forexample, ifthe source code hasthe assignments

a:=b+c

e :=c+d+b
thefollowingintermediatecodemaybegenerated:a:=b+ct:=c+de:=t+b
Example:

x:=x+0 can be removed

x:=y**2 can bereplaced by a cheaper statement x:=y*y

The ‘compiler/ writer should examine the language specification carefully to
determine what' rearrangements of computations are permitted; since computer
arithmetic does not always obey the algebraic identities of mathematics. Thus, a

compilermayevaluatex*y-x*zasx*(y-z) butitmaynotevaluatea+(b-c)as(a+b)-c.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

PEEPHOLE OPTIMIZATION
A statement-by-statement code-generations strategy often produces target
codethat containsredundantinstructionsandsuboptimal constructs. The quality of such
target code can be improved by applying “optimizing” transformations to the target
program.

A simple but effective technique for improving the target code is peephole
optimization, a method for trying to improving the performance of the target
program by examining a short sequence of target instructions (called the peephole) and
replacingtheseinstructionsbyashorterorfastersequence,wheneverpossible.

The peephole is a small, moving window on the target program. The code in the
peephole need not be contiguous, although some implementations do require this. Itis
characteristic of peephole optimization that each improvement may spawn
opportunities for additionalimprovements.

Characteristics of peephole optimizations:
Redundant-instructions elimination

N N

Flow-of-control optimizations

£y

Algebraic simplifications

£y

Use of machine idioms

[V

Unreachable Code

Redundant Loads And Stores:
If we see the instructions sequence
(1) MOVRO,a

(2) Mova,R0

we can delete instructions (2) because whenever (2) is executed. (1) will
ensure that the value of ais already in register RO.If (2) had a label we could not be sure
that (1) was always executed immediately before (2) and so we could not remove (2).

Unreachable Code:

Another opportunity for peephole optimizations is the removal of
unreachable instructions. An unlabeled instruction immediately following an
unconditional jump may be removed. This operation can be repeated to eliminate a
sequenceofinstructions. Forexample,fordebuggingpurposes,alargeprogrammay have
within it certain segments that are executed only if a variable debugis 1. In C, the source
code might looklike:

#define debug 0

If (debug) {
Print debugging information

Download Binils Antroid App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

In the intermediate representations the if-statement may be translatedas:

If debug =1 goto L1 goto L2
L1: print debugging
INFOrMaAtiON L2 ...oiiiiiie e @

RIOneobviouspeepholeoptimizationistoeliminatejumpsoverjumps.Thusno matter
what the value of debug; (a) can be replacedby:

Ifdebug#1gotoL2
Printdebugging
informationL2cccccoovviiiiiciiciee, (b)

Ifdebug#0gotolL2
Printdebugging

informationL2.....cccccovvvieieiiiineeeciinen, (c)

ElAstheargumentofthestatementof(c)evaluatestoaconstanttrueitcanbereplaced By goto
L2. Then all the statement that print debugging aids are manifestly unreachableand
can beeliminated one atatime.

Flows-Of-Control Optimizations:

Theunnecessaryjumpscanbeeliminatedineithertheintermediate codeor the
target code by the following types of peephole optimizations. We can replace the jump

sequence
goto L1
L1: gotoL2 (d)
by the sequence
goto L2
L1 gotoL2

IftherearenownojumpstolLl, thenitmaybepossibletoeliminatethe
statementL1:gotoL2 provideditisprecededbyanunconditionaljump

.Similarly, thesequence

ifa<bgotolLl
L1:gotolL?2 (e)

can be replaced by
If a<bgoto L2

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

L1: goto L2

Finally,supposethereisonlyonejumptolLlandLlisprecededbyan
unconditional goto. Thenthesequence

L1: ifa<bgotolL2 (HL3:

may be replaced by
If a<b goto L2
goto L3

L3:

While the number of instructionsin(e) and (f) is the same, we sometimes skip the
unconditional jumpiin (f), but neverin (e).Thus (f) is superior to (e) in execution time
Algebraic Simplification:

There is no end to the amount of algebraic simplification that can be
attempted through peephole optimization. Only a few algebraic identities occur
frequently enough that it is worth considering implementing-them. For example,
statements such as

x:=x+0o0r x

=x*1
areoftenproducedbystraightforwardintermediatecode-generationalgorithms,and
they canbe eliminated easily through peephole optimization.
Reduction in Strength:

Reductioninstrengthreplaces expensive operations by equivalentcheaper ones
on the target machine. Certain machine instructions are considerably cheaper than
othersandcanoftenbeusedasspecialcasesof moreexpensiveoperators.

For example, x2 is invariably cheaper to implement as x*x than as a call to an
exponentiation routine. Fixed-point multiplication or division by a power of two is
cheaper to implement as a shift. Floating-point division by a constant can be
implemented as multiplication by a constant, which may be cheaper.

X2 > X*X
Use of Machine Idioms:
The target machine may have hardware instructions to implement certain

specific operations efficiently. For example, some machines have auto-increment and

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

auto-decrement addressing modes. These add or subtract one from an operand
beforeorafterusingitsvalue. The use ofthese modes greatlyimprovesthe quality of code
when pushing or popping a stack, as in parameter passing. These modes can also be used

in code for statements like i: =i+1.

=i+l = i++

i=i-1 > i- -

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

PRINCIPAL SOURCES OF OPTIMISATION

A transformation of a program is called local if it can be performed by looking only at the

statements in a basic block; otherwise, it is called global. Many transformations can be performed at both
thelocalandgloballevels. Local transformations are usually performedfirst.

Function-Preserving Transformations
Thereareanumberofwaysinwhichacompilercanimproveaprogramwithout

changingthe functionit computes.
Function preserving transformations examples:

Common sub expression elimination

Copy propagation,

Dead-code elimination

Constant folding

The other transformations come up primarily when global optimizations are performed.

Frequently, a program will include several calculations of the offset in an array. Some of the
duplicate calculations cannot be avoided by the programmer because they lie below the level of detail
accessible withinthe source language.

Common Sub expressions elimination:

* AnoccurrenceofanexpressionEiscalledacommon sub-expressionif Ewas previously computed, and the
values of variables in E have not changed since the previous computation. We can avoid recomputing
the expressionif we can use the previously computedvalue.
* Forexample

tl: = 4% t2:

=a(tl] t3:

=4% t4: =

4% t5: =n

t6: = b [t4] +t5

The above code can be optimized using the common sub-expression elimination as

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

tl: = 4% t2:
=a([tl] t3:
=4*t5:=n
t6: =b[t1] +t5

Thecommonsubexpressiont4:=4*iiseliminatedasitscomputationisalreadyintlandthevalueofiis not been
changed from definition to use.

Copy Propagation:

Assignments of the form f: =g called copy statements, or copies for short. The idea behind the copy-
propagation transformation is to use g for f, whenever possible after the copy statement f: = g. Copy
Eropagation means use of one variable instead of another. This may not appear to be an improvement,
utaswe shall see it gives usan opportunity to eliminate x.

* Forexample:
x=Pi;

The optimization using copy propagation can be done as follows: A=Pi*r*r; Here the

variable xis eliminated

Dead-Code Eliminations:

Avariableis live at a pointin a program if itsvalue can be/used subsequently; otherwise, it is dead at
that point. Arelatedideais dead or uselesscode, statements that compute values that never get used. While
the p;ogrammer is unlikely to introduce any dead code intentionally, it may appear as the result of previous
transformations.

Example:

i=0;
if(i=1)
{
a=b+5;

}

Here, ‘if’ statement is dead code because this condition will never get satisfied.

Constant folding:

Deducingatcompiletimethatthe value ofan expressionisaconstantand usingthe constant instead
L.‘skné)wrzjas constantfolding. Oneadvantage of copy propagationisthatitoftenturnsthe copy statementinto
ead code.

For example,

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

a=3.14157/2 can be replaced by
a=1.570 there by eliminating a division operation.

Loop Optimizations:

In loops, especially in the inner loops, programs tend to spend the bulk of their time. The
runningtimeofaprogrammaybeimprovedifthe numberofinstructionsinaninnerloopisdecreased, even if
we increase the amount of code outside thatloop.

Three techniques are important for loop optimization:
Code motion, which moves code outside aloop;

Induction-variable elimination, whichwe apply to replace variables from innerloop.

Reductioninstrength, which replaces and expensive operation by a cheaperone, suchasa
multiplication by an addition.

B,
1 := m-1
j :=n
Ly := 4»n
Vv := a[t,]
I B,
i+l
:= 4xn
t= a[t2]

t3 < v goto B;

l By

j-1
ty &= 4.j
tg := a[t,;]

if t5 > v goto B;

I B4

I if i>=j goto Bg _]

/ \ Bg

g := 4#i
X :m a[t“]
4+i Lia = 4+i
4] ti3 := 4%n
a[tg) ty := alt);)
= to alt;pl =ty
1= 497 Cis := 4sn
1= X altys] := x

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Code Motion:

An important modification that decreases the amount of code in a loop is code motion. This
transformation takes an expression thatyields the same result independent of the number of times a loopis
executed (a loop-invariant computation) and places the expression before the loop. Note that the notion
“before the loop” assumes the existence of an entry for the loop. For example, evaluation of limit-2 is a
loop-invariant computationinthe following while-statement:

while(i<=limit-2)/*statementdoesnotchangelimit*/Code
motion will resultin the equivalent of

t=limit-2;

while(i<=t) /* statement does not change limitort*/

Induction Variables :

Loopsareusually processedinside out. ForexampleconsiderthelooparoundB3.Notethatthe values
ofjandt4 remaininlock-step; everytimethevalue ofjdecreases by 1, that of t4 decreasesby4 because 4*jis
assignedtot4.Suchidentifiers are calledinductionvariables.

When there are two or more induction variablesin aloop, it may be possible to get rid of all but one,
by the process of induction-variable elimination. Fortheinnerloop around B3 in Fig.5.3 we cannot get rid of
eitherjort4 completely; t4isusedinB3andjin B4.

However, we can illustrate reduction in strength and illustrate a part of the process of induction-
variable elimination. Eventually j will be eliminated whenthe outerloop of B2-B5isconsidered.

Example:

As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig. and t4 is not changed
elsewhere in the inner loop around B3, it follows that just after the statement j:=j-1 the relationshipt4:=
4*j-4must hold. We may therefore replace the assighmentt4:=4*jby t4:=t4-4.The only problem is that t4
does not have a value when we enter block B3 for the first time. Since we must maintain the relationship
t4=4%*j on entry to the block B3, we place an initializations of t4 at the end of the block where j itself is
initialized, shown by the dashed additionto block B1inFig.5.3.

The replacement of a multiplication by a subtraction will speed up the object code if
multiplication takes more time than addition or subtraction, as is the case on many machines.

Reduction In Strength:

Reduction in strength replaces expensive operations by equivalent cheaper ones on the target
machine. Certainmachineinstructionsare considerably cheaperthanothersand can often be usedas special
casesof more expensive operators. Forexample, x?isinvariably cheapertoimplementasx*x than as a call to
an exponentiation routine. Fixed-point multiplication or division by a power of two is cheaper to
implement as a shift. Floating-point division by a constant can be implemented as multiplication by a
constant, which may be cheaper.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Bs

www.binils.com for Anna University | Polytechnic and Schools

X := £
a[tzl
altyl
goto B

‘=
=
=

ts
X

B,
i:=m-1
j :=n
tl = 4=n
vV = a[t:l]
‘ B;
= i+l
im 4si
£ty := a[t;]
if t3 <« v goto B,
k B
J :=3-1
Ly = 457
ts := alty]
if ts > v goto By
v B,
[if i>=j goto Bg]
X = t3
Cig &= a[t:,]
alty] := ty
alt)] := x

Fig. B5.and B6 after common sub-expression elimination

Download Binils Android App in Playstore

Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

