AMBIGUITY IN GRAMMAR

A grammar is said to be ambiguous if there exists more than one leftmost derivatio or more than one rightmost derivation or more than c ne parse tree for the given input string. If the grammar is not ambiguous, then it is called unambiguous.

If the grammar has ambiguity, then it is not good for compiler construction. No method can automatically detect and remove the ambiguity, but we can remove ambiguity by re-writing the whole grammar without ambiguity.

Example :

Let us consider a grammar G with the production rule

1. $\mathrm{E} \rightarrow \mathrm{I}$
2. $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$
3. $\mathrm{E} \rightarrow \mathrm{E} * \mathrm{E}$
4. $\mathrm{E} \rightarrow(\mathrm{E})$

For the string " $3 * 2+5$ ", the above grammar can generate two parse trees by leftmost derivation:

Since there are two parse trees for a single string " $3 * 2+5$ ", the grammar G is ambiguous.

Example :

Check whether the given grammar G is ambiguous or not.

1. $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$
2. $\mathrm{E} \rightarrow \mathrm{E}-\mathrm{E}$
3. $\mathrm{E} \rightarrow \mathrm{id}$

Solution:

From the above grammar String "id +id -id" can be derived in 2 ways:

First Leftmost derivation

1. $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$
2. $\rightarrow \mathrm{id}+\mathrm{E}$
3. $\rightarrow \mathrm{id}+\mathrm{E}-\mathrm{E}$
4. $\rightarrow \mathrm{id}+\mathrm{id}-\mathrm{E}$
5. \rightarrow id + id- id

Since there are two leftmost derivation for a single string "id + id -id", the grammar G is ambiguous.

Example :

Check whether the given grammar G is ambiguous or not.

1. $\mathrm{S} \rightarrow \mathrm{aSb} \mid \mathrm{SS}$
2. $\mathrm{S} \rightarrow \varepsilon$

Solution:

For the string "aabb" the above grammar can generate two parse trees

Since there are two parse trees for a single string "aabb", the grammar G is ambiguous.

Example 4:

Check whether the given grammar G is ambiguous or not.

1. $\mathrm{A} \rightarrow \mathrm{AA}$
2. $\mathrm{A} \rightarrow(\mathrm{A})$
3. $\mathrm{A} \rightarrow \mathrm{a}$
 ? \square
 ?
For the string "a(a)aa" the above grammar can generate two parse trees:

(a)

(a)

Since there are two parse trees for a single string "a(a)aa", the grammar G is ambiguous.

CONTEXT-FREE GRAMMAR (CFG)

CFG sands for coniex:fife grammar. It is is a fomal gammar which is used to generaie all posisile patiems of stings in a given formal language Conexiffee grammar G can be defined by four uples as:
$\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$

Where,

\mathbf{G} is the grammar, which consiss of a set of the producion rue. It is used to generaie the sting of a language.
Tis he final set of a leminal symbol If is denoed by lower case eletes.
\mathbf{V} is the final se of a nonterminal symbol II is denoed by capial leters.
\mathbf{P} is a set of producion rules, which is used for eppacing nonterminals symbosson the eft side of the producion) in a sting with oher eerminal or nonterminal symbos (on the right side of heproduction).
\mathbf{S} is he sat symbol which is used to deive the sting. We can defive he sting by repeadedy repacing a non-teminal by he ighhthand side of the producion unilial nonlemminal have been irphaced by terminal symbols.

Example :

Construct the CFG for he language having any number of as over the set $\sum=\{a\}$.

Solution:

As we know the regular expression for the above language is

1. r.e $=a^{*}$

Producion rue for the Regular expersion is as follows:

1. $S \rightarrow a S$ rule 1
. $S \rightarrow \varepsilon$ rule 2
Now if we want to derive a ssing "axaaaa", we can satt wihh sat symbols.
2. S
l aS
3. aaS rule 1
4. aaaS rule 1
i. aaaas rule 1
f aaaas rule 1
5. aaaaaaS rule 1
6. aаaaaą rule 2
). aaaaaa

The re $=a^{*}$ can genemate a set of sting $\{\boldsymbol{\varepsilon}$, a, aa, aaa, \qquad . We can have a null string because S is a stat symbol and rule 2 gives $S \rightarrow \varepsilon$

Example :

Construct a CFG for the regular expression $(0+1)^{*}$

Solution:

The CFG can be given by,

1. Producion rule $(\mathrm{P}): 2 . S \rightarrow O S \mid 1 S$
2. $S \rightarrow \varepsilon$

The rules are in the combination of 0 s and 1 's with the stat symbol Since $(0+1)^{*}$ indicates $\{\boldsymbol{\varepsilon}, 0,1,01,10,00,11, \quad\}$. In this set, $\boldsymbol{\varepsilon}$ is a sting, so in the rule, we can set the rule $S \rightarrow \varepsilon$

Example :
Constuct a CFG for a language $\mathrm{L}=\left\{\mathrm{wcwR} \mid\right.$ where $\left.\mathrm{w} €(\mathrm{a}, \mathrm{b})^{*}\right\}$.

Solution:

The string that can be generated for a given language is \{aacaa, bcb, abcba, bacab, abbcbba, \qquad

The grammar could be:

1. $\mathrm{S} \rightarrow \mathrm{aSa}$ rule 1
2. $\mathrm{S} \rightarrow \mathrm{bSb} \quad$ rule 2
3. $\mathrm{S} \rightarrow \mathrm{c}$ rule 3

Now if we want to derive a sting "abbcbba", we can satit wihh stat symbols.

1. $\mathrm{S} \rightarrow \mathrm{aSa}$
2. $S \rightarrow$ abSba from rule 2
3. $S \rightarrow$ abbSbba from rule 2
4. $S \rightarrow$ abbcbba from rule 3

Thus any of this kind of sting can be derived from the given producion rules.

Example 4:

Construct a CFG for the language $L=a^{n} b^{2 n}$ where $n>=1$.

Solution:

The sting that can be generated for a given langlagee is \{abb, aabbbb, aaabbbbbb. \qquad ...).

The gammar could be:

1. $S \rightarrow a S b b \mid a b b$

Now if we want to detive a sting "aabbbb", we can sat wilh sata symbols.

1. $\mathrm{S} \rightarrow \mathrm{aSbb}$
. $S \rightarrow$ aabbbb
Detivaion
Devivaion is a sequence of producion rubes It is used io get the input sting hrough heses producion rules. During pasing we have to ake two decisions. These are as follows:

- We have to decide the non:temminal which is to be rephaced.
- We have to decide the producion rule by which the nonierminal will be replaced.

We have two opions to decide which nonterminal to be paceed with producion rule.

1. Letmosi Deividion:

In the lefmost derivioion, the inputis scanned and replaced wiih the producion nue fom left to ighi.So in leftmot deeviaion, we read he input sting fom left to ight.

Example:
Production rules:

1. $E=E+E$
2. $\mathrm{E}=\mathrm{E}-\mathrm{E}$
3. $E=a \mid b$

Input

1. $a-b+a$

The leftmost derivation is:

1. $E=E+E$
2. $E=E-E+E$
3. $E=a-E+E$
4. $E=a-b+E$
(.) $E=a-b+a$
5. Rghhmost Deiviaion:

In ighhmosi deivaion, the inpul is scanned and replaced wihh he producion nue from right to ete So in ighhmost deivaion, we read the input sting fom ight to left

Example

Production rules:

1. $E=E+E$
2. $\mathrm{E}=\mathrm{E}-\mathrm{E}$
3. $E=a \mid b$

Input

1. $a-b+a$

The rightmost derivation is:

1. $E=E-E$
2. $E=E-E+E$
3. $E=E-E+a$

4 $E=E-b+a$

When we use he lefmos deivaion or ighlmosi deiviaion, we may get the same sting. This ype ofderivation does not affect on getting of a string.
Examples of Deiviaion:

Example :

Deive the sting "abb" for lefmost defiviaion and ightmost derivion using a CFG ggven by,

1. $\mathrm{S} \rightarrow \mathrm{AB} \mid \varepsilon$
2. $\mathrm{A} \rightarrow \mathrm{aB}$
3. $\mathrm{B} \rightarrow \mathrm{Sb}$

Solution:

Leftmost derivation:

B
a i§ B
A $\varepsilon \mathrm{bB}$
$a b \quad \mathrm{Sb}$
$\mathrm{ab} \quad \mathrm{b}$ abb

Rightmost derivation:

\square
 $\mathrm{A} \quad \mathrm{c}$
 WANW bin ils s.com

Example :

Derive the string "aabbabba" for lefmost derivation and righmost derivation using a CFG given by,

1. $\quad S \rightarrow a B \mid b A$
2. $S \rightarrow a|a S| b A A$
3. $S \rightarrow b|a S| a B B$

Solution:

Leftmost derivation:

1. S
2. $\mathrm{aB} \quad \mathrm{S} \rightarrow \mathrm{aB}$
3. $\mathrm{aaBB} \quad \mathrm{B} \rightarrow \mathrm{aBB}$

4.	aabB	$\mathrm{B} \rightarrow \mathrm{b}$
i.	aabbS	$\mathrm{B} \rightarrow \mathrm{bS}$
6.	aabbaB	$\mathrm{S} \rightarrow \mathrm{aB}$
1.	aabbabS	$\mathrm{B} \rightarrow \mathrm{bS}$
8.	aabbabbA	$\mathrm{S} \rightarrow \mathrm{bA}$
4.	aabbabba	$\mathrm{A} \rightarrow \mathrm{a}$

Rightmost derivation:

1.	S	
2.	aB	$\mathrm{S} \rightarrow \mathrm{aB}$
2.	aaBB	$\mathrm{B} \rightarrow \mathrm{aBB}$
4.	aaBbS	$\mathrm{B} \rightarrow \mathrm{bS}$
1.	aaBbbA	$\mathrm{S} \rightarrow \mathrm{bA}$
6.	aaBbba	$\mathrm{A} \rightarrow \mathrm{a}$
1.	aabSbba	$\mathrm{B} \rightarrow \mathrm{bS}$
8.	aabbAbba	$\mathrm{S} \rightarrow \mathrm{bA}$
2.	aabbabba	$\mathrm{A} \rightarrow \mathrm{a}$

Example :

Deive the string "00101" for leftmost derivation and righmost derivation using a CFG given by,

1. $\mathrm{S} \rightarrow \mathrm{A} 1 \mathrm{~B}$
2. $\mathrm{A} \rightarrow 0 \mathrm{~A} \mid \varepsilon$
3. $\mathrm{B} \rightarrow 0 \mathrm{~B}|1 \mathrm{~B}| \varepsilon$

Solution:

Leftmost derivation:

1. S
2. A1B
\}. 0 AlB
3. 00 AlB
5.001B
4. 0010B
5. 00101B
6. 00101

Rightmost derivation:

1. S
2. A1B
3. A 10 B 4.

A101B 5. A101
6. 0 Al 101
7. 00A101
8.00101

wWW binils com

DERIVATION TREE

Derivation tree is a graphical representation for the derivation of the given production rules for a given CFG. It is the simple way to show how the derivation can be done to obtain some string from a given set of production rules. The derivation tree is also called a parsetree.

Parse tree follows the precedence of operators. The deepest sub-tree traversed first. So, the operator in the parent node has less precedencec ver the operator in the sub-tree.

A parse tree contains the following properties:

1. The root node is always a node indicating start symbols.
2. The derivation is read from left to right.
3. The leaf node is always terminal nodes.
4. The interior nodes are always the non-terminal nodes.

Example :

Production rules:
 1. $E=E+E$
 2. $\mathrm{E}=\mathrm{E} * \mathrm{E}$

3. $E=a|b| c$

Input

1. $a * b+c$

Step 1:

Step 2:

Step 2:

Step 4:

Step 5:

Example :

Draw a derivation tree for the string' bab" from the CFG given by

1. $\mathrm{S} \rightarrow \mathrm{bSb}|\mathrm{a}| \mathrm{b}$

Solution:

The above tree is a derivation tree drawn for deriving a string bbabb. By simply reading the leaf nodes, we can obtain the desired string. The same tree can also be denoted by,

Example :

Construct a derivation tree for the string aabbabba for the CFG given by,

1. $\mathrm{S} \rightarrow \mathrm{aB} \mid \mathrm{bA}$
2. $\mathrm{A} \rightarrow \mathrm{a}|\mathrm{aS}| \mathrm{bAA}$

To draw a tree, we will first try to obtain derivation for the string aabbabba
a aBB
aa $\quad \mathrm{BS}$
abb $\quad \mathrm{b} . \mathrm{A} \quad \mathrm{B}$
abb a B
abba bS
aabbab bA
aabbabb a

$a \mathrm{~B}$ B	
a Sb	B
a	bB
a	BAB
aa	BbB
aa	bBbB
aab	bB
aab	bbB

Now, the derivation tree for the string "aabbbb" is as follows:

EQUIVALENCE OF PUSHDOWN AUTOMATA AND CFG

If a grammar \mathbf{G} is context-free, we can build an equivalent nondeterministic PDA which accepts the language that is produced by the context-free grammar \mathbf{G}. A parser can be built for the grammar \mathbf{G}. Also, if \mathbf{P} is a pushdown automaton, an equivalent context-free grammar G can be constructed where $\mathbf{L}(\mathbf{G})=\mathbf{L}(\mathbf{P})$

In the next two topics, we will discuss how to convert from PDA to CFG and vice versa.

Algorithm to find PDA corresponding to a given CFG
Input - A CFG, G $=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
Output - Equivalent PDA, $\mathrm{P}=\left(\mathrm{Q}, \Sigma, \mathrm{S}, \delta, \mathrm{q}_{0}, \mathrm{I}, \mathrm{F}\right)$
Step 1 - Convert the productions of the CFG into GNF.
Step 2 - The PDA will have only one state $\{q\}$.
Step 3 - The start symbol of CFG will be the start symbol in the PDA.
Step 4 - All non-terminals of the CFG will be the stack symbols of the PDA and all the terminals of the CFG will be the input symbols of the PDA.

Step 5 - For each production in the form $\mathbf{A} \rightarrow \mathbf{a X}$ where a is terminal and \mathbf{A}, \mathbf{X} are combination of terminal and non-terminals, make a transition $\boldsymbol{\delta}(\mathbf{q}, \mathbf{a}, \mathbf{A})$.

Problem
Construct a PDA from the following CFG.
$\mathbf{G}=(\mathbf{\{ S}, \mathbf{X}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{P}, \mathbf{S})$
where the productions are -
$\mathbf{S} \rightarrow \mathbf{X S}|\boldsymbol{\varepsilon}, \mathbf{A} \rightarrow \mathbf{a X b}| \mathbf{A b} \mid \mathbf{a b}$

Solution

Let the equivalent PDA,
$P=(\{q\},\{a, b\},\{a, b, X, S\}, \delta, q, S)$
where δ -

$$
\begin{aligned}
& \delta(\mathrm{q}, \varepsilon, \mathrm{~S})=\{(\mathrm{q}, \mathrm{XS}),(\mathrm{q}, \varepsilon)\} \\
& \delta(\mathrm{q}, \varepsilon, \mathrm{X})=\{(\mathrm{q}, \mathrm{aXb}),(\mathrm{q}, \mathrm{Xb}),(\mathrm{q}, \mathrm{ab})\} \\
& \delta(\mathrm{q}, \mathrm{a}, \mathrm{a})=\{(\mathrm{q}, \varepsilon)\} \\
& \delta(\mathrm{q}, 1,1)=\{(\mathrm{q}, \varepsilon)\}
\end{aligned}
$$

Algorithm to find CFG corresponding to a given PDA
Input - A CFG, G $=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
Output - Equivalent PDA, $\mathrm{P}=\left(\mathrm{Q}, \sum, \mathrm{S}, \delta, \mathrm{q}_{0}, \mathrm{I}, \mathrm{F}\right)$ such that the non- terminals of the grammar G will be $\left\{X_{w x} \mid w, x \in Q\right\}$ and the start state will be $A_{q 0, F}$.

Step 1 - For every $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{Q}, \mathrm{m} \in \mathrm{S}$ and $\mathrm{a}, \mathrm{b} \in \sum$, if $\delta(\mathrm{w}, \mathrm{a}, \varepsilon)$ contains (y, m) and $(\mathrm{z}, \mathrm{b}, \mathrm{m})$ contains (x, ε), add the production rule $\mathrm{X}_{\mathrm{wx}} \rightarrow \mathrm{a} \mathrm{X}_{\mathrm{yz}}$ in grammar G .

Step 2 - For every $w, x, y, z \in Q$, add the production rule $X_{w x} \rightarrow X_{w y} X_{y x}$ in grammar G.
Step 3 - For $w \in Q$, add the production rule $X_{w w} \rightarrow \varepsilon$ in grammar G.
www.binils.com

LANGUAGES OF PDA

A language can be accepted by Pushdown automata using two approaches:

1. Acceptance by Final State: The PDA is said to accept its input by the final state if it enters any final state in zero or more moves after reading the entire input.

Let $\mathrm{P}=\left(\mathrm{Q}, \sum, \Gamma, \delta, \mathrm{q} 0, \mathrm{Z}, \mathrm{F}\right)$ be a PDA. The language acceptable by the final state can be defined as:

1. $L(P D A)=\left\{w \mid(q 0, w, Z) \vdash^{*}(p, \varepsilon, \varepsilon), q \in F\right\}$
2. Acceptance by Empty Stack: On reading the input string from the initial configuration for some PDA, the stack of PDA gets empty.

Let $\mathrm{P}=\left(\mathrm{Q}, \sum, \Gamma, \delta, \mathrm{q} 0, \mathrm{Z}, \mathrm{F}\right)$ be a PDA. The language acceptable by empty stack can be defined as:

1. $\mathrm{N}(\mathrm{PDA})=\left\{\mathrm{w} \mid(\mathrm{q} 0, \mathrm{w}, \mathrm{Z}) \vdash^{*}(\mathrm{p}, \varepsilon, \varepsilon), \mathrm{q} \in \mathrm{Q}\right\}$

- If $L=N(P 1)$ for some PDA P1, then there is a PDA P2 such that $L=L(P 2)$. That means the language accepted by empty stack PDA will also be accepted by final state PDA.
- If there is a language $L=L(P 1)$ for some PDA P1 then there is a PDA P2 such that $L=N(P 2)$. That means language accepted by final state PDA is also acceptable by empty stack PDA.

Example:

Construct a PDA that accepts the language L over $\{0,1\}$ by empty stack which accepts all the string of 0 's and 1 's in which a number of 0 's are twice of number of 1 's.

Solution:

There are two parts for designing this PDA:

- If 1 comes before any 0 's
- If 0 comes before any 1's.

We are going to design the first part i.e. 1 comes before 0 's. The logic is that read single 1 and push two 1's onto the stack. Thereafter on reading two 0's, POP two 1's from the stack. The δ can be

1. $\delta(\mathrm{q} 0,1, \mathrm{Z})=(\mathrm{q} 0,11, \mathrm{Z}) \quad$ Here Z represents that stack is empty
2. $\delta(\mathrm{q} 0,0,1)=(\mathrm{q} 0, \varepsilon)$

Now, consider the second part i.e. if 0 comes before 1's. The logic is that read first 0 , push it onto the stack and change state from q0 to q1. [Note that state q 1 indicates that first 0 is read and still second 0 has yet to read].

Being in q1, if 1 is encountered then POP 0 . Being in q1, if 0 is read then simply read that second 0 and move ahead. The δ will be:

1. $\delta(\mathrm{q} 0,0, \mathrm{Z})=(\mathrm{q} 1,0 \mathrm{Z})$
2. $\delta(\mathrm{q} 1,0,0)=(\mathrm{q} 1,0)$
3. $\delta(\mathrm{q} 1,0, \mathrm{Z})=(\mathrm{q} 0, \varepsilon) \quad$ (indicate that one 0 and one 1 is already read, so simply read the second 0)
4. $\delta(\mathrm{q} 1,1,0)=(\mathrm{q} 1, \varepsilon)$

Now, summarize the complete PDA for given L is:

1. $\delta(\mathrm{q} 0,1, \mathrm{Z})=(\mathrm{q} 0,11 \mathrm{Z})$
2. $\delta(\mathrm{q} 0,0,1)=(\mathrm{q} 1, \varepsilon)$
3. $\delta(\mathrm{q} 0,0, \mathrm{Z})=(\mathrm{q} 1,0 \mathrm{Z})$
4. $\delta(\mathrm{q} 1,0,0)=(\mathrm{q} 1,0)$

 ค ค ค
5. $\delta(\mathrm{q} 1,0, \mathrm{Z})=(\mathrm{q} 0, \varepsilon)$
6. $\delta(\mathrm{q} 0, \varepsilon, \mathrm{Z})=(\mathrm{q} 0, \varepsilon) \quad$ ACCEPT state

PUSF DOWN AUTOMATA(PDA)

- Pushown autiomata is a way to implement a CFG in the same way we design DFA for aregular grammar: A DFA can remember a finte amount of information, but a PDA can remember an infinite amount of information.
- Pushown automata is simply an NFA augmented with an "exiernal stack memory". The addition of stack is used to provide a lastinfirist-out memory manage ment capability to

Pushown automad. Pushdown automata can sore an unbounded amount of information on the stack. It can access a li mited amount of information on the stack. A PDA can push an ack and pop off an element from element onio the top of the stelement into thethe top of he stack. To read an elements must be popped off and are lost slack, the to
n FA. Any language which can be accepiable by FA can aso be o accepis a class of language which

- A PDA is more powefful tha acceptable byeven cann ot be accepted by PDA. PDA als FA. Thus PDA is muchsuperior to FA
more

Stack

Fig: Pushdown A Lutomata
[Source: "J.E.Hopcroft, R.Motwani and J.D Ullman, Introduction to Automata Theory, Languages and Computations, Second Edition, Pearson Education, 2003]

PDA Components:

Input tape: The input tape is divided in many cells or symbols. The input head is read-only and may only move from left to ight, one symbol at a time.

Finite control: The finte conirol has some pointer which points the curent symbol which is to be read.

Stack: The stack is a structure in which we can push and remove the tems from one end only. It has
an infinite size. In PDA, the stack is used to sore the items temporaily.

Formal defintion of PDA:

The PDA can be defined as a collecion of 7 components:

Q: the finite set of states
\sum : the input set
$\boldsymbol{\Gamma}$: a sack symbol which can be pushed and popped from the sack
q0: the initial state
$\mathbf{Z}:$ a stat symbol which is in Γ.

F: a set of final states
$\boldsymbol{\delta}$: mapping funcion which is used for moving from current sate to next sate.

Insannaneous Descipition (ID)

ID is an informal notaion of how a PDA computes an input string and make a decision that string is accepted or rejected.

An instantaneous description is a triple ($\mathbf{q}, \mathrm{w}, \boldsymbol{\alpha}$) where:
q describes the current state.
\mathbf{w} describes the remaining input
a describes the stack contents, top at the left. Turnsile Noation:
\vdash sign describes the turnsilie notaion and represents one move.
\vdash * sign describes a sequence of moves.

For example,

$(\mathrm{p}, \mathrm{b}, \mathrm{T}) \vdash(\mathrm{q}, \mathrm{w}, \mathrm{a})$

In the above example, while aking a tansition from stat p to q, the input symbol b is consumed, and the top of the stack T is represented by a new string α.

Example 1:

Design a PDA for acceping a language $\left\{a^{n} b^{2 n} \mid n>=1\right\}$.

Solution: In this language, n number of as should be followed by $2 n$ number of bs. Hence, we willapply a very simple logic, and that is if we read single a', we will push two às onio the stack As soon
as we read b then for every single b only one a should get popped from the sack.

The ID can be constructed as follows:

1. $\delta(q 0, a, Z)=(q 0, a Z Z)$
2. $\delta(q 0, a, a)=(q 0, a a a)$

Now when we read b, we will change the state from $q 0$ to $q 1$ and stat popping corresponding 'a. Hence,

1. $\delta(q 0, b, a)=(q 1, \varepsilon)$

Thus this process of popping b will be repeated unless all he symbols are read. Note that popping action occurs in state $q 1$ only.

1. $\delta(q 1, b, a)=(q 1, \varepsilon)$

After reading all bs, all the corresponding a's should get popped. Hence when we read ε as inputsymbol then there should be nohing in the sack Hence the move will be:

1. $\delta(q 1, \varepsilon, Z)=(q 2, \varepsilon)$

Wheie
$P D A=(\{q 0, q 1, q 2\},\{a, b\},\{a, Z\}, \delta, q 0, Z,\{q 2\})$

We can summarize the ID as: $1 . \delta(q 0, a, Z)=$
(q0, aZZ)
2. $\delta(q 0, a, a)=(q 0$, aaa $)$
3. $\delta(q 0, b, a)=(q 1, \varepsilon)$
4. $\delta(q 1, b, a)=(q 1, \varepsilon)$
5. $\delta(q 1, \varepsilon, Z)=(q 2, \varepsilon)$

Now we will smulae his PDA for the input sting "aaxbbbbbb".

1. $\delta(q 0$, aabbbbbb, $Z)+\delta(q 0$, aabbbbbb, aZZ $)$

