DFA (DETERMINISTIC FINITE AUTOMATA)

- DFA refers to deeminisic finite automada Deerminsicic reés to the uniqueness of the computaion. The finie automada are caled deerminsic finit auuomada it he machine is read an input sting one symbol a a a ime.
- In DFA, thee is only one padh for speific inpul fom the current sate to the next sate.
- DFA does not accept the null move, ie, the DFA cannot change stae without any inpucharacter.
- DFA can contian muliple final sties. It is used in Lexical Anayysi in Compler:

In the following dagam, we can see hal fom sade q0 for input a, heee is only one pah which is going to q1. Simialy, fom q0, thee is ony one padh for input b going 10 q.

Fig:- DFA

Formal Definition of DFA
A DFA is a collecion of 5 -tuples same as we described in the definition of FA

1. Q: finte set of sades
2. \sum : inie set of the input symbol
3. q0: intial state
4. F final sade
i. δ : Transion funcion

Transiion function can be defined as:

1. $\delta: Q \times \sum \rightarrow \mathrm{Q}$

Graphical Representaion of DFA
A DFA can be represenied by digaphs called sate dagam. In which:

1. The state is represented by vertices.
2. The ac abbed wiih an input chaxacer show the tansitions.
3. The iniala sate is maked wilh an arow.
4. The final state is denoted by a double circle.

Example :

1. $\mathrm{Q}=\{q 0, \mathrm{q} 1, \mathrm{q} 2\}$
2. $\sum=\{0,1\}$
3. $q 0=\{q 0\}$
4. $\mathrm{F}=\{\mathrm{q} 2\}$

Solution:

Transition Dagram

Transition Table:

Present State Next state for Input $0 \quad$ Next State of Input 1

Example :

DFA with $\sum=\{0,1\}$ accepps all satring with 0 .

Solution:

Explanation:

- In the above diagram, we can see that on given 0 as input to DFA in staie q0 the DFA changes staie to ql and always go to final state ql on stating input 0 . I can accept $00,01,000$,

001etc. It cant accept any a string sating with 1 .
s ting which starts with 1 , because it will never go to final sate on

Example :

DFA with $\sum=\{0,1\}$ accepis all ending with 0 .

Solution:

Explanation:

In the above diagram, we can see that on given 0 as input to DFA in staie q0, the DFA changes state to q1. It can accept any string which ends wihh 0 like 00,10 , 110,100 etc. It cant accept any string which ends with 1 , because it will never $g 0$ to the final state ql on 1 input, so the string ending with 1 , will not be accepted or will be reject d.
e
Examples of DFA

The FA will have a satat sate q0 fro $\quad \mathrm{m}$ which only the edge with input 1 will $g 0$ to the next sate.

In sate q1, if we read 1 , we will be in stae q1, but if we read 0 at staie ql, we will reach to stae q2 which is the final sate. In state q, if we read either \mathbb{Q} or 1 , we will go to $q 2$ sate or q1 sate respecively. Note that if the input ends with 0 , it will be in the final sate.

Example :

Design a FA with $\sum=\{0,1\}$ accepis the only input 101.

Solution:

In the given solution, we can see that only input 101 will be accepped. Hence, for input 101 , there is no other path shown for other input.

Example :

Design FA with $\sum=\{0,1\}$ accepps even number of 0 s and even number of 1 s .

Solution:

This FA will consider four different sages for input 0 and input 1 . The stages could be:

Example 4:

Design FA with $\sum=\{0,1\}$ accepts the set of all strings with hree conseculive 0 s.

Solution:

The strings that will be generated for this patricular languages are 000, 0001, 1000, 10001, \qquad which 0 always appears in a clump of 3 . The transition graph is as follows:

Note that the sequence of triple zeros is maintained to reach the final state.

Example 5:

Design a DFA $L(\mathbf{M})=\left\{\mathrm{w} \mid \mathrm{w} \boldsymbol{\varepsilon}\{0,1\}^{*}\right\}$ and \mathbf{W} is a string that does not contan consecutive ls.

Solution:

When thee consecuive Is occur the DFA will be:

Hee two conseculive Is or singe 1 is aceepable, hence

The stages q0, q1, q2 are the final states. The DFA will generate the strings that do not contain conseculive is like $10,110,101$, eic.

Solution:

The DFA can be shown by a transition diagram as:

FINITE AUTOMATA WITH ε-TRANSITIONS

An informal treatment of $€$-NFA's, using transition diagrams with f allowed as a label. In the examples to follow, think of the automaton as accepting those sequences of labels along paths from the start state to an accepting state. However, each e along a path is "invisible" j i.e., it contributes nothing to the string along the path.

[Source: "J.E.Hopcroft, R.Motwani and J.D Ullman, Introduction to Automata Theory, Languages and Computations, Second Edition, Pearson Education, 2003]

In Fig. is an $€$-NFAthat Accepts decimal numbers consisting of:2. A string of digits,

1. An optional + or - sign,
2. A decimal point, and
3. Another string of digits. Either this string of digits, or the string (2) can be empty, but at least one of the two strings of digits must be nonempty.

Nondeterministic Finite Automata with ε transitions (ε-NFA)

- A Non-Deterministic Finite Automata with ε transitions is a 5 -tuple ($\mathrm{Q}, \Sigma, \mathrm{qo}, \delta, \mathrm{F}$)
where -Q is a finite set (of states)
Σ is a finite alphabet of symbols
qo $\in Q$ is the start state
$\mathrm{F} \subseteq \mathrm{Q}$ is the set of accepting states
δ is a function from $\mathrm{Q} \times(\Sigma \cup\{\varepsilon\})$ to 2 Q (transition function)

Transition function $-\delta$ is a function from
$\mathrm{Qx}(\Sigma \mathrm{U}\{\varepsilon\})$ to 2 Q
$\delta(\mathrm{q}, \mathrm{a})=$ subset of Q (possibly empty)
In our example

- $\delta(\mathrm{q} 1,0)=\{q 1, q 4\}$
- $\delta(\mathrm{q} 1,)=.\{q 1\}$
- $\delta(q 1,+)=\varnothing$
- $\delta(\mathrm{q} 0, \varepsilon)=\{\mathrm{q} 1\}$

Transition function on a string

It is a function from $\mathrm{Q} \times \Sigma^{*}$ to $2 \mathrm{Q}-(\mathrm{q}, \mathrm{x})=$ subset of Q (possibly empty)
It Set of all states that the machine can be in, upon following all possible paths on input x
Here we need to consider all paths that include the use of ε transitions

E CLOSURE

- Before defining the transition function on a string (($\mathrm{q}, \mathrm{x})$), it is useful to first define what is known as the ε closure.
- Given a set of states S, the ε closure will give the set of states reachable from each state in S using only ε transitions
ε closure: Recursive definition
- Let $\mathrm{M}=(\mathrm{Q}, \Sigma$, qo, $\delta, \mathrm{F})$ be a ε-NFA
- Let S be a subset of Q
- The ε closure, denotes $\operatorname{ECLOSE}(\mathrm{S})$ is defined:
- For each state $p \in S, p \in \operatorname{ECLOSE}(S)$
- For any $\mathrm{q} \in \operatorname{ECLOSE}(\mathrm{S})$, every element of $\delta(\mathrm{q}, \varepsilon) \in \operatorname{ECLOSE}(\mathrm{S})$
- No other elements of Q are in $\operatorname{ECLOSE}(\mathrm{S})$

ε-Closure

- ε-Closure : Algorithm
- Since we know that ECLOSE(S) is finite, we can convert the recursive definition to an algorithm.
- To find ECLOSE(S) where S is a subset of Q
- Let T = S - While (T does not change) do
- Add all elements of $\delta(\mathrm{q}, \varepsilon)$ where $\mathrm{q} \in \mathrm{T}-\operatorname{ECLOSE}(\mathrm{S})=\mathrm{T}$

FINITE AUTOMATA

- Finte automata ae used io recogize patems.
- It akes the ssing of symbol as input and changes is sade accodidngy. When the desied symbol is found, then the tansition occurs.
- At the ime of tansition, the automata can eiher move to the next sate of say in the same state.
- Frite automada have two sades, Accept state or Reject state. When the input sting isprocessed successully, and he automata reached is final sade, then it will accepi

Formal Definition of FA

A finit automaion is a collecion of 5upple ($\mathrm{Q}, \sum, \delta, q 0, F$, where:

1. Q: finie set of sales
2. \sum : finte set of the input symbol
3. q0: initial state
4. F final sade
i. δ : Transion function

Finit Autiomata Mode:
Finite auiomada can be reppesented by input ape and finite contol.
Input tape: It is a linear app having some number of cells. Each input symbol is placed in each cell
Finite control: The finte contol decides the next sate on receiving paricular input fom input app.The lape reader reads he cells one by one fom left to ight, and a a time only one inpul symbol is iread.

Fig :- Finite automata model
[Source: "J.E.Hopcroft, R.Motwani and J.D Ullman, Introduction to Automata Theory, Languages and Computations, Second Edition,Rearson Education, 2003]

Types of Automax:

Theer ae Iwo types of finite aulomata

1. DFA(deeminisic finte automaa)
2. NFA(non-deerminsicic finte automaa)

3. DFA

DFA refers to deemminsic finite automada. Determinisic reefes to the uniqueness of the compuation.In the DFA, the machine goos to one sate only for a paticula input charader: DFA does not accepithe nul move.
2. NFA

NFA sands for non-deemminsic finite automaia It is used to tansmit any number of sades for a paricular inpul II can accept the nul move.

Some important points about DFA and NFA:

1. Every DFA is NFA, bul NFA is no: DFA
2. There can be muliple fina sates in boh NFA and DFA
3. DFA is used in Lexica Anayysis in Compler
4. NFA is more of a heoerical concept.

Transion Diagam
A tansition diagam or sate tansition dagam is a direced graph which can follows:
be constructed as

- There is a node for each sate in Q , which is reppesented by he circe.
- There is a directed edge from node q to node p labeled a if $\delta(q, a)=p$.
- In the slatr sate, there is an arow with no souce.
- Acceping sates or final sates are indicaing by a double circle.

Some Notaions that are used in the tansition dagram:
(9) State
$\longrightarrow \quad$ Transition from one
state to another
$\xrightarrow{\text { Start }} 9_{0}$
or
Start state

There is a description of how a DFA operates:

1. In DFA, the input to the automata can be any string. Now, put a poiner to the satat sate q and read the input string w from left to right and move the poinier according to the tansition funcion, δ. We can read one symbol at a time. If the next symbol of string w is a and the poinier is on state p , move the poinier to $\delta(\mathrm{p}$, a). When the end of the input string w is encountered, then the poiner is on some satae F.
2.Thestringw is saidtobeacceptedbytheDFAifre Fthatmeanstheinputstring wisprocessed successtuly and the automata reached its final state. The string is said to be rejected by DFAifi $\#$ F

Example :

DFA with $\sum=\{0,1\}$ accepts all strings stating with 1 .

Solution:

Fig: Transition diagram

The finie automata can be repperened using a tansion graph in the above dia ram, the machine g initially is in start state qq then on r receiving 0 , the machine changes eceiving input 1 the machine changes its stae to q1. From q0 on sate to q2, which is he dead stae. From q1 its on receiving input 0 ,
1 the machine changes its saie io q generated are 10, $11,110,1011$, which is the final sale. The posible input s trings that can be 111...
... hat means all sting salts wihh 1.

Example :

NFA wih $\sum=\{0,1\}$ accepps all stin
gs stating wih 1.
Solution:

The NFA can be repeceened using a tansition graph in the above dagram, the ma hine initidy is in satat stae q0 then on receving input 1che machine changes its sade to q1. From q1 on reeeving input0, 1 he machine changes it sate to ql. The posible input sting that can be generated is $10,11,110,101,111$, that means al sting satats wihh 1.

Transion Table

The tansiion table is basicaly a abular reperesendion of the tanssion funcion. II akes two agouments (a sate and a symbol) and reums a sade (he "next stad").

A tansition abbe is reprecented by he following things:

- Coumns corespond io input symbols.
- Rows correspond to states.
- Enties corespond to the next sate.
- The salat sade is denoed by an arow with no surce.
- The accepptstate is denoted b astar.

Example 1:

Solution:

Transition table of given DFA is as follows:

Present State
$\rightarrow \mathrm{q} 0$
q1
*q2

Next state for Input 0

q1
q0
q2

Next State of Input 1

q2
q2
q2

Explanation:

- In the above table, the first column indicaies all the current states. Under column 0 and 1 , he next sates are shown.
- The first row of the tansition table can be read as, when the current sate is $q 0$, on input 0 the next state will be $q 1$ and on input 1 the next sate will be q2
- In the second row, when the current state is ql , on input 0 , the next sate will be q 0 , and on 1 input the next staie will be q 2 .
- In the third row, when the current state is q2 on input 0 , the next sate will be q2, and on 1 input the next sate will be q2
- The arow maked to q0 indicaes that it is a slat state and circle marked to q2 indicates that it
is a final state.

Example 2:

Solution:

Present State	Next state for Input 0	Next State of Input 1
$\rightarrow \mathrm{q} 0$	90	q1
q1	q1, q2	q2
q2	q1	93
*93	q2	q2

INTRODUCTION TO FORMAL PROOF \& ADDITIONAL FORMS OF PROOF

The formal proof can use
1.Inductive proof
2.Deductive proof

Inductive proof

It is a recursive kind of proof which consist of sequence of parameterized ststements that use the statement ,itself with lower values of its parameter

Deductive proof

It consist of sequence of statements given with logical reasoning, in order to prove the first statement is called hypothesis.

Various forms of Proof
The additional forms of proof can be explained with the help of examples
1)Proof about sets
2)Proof by contracdiction
3)Proof by counter example

Proof aboutsets
The set is a collection of elements or items . By giving proof about the set we try to prove certain properties of the sets .

For example :
If there are two expressions $A \& B$ and we want to prove that both expressions $A \& B$ are equivalent Let
PUQ = QUP
(A) (B)

Then prove $\mathrm{A}=\mathrm{B}$, we need to prove

PUQ=QUP

That means an element x is in A if and only if it is in B
Proving LHS

1. x is inPUQ
2. x is in P or x is in Q
3. x is in Q or X is in P
4. x is in QUP

Like that we can prove RHS

1. x is in Q or X is in P
2. x is in QUP
3. x is inPUQ
4. x is in P or x is in Q

Hence
$P U Q=Q U P$, Thus $A=B$ is true as element x is in B if and only if x is in A

Proof by contradiction
In this type of proof ,for the statement of the form is A \& B ,we start with statement A is not true and thus by assuming false A.We try to get the conclusion of statement B .

When it becomes impossible to reach statement B, we contradict ourself and accept that A is true
Example :
Prove that $\mathrm{PUQ}=\mathrm{QUP}$
Proof
Initially we assume that $\mathrm{PUQ}=\mathrm{QUP}$ is not true.
Now consider that x is in Q or x is in PUQ
But this also implies that x is in QUP according to definition of union
Hence the assumption which are made initailly is false

Thus
$\mathrm{PUQ}=\mathrm{QUP}$ is proved

Proof by counter Example
In order to prove certain statements, we need to see all possible conditions in which that statement remains true .There are some situations in which that statement cannot be true

Example
$\mathrm{A} \bmod \mathrm{B}=\mathrm{B} \bmod \mathrm{A}$
Proof
Consider $\mathrm{A}=2$ and $\mathrm{B}=3$
$2 \bmod 3$ is not equal to $3 \bmod 2$

NFA (NON-DETERMINISTIC FINITE AUTOMATA)

- NFA sands for non.deemminsici finie automada I is easy to construct an NFA than DFA fora given regular language.
- The finite aulomata are called NFA when here exist many palhs for specific input from the current state to the next state.
- Every NFA is not DFA, but each NFA can be tandadaed ino DFA
- NFA is defined in the same way as DFA but with he following lwo excepions, it conlans muliple next sales and it contains ε tansition.

In the following image, we can see that from state q0 for input a, there are two next states $q 1$ and $q 2$, smilaly, from $q 0$ for input b, the next sates are $q 0$ and $q 1$. Thus it is not fixed or deermined that with a paricular input where to g 0 next. Hence this FA is called non-deeerminsicic finite automata.

Fig:- NDFA

Formal definion of NFA:

NFA aso has five sates same as DFA, but with different transiion funcion, as shown follows:
$\delta: Q \times \sum \rightarrow 2^{\mathrm{Q}}$
where,

1. Q: finie set of sades
2. \sum : finte set of the input symbol
3. q0: intial state
4. F: final sale
j. δ : Transion funcion

Graphical Represendioion of an NFA
An NFA can be reperesened by digaphs called stad dagam. In which:

1. The state is represented by vertices.
2. The arc ableed with an input chaaciere show the tansitions.
3. The infial sade is makked wilh an arow.
4. The final state is denoted by the double circle.

Example 1:

1. $\mathrm{Q}=\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2\}$
2. $\sum=\{0,1\}$
3. $q 0=\{q 0\}$
4. $F=\{q 2\}$

Solution:

Transition diagram:

In the above diagram, we can see that when the current state is $q 0$, on input 0 , the next sate will be $q 0$ or q, and on 1 input the next sate will be q. When the current sate is $q 1$, on input 0 the next stae will be q2 and on 1 input, the next state will be q0. When he current sate is q2, on 0 input the next state is q2, and on I inputthenext st
te will be q1 or q2.

Example :

NFA with $\sum=\{0,1\}$ accepis all stings with 01 .

Solution:

Transition Table:

Present State	Next state for Input 0	Next State of Input 1
$\rightarrow \mathrm{q} 0$	q 1	ε
q 1	ε	q 2
${ }^{*} \mathrm{q}^{2}$	q 2	q^{2}

Example :

Fig: NFA

1 Iandilusil 1 aun

Examples of NFA

Example :

Design a NFA for the tansition able as given below:

PresentState	$\mathbf{0}$	$\mathbf{1}$
$\rightarrow q 0$	$q 0, q 1$	$q 0, q 2$
$q 1$	$q 3$	ε
$q 2$	$q 2, q 3$	$q 3$
$\rightarrow q 3$	$q 3$	q^{3}

Solution:

The transition dagaram can be drawn by using the mapping funcion as given in the able.

Here,

1. $\delta(q 0,0)=\{q 0, q 1\}$
2. $\delta(q 0,1)=\{q 0, q 2\}$
3. Then, $\delta(q 1,0)=\{93\}$
4. Then, $\delta(q 2,0)=\{q 2, q 3\}$
5. $\delta(q 2,1)=\{q 3\}$
6. Then, $\delta(q 3,0)=\{q 3\}$
7. $\delta(q 3,1)=\{q 3\}$

Example 2:

Design an NFA with $\sum=\{0,1\}$ accepis all sting ending with 01 .

Solution:

Hence NFA would be:

Example 3:

Design an NFA with $\sum=\{0,1\}$ in which double 11 is followed by double 0 .

Now before double 1 , there can be string of 0 and 1 . a ny string of 0 and 1 . Similaly, afer double 0 , there can be any

Hence the NFA becomes

1. $\mathrm{q} 0 \rightarrow \mathrm{q} 1 \rightarrow \mathrm{q} 2 \rightarrow \mathrm{q} 3 \rightarrow \mathrm{q} 4 \rightarrow \mathrm{q} 4 \rightarrow \mathrm{q} 4 \rightarrow \mathrm{q} 4$

Example 4:

Design an NFA in which all he sting contain a substing 1110 .

Solution:

The language consists of all he sting containing substing 1010. The patial tansition diagram can be:

Now as 1010 could be the substing. Hence we will add the inputs 0 s and 1 s so that the substing 1010 of the language can be mainained Hence the NFA becomes:

Transition table for the above tansition diagram can be given below:

Consider a sting 111010,

1. $\delta(q 1,111010)=\delta(q 1,1100)$
$2 . \quad=\delta(q 1,100)$
2. $\quad=\delta(q 2,00)$

Got suck! As there is no path from $q 2$ for input symbol 0 . We can process string 111010 in another way.

1. $\delta(q 1,111010)=\delta(q 2,1100)$
2.

$$
=\delta(4,100)
$$

3. $\quad=\delta(q 4,00)$
4. $=8(95,0)$
5. $=\delta(q 5, \varepsilon)$

As sade $q 5$ is the accepp sade. We get the complee scanned, and we reached to the fil
nal state.

Example 5:

Deign an NFA wih $\sum=\{0,1\}$ acalways 0 . cepps all sting in which he hird symbol fo

Solution:

Thus we get he hird symbol fom the ight end as 0 aways. The NFA can be:

The above image is an NFA because in sade q0 with input 0 , we can either go to sade q0 or q1.

