www.binils.com for Anna University | Polytechnic and Schools

2.9. CPUSCHEDULING
2.9.1 Basic Concepts

Almostall programs have some alternating cycle of CPU number crunching and waiting
for 1/0O of some kind. (Even a simple fetch from memory takes a long time relative to CPU
speeds.)

Inasimple systemrunningasingle process, thetime spentwaitingforl/Oiswasted,
and those CPU cycles are lost forever.

Ascheduling systemallows one processto usethe CPU while anotheriswaiting for
I/O, thereby making full use of otherwise lost CPU cycles.

The challenge isto make the overall system as "efficient” and "fair" as possible, subject
to varying and often dynamic conditions, and where "efficient” and "fair" are somewhat
subjective terms, often subject to shifting priority policies.

CPU-I/O Burst Cycle
= Almostall processes alternate between two states in a continuing cycle, as shown
in Figure below:
e ACPU burst of performing calculations, and

= An /O burst, waiting for data transferin or out of the system:.

load store
add store
read from file

CPU bursi
wait for I/O
_store increment /O burst
index
write to file
wait for I/O CPU burst
I/O burst
load store
add store
read from file
CPU bursl
wait for I/O
. 1/O burst

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

CPU Scheduler
. Whenever the CPU becomesiidle, itis the job of the CPU Scheduler (a.k.a. the short-
termscheduler)toselectanotherprocessfromthereadyqueuetorunnext.
. The storage structure for the ready queue and the algorithm used to select the next
process are not necessarily a FIFO queue. There are several alternatives to choose from, as
well as numerous adjustable parameters for each algorithm, which is the basic subject of this
entire chapter.
Preemptive Scheduling
CPU scheduling decisions take place under one of four conditions:
1. Whenaprocess switchesfromthe running state to the waiting state, such
as foran I/O request or invocation of the wait() system call.
2. When a process switches from the running state to the ready state, for
example in response to an interrupt.
3. Whenaprocess switches from the waiting state to the ready state, say at
completion of I/O or a return from wait().
4. When a processterminates.
= Forconditions 1 and 4 there is no choice - A new process must be selected.
= For conditions 2 and 3 there is a choice - To either continue running the current
process, or select a different one.
= Ifschedulingtakesplaceonlyunderconditions 1and4,the systemissaidtobenon-
preemptive,orcooperative. Underthese conditions, onceaprocess startsrunningitkeeps
running, untiliteithervoluntarily blocks oruntilitfinishes. Otherwise the systemis said to
be preemptive.
= Windows used non-preemptive scheduling up to Windows 3.x, and started using pre-
emptive scheduling with Win95. Macs used non-preemptive prior to OSX,
and pre-emptive since then. Note that pre-emptive scheduling is only possible on hardware
that supports a timer interrupt.
Note that pre-emptive scheduling can cause problems when two processes share data,
because one process may getinterrupted in the middle of updating shared data structures.
Chapter 5 examined this issue in greater detail.
= Preemption can also be a problem if the kernel is busy implementing a system call (

e.g. updating critical kernel data structures) when the preemption occurs. Most modern

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

UNIX deal with this problem by making the process wait until the system call has either
completed or blocked before allowing the preemption Unfortunately this solution is
problematicforreal-time systems, asreal-timeresponse cannolongerbe guaranteed.
= Some critical sections of code protect themselves from con currency problems by
disabling interrupts before entering the critical section and re-enabling interrupts on
exitingthe section. Needlessto say, this should only be doneinrare situations, and only
on very short pieces of code that will finish quickly, (usually just a few machine
instructions.)
Dispatcher
The dispatcher isthe module that gives control of the CPU to the process selected by
the scheduler. This function involves:
= Switching context.
= Switching to usermode.
= Jumping to the proper location in the newly loaded program.
= Thedispatcher needsto beasfastas possible,asitis run onevery context switch. The

time consumed by the dispatcher is known as dispatch latency.

2.9.2 Scheduling Criteria

There are several different criteria to consider when trying to select the "best"
scheduling algorithm for a particular situation and environment, including:
CPU utilization

- Ideally the CPU would be busy 100% of the time, so as to waste 0
CPUcycles.Onareal system CPU usage should range from40% (lightly loaded)to 90% (
heavily loaded.)
Throughput

- Number of processes completed per unittime. May range from 10/secondto 1/
hour depending on the specific processes.
Turnaround time

- Time required for a particular process to complete, from submission time to
completion. (Wall clock time.)

Waiting time

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

- How much time processes spend in the ready queue waiting their turnto geton the
CPU.

(Load average - The average number of processes sitting in the ready queue waiting their turn
to getintothe CPU. Reported in 1-minute, 5-minute, and 15-minute averages by "uptime"”
and "who".)

Response time

- The time taken in an interactive program from the issuance of a command to the
commence of a response to that command.

In general one wants to optimize the average value of a criteria (Maximize CPU
utilization and throughput, and minimize all the others.) However sometimes one wants to
do something different, such as to minimize the maximum response time.

Sometimes it is most desirable to minimize the variance of a criteria than the actual
value.

l.e. users are more accepting of a consistent predictable system than an inconsistent one,

even if it is a little bit slower.

2.9.3 Scheduling Algorithms
The following subsections will explain several common scheduling strategies, looking
atonly asingle CPU burst each for a small number of processes. Obviously real systems have
to deal with alotmore simultaneous processes executing their CPU-I/O burst cycles.
1. First-Come First-Serve Scheduling,FCFS
* FCFSisverysimple - JustaFIFO queue, like customerswaitinginline atthe
bank or the post office or at a copying machine.
= Unfortunately, however, FCFS can yield some very long average wait times,
particularly if the first process to get there takes a long time. For example, consider the

following three processes:

Process Burst Time
P1 24

P2 3

P3 3

= Inthe Gantt chart below, process P1 arrives first. The average waiting time for

the three processesis (0+24 +27)/3=17.0ms.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

P1 P2 Ps

0 24 27 30

Inthe Gantt chart below, the same three processes have an average waittime of (0 + 3
+6)/3=3.0ms. Thetotalruntime forthe three burstsis the same, butinthe second
casetwo ofthe three finishmuch quicker,andthe other processis onlydelayed by a

short amount.

0 3 6 30

* FCFS can also block the system in a busy dynamic system in another way,
known as the convoy effect. When one CPU intensive process blocks the CPU, a number of
I/Ointensive processes cangetbacked up behindit, leavingthe I/O devicesidle. Whenthe
CPU hog finally relinquishes the CPU, then the I/O processes pass through the CPU quickly,
leaving the CPU idle while everyone queues up for I/O, and then the cycle repeats itself when
the CPU intensive process gets back to the ready queue.

= Calculate Waiting time, average waiting time, turn around time, average turn

around time

2. Shortest-Job-First Scheduling, SJF

= Theideabehindthe SJFalgorithmisto pickthe quickestfastestlittle job that
needstobe done, getitout of the way first, and then pick the next smallest fastestjob to do
next.
(Technically this algorithm picks a process based on the next shortest CPU burst, notthe
overall process time.)

= For example, the Gantt chart below is based upon the following CPU burst

times, (and the assumption that all jobs arrive at the same time.)

Process Burst Time
P1 6
P2 8
P3 7
P4 3

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

P4 P1 Ps P,

0 3 9 16 24
. Inthe case above the average waittimeis (0+3+9+16)/4=7.0ms, (as opposed
to 10.25 ms for FCFS for the same processes.)
. SJF can be proven to be the fastest scheduling algorithm, but it suffers from one
important problem: How do you know how long the next CPU burstis going to be?
. For long-term batch jobs this can be done based upon the limits that users set for their
jobswhenthey submitthem, whichencouragesthemto setlowlimits, butriskstheirhaving
to re-submit the job if they set the limit too low. However that does not work for short-term
CPU scheduling on an interactive system.

SJF can be either preemptive or non-preemptive. Preemption occurs when a new
process arrives in the ready queue that has a predicted burst time shorter than the time
remaining in the process whose burst is currently on the CPU. Preemptive SJF is sometimes

referred toas

3. Shortest remaining time first scheduling.

= Forexample, the following Gantt chart is based upon the following data:

Process Arrival Time Burst Time
P1 0 8
P2 1 4
P3 2 9
p4 3 5
Pi1| P> P4 P; P3
0 1 5 10 17 26

The average waittime inthiscaseis ((5-3)+(10-1)+(17-2))/4=26/
4=6.5ms.(Asopposedto7.75msfornon-preemptive SJF or8.75for FCFS.)
Calculate Waiting time, average waiting time, turn around time, average turn around

time

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

3. Priority Scheduling

. Priority schedulingisamore general case of SJF, inwhicheachjobis assigned apriority
and the job with the highest priority gets scheduled first. (SJF uses the inverse of the next
expected bursttime asits priority - The smallerthe expected burst, the higherthe priority.)
. Notethatin practice, priorities are implemented using integers within afixed range,
butthereisnoagreed-uponconventionastowhether"high" prioritiesuse large numbersor
small numbers. This book uses low number for high priorities, with 0 being the highest
possible priority.

. Forexample, thefollowing Ganttchartisbased uponthese processbursttimesand

priorities, and yields an average waiting time of 8.2 ms:

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 4
P4 1)
P5 5 2
P
P1| P2 P1 Ps
4
01 6 16 18 19
. Priorities can be assigned either internally or externally. Internal priorities are assigned

by the OS using criteria such as average burst time, ratio of CPU to 1/O activity, system
resource use, and otherfactors available to the kernel. External priorities are assigned by
users, based on the importance of the job, fees paid, politics, etc.

Priority scheduling can be either preemptive or non-preemptive.

. Priority scheduling can suffer from a major problem known as indefinite blocking, or
starvation, in which alow-priority task can wait forever because there are always some other
jobs around that have higher priority.

. Ifthisproblemisallowedtooccur,thenprocesseswilleitherruneventuallywhenthe
system load lightens (atsay 2:00 a.m.), or will eventually get lost when the system is shut

down or crashes. (There are rumors of jobs that have been stuck for years.)

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

. One common solution to this problem is aging, in which priorities of jobs increase the
longer they wait. Under this scheme alow-priority job will eventually get its priority raised
high enough that it gets run.

. Calculate Waiting time, average waiting time, turn around time, average turn around

time

4. Round Robin Scheduling

. Roundrobin schedulingis similarto FCFS scheduling, except that CPU bursts are
assigned with limits called time quantum.

. Whenaprocessisgiventhe CPU, atimeris setforwhatevervalue hasbeensetfora
time quantum.

. If the process finishes its burst before the time quantum timer expires, then it is
swapped out of the CPU just like the normal FCFS algorithm.

. Ifthe timer goes off first, then the process is swapped out of the CPU and moved to
the back end of the ready queue.

. The ready queue is maintained as a circular queue, so when all processes have had a
turn, then the scheduler gives the first process another turn, and so on.

. RR scheduling can give the effect of all processors sharing the CPU equally, although
the average waittime can be longer than with other scheduling algorithms. Inthe following

example the average wait time is 5.66 ms.

Process Burst Time
P1 24
P2 3
P3 3
P, P, P3 P P1 P P1 P1
0 4 7 10 14 18 22 26 30

. The performance of RRis sensitive to the time quantum selected. If the quantum is
large enough, then RR reduces to the FCFS algorithm; If it is very small, then each process

gets 1/nth of the processor time and share the CPU equally.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

. BUT, areal systeminvokes overhead for every context switch, and the smallerthe time
guantum the more context switches there are. Most modern systems use time quantum
between 10and 100 milliseconds, and context switch times onthe order of 10 microseconds,

so the overhead is small relative to the time quantum.

process fime= 10 QAR
2
0 10
6 1
0 6 io
| 1 9

& 1 2 & 4 5 6 7 8 9 10

The way in which a smaller time quantum increases context switches.
= Turnaroundtimealsovarieswithquantumtime,inanon-apparentmanner. Consider, for
example the processes shown in Figure 6.5:

— T g

process time

P, 6
P> 3
P, 1
P, 7

| 1 1 1 1 1 1
dime guantiam:

The way in which turnaround time varies with the time quantum.

Ingeneral, turnaroundtimeisminimizedifmostprocessesfinishtheirnextcpuburst
within one time quantum. For example, with three processes of 10 ms bursts each, the
average turnaround time for 1 ms quantum is 29, and for 10 ms quantum it reduces to 20.
However, ifitis made too large, then RR just degenerates to FCFS. Arule of thumb is that 80%
of CPU bursts should be smaller than the time quantum.

Calculate Waiting time, average waiting time, turn around time, average turn around

time

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

5. Multilevel Queue Scheduling

. When processes can be readily categorized, then multiple separate queues canbe
established, each implementing whatever scheduling algorithm is most appropriate for that
type of job, and/or with different parametric adjustments.

. Scheduling must also be done between queues, that is scheduling one queue to get
time relative to other queues. Two common options are strict priority (no job in a lower
priority queue runs until all higher priority queues are empty) and round-robin (each queue
gets atime slice in turn, possibly of different sizes.)

. Note thatunder this algorithm jobs cannot switch from queue to queue —Once they

are assigned a queue, that is their queue until they finish.
highest priority

m— system processes — .
m— interactive processes E—
s interactive editing processes —
— batch processes m—
m— student processes — .

lowest priority

6. Multilevel Feedback-Queue Scheduling

Multilevel feedback queue scheduling is similar to the ordinary multilevel queue
scheduling described above, except jobs may be moved from one queue to another for a
variety of reasons:

If the characteristics of a job change between CPU-intensive and I/O intensive, then it
may be appropriate to switch a job from one queue to another.

Aging can also be incorporated, so that a job that has waited for along time can get

bumped up into a higher priority queue for a while.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

Multilevel feedback queue scheduling is the most flexible, because it can be tuned for
any situation. But it is also the most complex to implement because of all the adjustable

parameters. Some of the parameters which define one of these systems include:

1. The number of queues.
2 The scheduling algorithm for each queue.
3 The methods usedtoupgrade ordemote processesfromone

gueue to another. (Which may be different.)

4 The method usedto determine which queue a process enters
initially.
i A
> quantum = 8 —
quantum = 16 = “
,‘ ‘ R = i
» FCFS

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.10 DEADLOCKS
2.10.1 System Model
For the purposes of deadlock discussion, a system can be modelled as a collection of
limited resources, which can be partitioned into different categories, to be allocated to a
number of processes, each having different needs.
. Resource categories may include memory, printers, CPUs, open files, tape
drives, CDROMS, etc.
. By definition, all the resources within a category are equivalent, and a request
ofthiscategory canbe equally satisfied byanyone oftheresourcesinthatcategory.
Ifthisis notthe case (i.e. ifthere is some difference between the resources withina
category), then that category needs to be further divided into separate categories. For

example, "printers" may need to be separated into "laser printers” and "color inkjet

printers".
. Some categories may have a single resource.
. In normal operation a process must request a resource before using it, and

release it when it is done, in the following sequence:
. Request - Ifthe request cannot be immediately granted, then the process must
wait until the resource(s) it needs become available. For example the system calls

open(), malloc(), new(), and request().

. Use - The process usesthe resource, e.g. prints to the printer orreads fromthe
file.
. Release - The process relinquishes the resource. so that it becomes available

for other processes. Forexample, close(), free(), delete(), and release().

. Forallkernel-managedresources, the kernel keepstrack of whatresources are
free and which are allocated, to which process they are allocated, and a queue of
processes waiting for this resource to become available. Application-managed
resources can be controlled using mutexes or wait() and signal() calls, (i.e. binary or
counting semaphores.)

. A set of processes is deadlocked when every process in the set is waiting for a
resourcethatiscurrently allocated to anotherprocessinthe set(and which canonly

be released when that other waiting process makes progress.)

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.10.2 Deadlock Characterization
Necessary Conditions

There are four conditions that are necessary to achieve deadlock:
1. Mutual Exclusion - Atleastone resource mustbe heldinanon-sharable mode; If any other
process requests this resource, then that process must wait for the resource to be released.
2.Hold and Wait - Aprocess mustbe simultaneously holding atleast one resource and waiting
for at least one resource that is currently being held by some other process.
3. No preemption - Once a processis holding aresource (i.e. once its request has been
granted), then that resource cannot be taken away from that process until the process
voluntarily releasesit.
4. Circular Wait - Asetof processes{P0,P1,P2,...,PN}mustexistsuchthateveryP[i]is
waitingforP[(i+1)% (N+1)].

Resource-Allocation Graph

Insome casesdeadlocks canbe understood more clearlythroughthe use ofResource-
Allocation Graphs, having the following properties:

A setof resource categories, { R1, R2,R3, ..., RN}, which appear as square nodes on
the graph. Dots inside the resource nodes indicate specific instances of the resource. (E.g.
two dots might'representtwo laser printers.)

A set of processes, { P1, P2, P3, ..., PN}
Request Edges

- AsetofdirectedarcsfromPito R}, indicatingthatprocessPihasrequested Rj,and
is currently waiting for that resource to become available.
Assignment Edges

- Asetofdirectedarcsfrom Rjto Piindicatingthatresource Rjhasbeenallocated to
process Pi, and that Pi is currently holding resource R;j.

Notethatarequest edge canbe convertedintoanassignment edge by reversing the
direction of the arc when the request is granted. (However note also that request edges point
to the category box, whereas assignment edges emanate from a particular instance dot within

the box.)

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

For example:
R, R
@ £
/NS
|/’P~| | b) { F;S\'

[] -
@
Rs .
R,
. If aresource-allocation graph contains no cycles, then the system is not deadlocked. (

Whenlookingforcycles, rememberthatthese aredirected graphs.) Seethe exampleinFigure
above.

. If a resource-allocation graph does contain cycles AND each resource category
contains only a single instance, then a deadlock exists.

. If a resource categoryicontains mare than one instance, thenthe presence.of a cycle
intheresource-allocation graphindicatesthe possibility of adeadlock, butdoes notguarantee

one. Consider, for example, Figures below:

Resource allocation graph with a deadlock

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

Resourceallocation graphwith acyclebutno deadlock

{ P |
= /\ &
° -~
*
/ TR
L
. =
:\5 1)
R
2
=
*
\/E-‘\'l
4‘\ 4

2.10.3 Methods for Handling Deadlocks

Generally there are three ways of handling deadlocks:

1. Deadlockpreventionoravoidance-Donotallowthe systemtogetintoadeadlocked state.
2. Deadlock detection and recovery - Abort a process or preempt some resources when
deadlocks are detected.

3.Ignoretheproblem alltogether —If deadlocks anly occur once ayearor so, itmay be better
tosimplyletthemhappenandrebootas necessarythantoincurthe constantoverheadand
system performance penalties associated with deadlock prevention or detection. This is the
approach that both Windows and UNIX take.

. In order to avoid deadlocks, the system must have additional information about all
processes. In particular, the system must know what resources a process will or may request
inthe future. (Rangingfrom asimple worst-case maximumto acomplete resource request
and release plan for each process, depending on the particular algorithm.)

. Deadlock detection is fairly straightforward, but deadlock recovery requires either
abortingprocessesorpreemptingresources, neitherofwhichis anattractive alternative.

. If deadlocks are neither prevented nor detected, then when a deadlock occurs the
system will gradually slow down, as more and more processes become stuck waiting for
resources currently held by the deadlock and by other waiting processes. Unfortunately this
slowdown can be indistinguishable from a general system slowdown when areal-time process

has heavy computingneeds.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.10.4 Deadlock Prevention
Deadlocks can be prevented by preventing atleast one of the four required conditions:
Mutual Exclusion
= Shared resources such as read-only files do not lead to deadlocks.
= Unfortunately some resources, such as printers and tape drives, require exclusive
access by a single process.
Hold and Wait
. To prevent this condition processes must be prevented from holding one or more
resources while simultaneously waiting for one or more others. There are several
possibilities for this:
. Requirethatall processesrequestallresourcesatonetime. This canbe wasteful of
system resources if a process needs one resource early in its execution and doesn't need
some other resource until much later.
. Require that processes holding resources must release them before requesting new
resources, and then re-acquire the released resources along with the new ones in a single
new request. This can be a problem if a process has partially completed an operation using
aresource and then fails to get it re-allocated after releasing it.
. Either of the methods described above can lead to starvation if a process requires one

or more popular resources.

No Preemption

. Preemption of process resource allocations can prevent this condition of deadlocks,
when it ispossible.

. One approachisthatifaprocessisforcedtowaitwhen requestinganewresource,
then all other resources previously held by this process are implicitly released, (preempted),
forcingthisprocesstore-acquirethe oldresourcesalongwiththe newresourcesinasingle
request, similar to the previous discussion.

. Another approachisthatwhen aresource is requested and not available, thenthe
system looks to see what other processes currently have those resources and are themselves
blocked waiting for some other resource. If such a process is found, then some of their
resources may get preempted and added to the list of resources for which the process is
waiting.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

. Either of these approaches may be applicable for resources whose states are easily
saved and restored, such as registers and memory, but are generally not applicable to other

devices such as printers and tape drives.

Circular Wait

. One wayto avoid circular waitisto number all resources, and to require that processes
request resources only in strictly increasing (or decreasing) order.

. In other words, in order to request resource Rj, a process must first release all Ri such
that i>=].

. Onebigchallengeinthisschemeisdeterminingthe relative ordering ofthe different

resources

2.10.5 Deadlock Avoidance

. The generalidea behind deadlock avoidance isto prevent deadlocks from ever
happening, by preventing at least one of the aforementioned conditions.

. This requires more information about each process, AND tends to lead to low
device utilization. (l.e. itis a conservative approach.)

. Insome algorithmsthe scheduler only needsto knowthe maximumnumber
of each resource that a process might potentially use. In more complex algorithms the
scheduler can also take advantage ofthe schedule of exactly what resources may be needed
in what order.

. When a scheduler sees that starting a process or granting resource requests
may lead to future deadlocks, then that process is just not started or the request is not
granted.

. Aresource allocation state is defined by the number of available and allocated

resources, and the maximum requirements of all processes in the system.

Safe State
Astateissafeifthe system canallocate allresourcesrequested by all processes
(‘up to their stated maximums) without entering a deadlock state.
More formally, a state is safe if there exists a safe sequence of processes { PO,

P1, P2, ..., PN } such that all of the resource requests for Pi can be granted using the

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

resources currently allocated to Piand all processes Pjwhere j <i. (1.e. if all the processes
prior to Pifinish and free up their resources, then Piwill be able to finish also, using the
resources that they have freed up.)

- Ifasafe sequence doesnotexist, thenthe systemisinan unsafe state, which
may leadtodeadlock. (Allsafe states are deadlock free, butnotallunsafe statesleadto
deadlocks.)

unsafe
deadlock

Safe, unsafe, and deadlocked state spaces.
For example, consider a system with 12 tape drives, allocated as follows. Is this a safe state?

What is the safe sequence?

Maximum Needs Current Allocation °
PO 10 5
PL 4 2
P2 9 2
. What happenstothe above table if process P2 requests and is granted one more tape
drive?
. Key to the safe state approach is that when a request is made for resources, the

request is granted only if the resulting allocation state is a safe one.
Resource-Allocation Graph Algorithm

If resource categories have only single instances of their resources, then deadlock

states can be detected by cycles in the resource-allocation graphs.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

. Inthis case, unsafe states canbe recognized and avoided by augmenting the resource-
allocation graph with claim edges, noted by dashed lines, which pointfrom a processto a
resource that it may request in the future.

. Inorderforthistechnique towork, allclaimedges mustbe addedtothe graphforany
particular process before that processis allowed torequestany resources. (Alternatively,
processesmayonlymakerequestsforresourcesforwhichtheyhave already established claim
edges, and claim edges cannot be added to any process that is currently holding resources.)
. Whenaprocess makesarequest, the claimedge Pi->Rjis convertedtoarequestedge.
Similarlywhenaresource is released, the assignmentreverts back to aclaim edge.

. This approach works by denying requests that would produce cycles in the resource-

allocation graph, taking claim edges into effect.

. Consider for example what happens when process P2 requests resource R2:
R,
‘= \ e
| (Ps)
V. RN
" e
R

Resource allocation graph for deadlock avoidance
The resulting resource-allocation graph would have a cycle init, and so the request cannot be

granted.

R,

&/

An unsafe state in a resource allocation graph

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

Banker's Algorithm

For resource categories that contain more than one instance the resourceallocation
graph method does not work, and more complex (and less efficient) methods must be
chosen.

. The Banker's Algorithm getsits name because itis a method that bankers could use to
assure thatwhentheylend outresources they will still be able to satisfy all their clients. (A
bankerwon'tloan out a little money to start building a house unless they are assured that
they will later be able to loan out the rest of the money to finish the house.)

. When a process starts up, it must state in advance the maximum allocation of
resources it may request, up to the amount available on the system.

. When a request is made, the scheduler determines whether granting the request
wouldleavethe systeminasafe state.fnot,thenthe processmustwaituntiltherequestcan
be granted safely.

. The banker's algorithm relies on several key data structures: (where nis the number
of processes and m is the number of resource categories.)

Available[m] indicates how many resources are currently available of each type.
Max[n][m] indicates the maximum demand of each process of each

resource.

Allocation[n][m] indicates the number of each resource category allocated to each
process.
Need[n][m]indicatesthe remaining resources needed of each type foreach process.

(NotethatNeed[i][j]=Max[i][]j]-Allocation[i][j]foralli,j.)

Safety Algorithm
In orderto apply the Banker's algorithm, we first need an algorithm for determining
whether or not a particular state is safe.
This algorithm determines if the current state of a system is safe, according to the
following steps:
1. Let Work and Finish be vectors of length m and n respectively.
2. Work is a working copy of the available resources, which will be modified during the

analysis.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

3. Finishisavector of boolean indicating whether a particular process canfinish. (orhas
finished so far in the analysis.)

4. Initialize Work to Available, and Finish to false for all elements.
5.Findanisuchthatboth (A) Finish[i]==false,and (B) Need[i]<Work. Thisprocess has
notfinished, butcould withthe given available working set. Ifno suchiexists, gotostep 4.
6.SetWork=Work+Allocation[i],and setFinish[i]totrue. Thiscorrespondstoprocessi
finishingupandreleasingitsresourcesbackintotheworkpool. Thenloop backtostep 2.
7.Iffinish[i]==trueforalli,thenthe stateisasafe state,becauseasafe sequencehasbeen

found.

Resource-Request Algorithm (The Bankers Algorithm)

Nowthatwe have atoolfordeterminingifaparticular state is safe ornot, we are now
ready to look at the Banker's algorithm itself.

This algorithm determines if a new request is safe, and grants it only if it is safe to do
So.

Whenarequestismade (thatdoesnotexceed currentlyavailable resources), pretend
ithas beengranted, andthen seeiftheresulting state isa safe one. If so, grantthe request,
and if not, deny the request, as follows:
1.LetRequest[n][m]indicatethenumberofresourcesofeachtype currentlyrequested by
processes. If Request[i]> Need[i]for any processi, raise an error condition.
3.If Request[i]> Available for any process i, then that process
must wait for resources to become available. Otherwise the process can continue to step 3.

Checktoseeiftherequestcanbe granted safely, by pretendingithasbeen granted
and then seeing if the resulting state is safe. If so, grant the request, and if not, then the
process must wait until its request can be granted safely. The procedure for granting a request
(or pretending to for testing purposes) is:

» Available = Available - Request
» Allocation = Allocation + Request
» Need = Need - Request
2.10.6 Deadlock Detection
. If deadlocks are not avoided, then another approach is to detect when they

have occurred and recover somehow.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

. In addition to the performance hit of constantly checking for deadlocks, a
policy / algorithm must be in place for recovering from deadlocks, and there is
potential for lost work when processes must be aborted or have their resources
preempted.
Single Instance of Each Resource Type
If each resource category has a single instance, then we can use a variation of the
resource-allocation graph known as a wait-for graph.
A wait-for graph can be constructed from a resource-allocation graph by eliminating
the resources and collapsing the associated edges, as shown in the figure below.
Anarc from Pito Pjin await-for graphindicates that process Piis waiting for aresource
that process Pj is currently holding.

‘:/ P5\|
&

R, [] R, R,

(R
©
f/P;\,' P,) |/P3\
e - N7 @ PN a
1 { PZ \ F3)
Nz & &
[—0®-
G (P,
R, R, L 4
(a) (b)
(a) Resourceallocation graph. (b) Corresponding wait-for graph

As before, cycles in the wait-for graph indicate deadlocks.
This algorithm must maintain the wait-for graph, and periodically search it for
cycles.
Several Instances of a Resource Type
The detection algorithm outlined here is essentially the same as the
Banker's algorithm, with two subtle differences:
In step 1, the Banker's Algorithm sets Finish[i] to false for all i. The
algorithmpresentedhere setsFinish[i]tofalseonlyif Allocation[i]isnotzero.Ifthe currently
allocated resources for this process are zero, the algorithm sets Finish[i] to true. This is

essentially assuming that IF all of the other processes can finish, then this process can finish

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

also. Furthermore, this algorithm is specifically looking for which processes are involved in a
deadlock situation, and a process that does not have any resources allocated cannot be
involved in a deadlock, and so can be removed from any further consideration.

Steps 2 and 3 are unchanged

Instep4,the basicBanker's Algorithm saysthatif Finish[i]==trueforall
I,thatthereisnodeadlock. Thisalgorithmis more specific, by statingthatif Finish[i]==false
for any process Pi, then that process is specifically involved in the deadlock which has been

detected.

2.10.7 Recovery From Deadlock
= There are three basic approaches to recovery from deadlock:
= Informthe system operator, and allowhim/hertotake manualintervention.
Terminate one or more processes involved in the deadlock
= Preemptresources.
Process Termination
Two basic approaches, both of which recover resources allocated to terminated
processes:
. Terminate all processes involved in the deadlock. This definitely solves the deadlock,
butatthe expense ofterminating more processes thanwould be absolutely necessary.
. Terminate processes one by one until the deadlock.is broken. This is mare
conservative, but requires doing deadlock detection after each step.
In the latter case there are many factors that can go into deciding which processes to
terminate next:
» Process priorities.
» How long the process has been running, and how close it is to finishing.
» Howmanyandwhattype ofresourcesisthe process holding. (Aretheyeasyto
preempt and restore?)
» How many more resources does the process need to complete. « How many
processes will need to be terminated
» Whether the process is interactive or batch.

» (Whetherornotthe process has made non-restorable changestoanyresource.)

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

Resource Preemption

When preempting resources to relieve deadlock, there are three important issues to
be addressed:
L Selecting avictim - Deciding which resources to preempt from which processes
involves many of the same decision criteria outlined above.
2 Rollback - Ideally one would like to roll back a preempted process to a safe state prior
to the point at which that resource was originally allocated to the process. Unfortunately it
can be difficult orimpossible to determine what such a safe state is, and so the only safe
rollbackistorollback allthe way back to the beginning. (I.e. abortthe process and make it
start over.)
Starvation - Howdo you guarantee that a process won't starve because itsresources are
constantly being preempted? One option would be to use a priority system, and increase the
priority of aprocess everytimeitsresources getpreempted. Eventually it should getahigh

enough priority that it won't get pre-empt.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.4 INTERPROCESS COMMUNICATION
e A process is independent if it cannot affect or be affected by the other processes
executing in the system. Any process that does not share data with any other process
is independent.
e Aprocessiscooperating if it can affect or be affected by the other processes executing
in the system. Clearly, any process that shares data with other processes is a
cooperating process.
e Advantages of cooperating process
i) Information sharing
i) Computation speedup
iif) Modularity
iv) Convenience.
DEFINITION:
An Inter process communication is a mechanism that allows the cooperating process
to exchange data and communication among each other.
There are two fundamental models of Inter process communication
» Shared Memory model
» Message passing model
¢ Inshared memory model aregion of memory is shared by the cooperating process.
Processes canthen exchange information by reading and writing data to the shared
region.
e In the message-passing model, communication takes place by means of messages
exchanged between the cooperating processes.
e Message passingis easiertoimplementin adistributed system than shared memory.

e The shared memory is faster than that of message passing.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

process A — |: process A
] process B shared memory :|
process B

message queue
—>m0 m1 m2 m3 an—

kemel
kernel

(a) (b)

Communications models: (a) Message passing. (b) Shared memory.

2.4.1 Shared-Memory Systems

e Inter process communication using shared memory requires communicating
processes to establish a region of shared memaory.

e Shared-memoryregionresidesinthe address space ofthe processcreatingtheshared-
memory segment.

e Other processes that wish to communicate using this shared-memory segment must
attach it to their address space. They can then exchange information by reading and
writing data in the shared areas.

EXAMPLE: PRODUCER - CONSUMER PROCESS:

e Aproducerprocessproducesinformationthatisconsumedbyaconsumer process.

¢ One solution to the producer—consumer problem uses shared memory

e To allow producer and consumer processes to run concurrently, we must have
available a buffer of items that can be filled by the producer and emptied by the
consumer.

e This buffer will reside in a region of memory that is shared by the producerand
consumer processes. A producer can produce one item while the consumer is
consuming another item.

e Two types of buffers can be used.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

e Bounded Buffer.

e Unbounded Buffer.

e Theunbounded buffer placesno practicallimitonthe size ofthe buffer. The consumer
may have to waitfor new items, but the producer can always produce new items.

e Thebounded buffer assumes afixed buffer size. Inthis case, the consumer must wait

if the buffer is empty, and the producer must wait if the buffer is full.

CODE FOR PRODUCER PROCESS:

itemnextproduced,;

while (true){

[* produce an itemin next produced */

while (((in+1) % BUFFER SIZE)==out);

/* do nothing */

buffer[in] = nextproduced,

in=(in+1)%BUFFER SIZE;

}

The producer process has local variable next produced in which the newitem to be produced
is stored.

The consumer process has alocal variable next consumed in which the item to be consumed
is stored.

This scheme allows at most BUFFER SIZE - 1 items in the buffer at the same time.

CODE FOR CONSUMER PROCESS
item next consumed;

while (true) {

while (in == out); /* do nothing */
[* Get the next available item */
nextConsumed = buffer[out];

out=(out+1)%BUFFER_SIZE;
}

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.4.2 Message-Passing Systems

Message passing systems must support at a minimum system calls for "send

message" and "receivemessage".

Acommunication link mustbe established betweenthe cooperating processes

before messages can be sent.

There arethree key issues to be resolved in message passing systems
Direct or indirect communication (naming)
Synchronous or asynchronous communication

Automatic or explicitbuffering.

2.4.2.1 Naming

Each process that wants to communicate must explicitly name the recipient or

sender of the communication. Direct communication can be done in two ways symmetric

addressing and asymmetricaddressing.

Withdirect communication the sender mustknowthe name ofthe receiverto
which it wishes to send a message.
There is a one-to-one link between every sender-receiverpair.
For symmetric communication, the receiver must also know the specific name of
the sender from which it wishes to receive messages.
send(P, message)—Send a message to process P.
receive(Q, message)—Receive a message from process Q.
Forasymmetric communications, this is not necessary.
send(P, message)—Send a message to process P.
receive(id, message)—Receive a message from any process
Indirect communication uses shared mailboxes, or ports.
send(A, message)—Send a message to mailbox A.
receive(A, message)—Receive a message from mailbox A.
Multiple processes can share the same mailbox or boxes.
Only one process can read any given message in a mailbox. Initially the process
that creates the mailboxis the owner, andisthe only one allowed to read mailin

the mailbox, although this privilege may be transferred.

The OS must provide system calls to create and delete mailboxes, and to send and receive

messages to/from mailboxes.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

3.4.2.2 Synchronization
Eitherthe sending orreceiving of messages (or neither orboth) may be eitherblocking or
non-blocking.
e Blocking send. The sending process is blocked until the message is received by the
receiving process or by the mailbox
¢ Nonblockingsend. Thesendingprocess sendsthe message and resumes Operation
e Blockingreceive. The receiver blocks until a message is available.

¢ Nonblocking receive. The receiver retrieves either a valid message or a null.

3.4.2.3 Buffering

Messages are passed via queues, which may have one of three capacity configurations:
1 Zero capacity - Messages cannot be stored in the queue, so senders must block until
receivers accept themessages.
2. Bounded capacity- Thereis acertain pre-determined finite capacity inthe queue.
Senders mustblockifthe queueisfull, until space becomes available inthe queue, but may
be either blocking or non-blocking otherwise.
3. Unbounded capacity - The queue has a theoretical infinite capacity, so senders are

never forced to block.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.9MONITORS

. Semaphores can be very useful for solving concurrency problems, but only if
programmers usethem properly. Ifeven one processfails to abide by the proper use of
semaphores, either accidentally or deliberately, then the whole system breaks down. (And
since concurrency problems are by definition rare events, the problem code may easily go
unnoticed and/or be heinous to debug.)

. For this reason a higher-level language construct has been developed, called
monitors. monitor monitor-name
{
/Isharedvariable declarationsprocedure P1(...){....}procedurePn(...){...... }

Initialization code (...){... }

2.9.1 Monitor Usage
= Amonitorisessentiallyaclass,inwhichalldataisprivate,andwiththe
special restriction that only one method within any given monitor object may be active at
the same time. An additional restriction is that monitor methods may only access the shared
data within the monitor and any data passed to them as parameters. |.e. they cannot access

any data external to the monitor.

shared data

initialization
code

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

Figure showsaschematic ofamonitor, withanentryqueue of processeswaitingtheirturn
to execute monitor operations (methods.)

. Inordertofullyrealize the potential of monitors, we needtointroduce one additional
new datatype, known asacondition.

. Avariable of type condition has only two legal operations, wait and signal. I.e. if Xwas
defined as type condition, then legal operations would be X.wait() and X.signal()

. The wait operation blocks a process until some other process calls signal, and adds the

blocked process onto a list associated with that condition.

. The signalprocessdoesnothingifthere are no processeswaiting onthatcondition.
Otherwise itwakes up exactly one process fromthe condition's listof waiting processes. (
Contrastthis with counting semaphores, which always affectthe semaphore on asignal call.

)

. Figure below illustrates a monitor that includes condition variables within its data
space. Note thatthe condition variables, along with the list of processes currently waiting

fortheconditions, areinthe dataspace ofthe monitor- The processesontheselistsare not

"in" the monitor, in the sense that they are not executing any code in the monitor.

7" shared data

. Initialization
code .~

Monitor with conditionvariables

« Butnowthere is a potential problem - If process P within the monitor issues a signal that
would wake up process Q also within the monitor, then there would be two processes running
simultaneously within the monitor, violating the exclusion requirement. Accordingly there are

two possible solutions to this dilemma:

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

Signal and wait - When process P issues the signal to wake up process Q, P thenwaits, either
for Q to leave the monitor or on some other condition.

Signal and continue - When P issues the signal, Q waits, either for P to exit the monitor or for
some other condition.

There arearguments forand against either choice. Concurrent Pascal offers a third alternative
- The signal call causes the signalling process to immediately exit the monitor, so that the

waiting process can then wake up and proceed.

2.9.2 Dining-Philosophers Solution Using Monitors

= This solution to the dining philosophers uses monitors, and the restriction that
aphilosophermay only pick up chopstickswhen both are available. There are also two key
data structures in use in this solution:

1.enum { THINKING, HUNGRY,EATING } state[5]; A philosopher may only set
their state to eating when neither of their adjacent neighbors is eating. (state[(i+1) % 5]
I= EATING && state[(i +4) % 5] != EATING).

2.Conditionself[5]; Thisconditionisusedtodelayahungryphilosopherwhois
unable to acquire chopsticks.
In the following solution philosophers share a monitor, DiningPhilosophers, and eat using the
following sequence ofoperations:

3.DiningPhilosophers.pickup() - Acquires chopsticks, which may block the
process.

4.eat

5.DiningPhilosophers.putdown() - Releases the chopsticks.
monitorDiningPhilosophers
{
enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];
void pickup (inti){ state[i] =HUNGRY;
test(i);
if (state[i] '= EATING) self[i].walit; }
void putdown (inti)
{ state[i] = THINKING;

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

//testleftand rightneighborstest((i +4) % 5);

test((i + 1) % 5);
}
void test (inti) { if ((state[(i+4)%5]'=EATING) && (state[i] == HUNGRY) &&

(state[(i+ 1) % 5] '=EATING))
{ state[i] = EATING ;
selffi].signal ();

} } initialization_code()
{ for(inti=0;i<5;i++)
state[i] = THINKING;

}

}

2.9.3 Implementing a Monitor Using Semaphores
. One possible implementation of a monitor uses a semaphore "mutex" to control
mutual exclusionary access to the monitor, and a counting semaphore "next" on which
processes can suspend themselves after they are already "inside" the monitor (in conjunction
with condition variables, see below.) The integer next_count keeps track of how many
processes are waiting in the next queue. Externally accessible monitor processes are then
implemented as:
. Condition variables can be implemented using semaphores as well. For a condition X,
asemaphore"x_sem"andaninteger”x_count"areintroduced;bothinitializedtozero. The
waitand signal methods are thenimplemented as follows. (This approach to the condition
implements the signal-and-wait option described above for ensuring that only one process at
atime is active inside the monitor.)

Variables semaphoremutex;

/I (initially = 1) semaphore next;

// (initially = 0) intnext_count = 0;

Each procedure F will be replaced by wait(mutex);

body ofF;

... if (next_count> 0) signal(next) else signal(mutex);

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

Mutual exclusion within a monitor is ensured
For each condition variable x, we have:semaphore x_sem;//(initially =0)intx_count=0;
The operation x.waitcan be implemented as:

X_count++;if (next_count>0)signal(next); else

signal(mutex); wait(x_sem); x_count--;
The operation x.sighalcan be implemented as:

if (x_count>0) { next_count++;

signal(x_sem); wait(next);

next_count--;

}

2.9.4 ResumingProcessesWithinaMonitor

. Whenthere are multiple processes waiting on the same condition within a monitor,
how does one decide which one to wake up in response to a signal on that condition? One
obvious approach is FCFS, and this may be suitable in many cases.

. Anotheralternativeisto assign (integer) priorities, and to wake up the process with
the smallest (best) priority.

. Figure illustrates the use of such a condition within a monitor used for resource
allocation. Processes wishing to access this resource must specify the time they expectto use
ritusingthe acquire(time) method, and mustcall the release() methodwhenthey are done
with the resaurce.

monitorResourceAllocator

{booleanbusy;conditionx;voidacquire(inttime){if (busy)

x.wait(time); busy= TRUE;

}void release() { busy = FALSE;

x.signal();

} initialization code() { busy = FALSE;

}
}

A monitor to allocate a single resource.
Unfortunately the use of monitors to restrict access to resources still only works if

programmers make the requisite acquire and release calls properly. One option would be to

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

place the resource allocation code into the monitor, thereby eliminating the option for
programmers to bypass orignore the monitor, but then that would substitute the monitor's

scheduling algorithms for whatever other scheduling algorithms may have been chosen for

that particular resource.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.3 OPERATIONS ON PROCESSES
The operating system must provide a mechanism for process creation and
termination. The process can be created and deleted dynamically by the operating system.
The Operations on the process includes
* Process creation
* Process Termination
2.3.1 Process Creation
During Execution a process may create several new processes.
e Thecreatingprocessiscalledasthe parent process andthe newly created processis
called as the child process.
o Processesmay create other processesthrough appropriate system calls, such
as fork orspawn.
o Theoperatingsystemsidentify the processesaccordingtotheirunique process

identifier.

sshd
pid = 3028

sshd
pid = 3610

tcsch
pid = 4005

kthreadd
pid = 2
pdflush
pid = 200

login
pid = 8415

bash
pid = 8416

emacs
pid = 9204

Fig: A tree of processes on atypical Linux system

Ps
pid = 9298

e Theinitprocess serves as the root parent process for all the user process.

e Oncethe system has booted, the init process can also create various user processes,
such as a web or printserver, an ssh server.

e The kthreadd process is responsible for creating additional processes that perform

tasks on behalf of the kernel

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

e Thesshdprocessisresponsibleformanaging clientsthat connecttothe systemby
using ssh(Secure shell)
e Thelogin processisresponsible for managing clients that directly log onto the system
e The command ps—elwill list complete information for all processes currently active in
the system.
When a process creates a new process, two possibilities for execution exist:
e The parent continues to execute concurrently with its children.
e The parent waits until some or all of its children have terminated
There are also two address-space possibilities for the new process:
e The child process is a duplicate of the parent process (it has the same program as the
parent).
e The child process has a new program loaded into it.
e The return code for the fork() is zero for the new (child) process, whereas the
(nonzero) process identifier of the child is returned to the parent.

o Afterafork() system call, one of the two processes typically uses the exec()

system callto replace the process’s memory space with anew program.
o Anewprocessiscreated bythe fork() system call. The new process consists of
acopy of the address space of the original process. This mechanism allows the

parent process to communicate easily with its child process.

Depending on system implementation, a child process may receive some amount of
shared resources with its parent. Child processes may or may not be limited to a subset of the
resources originally allocated to the parent, preventing runaway children from consuming all

of a certain system resource.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

parent (pid > 0)
e -—+<: WGM{:)———————rpamnnewnns

pamnl——————b/?;;;;;giéi:
e D

#include <sys/types.h=>
#include <stdio.h>
#include <unistd.h>

int main()

{
pid_t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */

fprintf (stderr, "Fork Failed");
return 1;

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

else { /* parent process */
/* parent will wait for the child to complete */
wait(NULL) ;

printf("Child Complete");
}

return 0;

}

Creating a separate process using the UNIX fork()system call.

Process creation using the fork() system call

2.3.2 Process Termination

e A process terminates when it finishes executing its final statement and asks the

operating system to delete it by using the exit() system call.

e Atthatpoint,the process mayreturnastatusvalue (typicallyaninteger)toits parent

process.

e All the resources of the process—including physical and virtual memory, open files,

and I/O buffers—are deallocated by the operating system

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

e A parent may terminate the execution of one of its children for a variety of reasons,
such as

e Thechild has exceededits usage of some of the resourcesthatithasbeenallocated.

e The task assigned to the child is no longer required.

e Theparentisexiting,andthe operatingsystemdoesnotallowachildtocontinueifits
parent terminates.

e Some systemsdonotallowachildto existifits parenthasterminated. In such systems,
if a process terminates (either normally or abnormally), then all its children must also
be terminated. Thisphenomenonisreferredtoas cascading termination.

e Aparentprocess may wait for the termination of a child process by using the wait()
system call

e Thissystemcallalsoreturnsthe processidentifier ofthe terminated child sothatthe
parent can tell which of its children has terminated:

pid t pid;
int status;

pid = wait(&status);

o Aprocessthathasterminated, butwhose parent has notyet called wait(), is

known as a zombie process.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.1 PROCESSES

2.1 Process Concept
= Aprocessis an instance of a program in execution.
= Batch systems work in terms of "jobs". Many modern process concepts are still
expressed in terms of jobs, (e.g. job scheduling), and the two terms are often used
interchangeably.

2.1.1 The Process

Process memory is divided into four sections as shown in Figure below:

max
stack

|

heap

data

text

Figure 3.1 Process in memory.

» The text section comprises the compiled program code, read in from non-volatile
storage when the program is launched.

» Thedatasection stores global and static variables, allocated and initialized prior to
executing main.

» Theheapisusedfordynamic memory allocation, and is managed via calls to new,
delete, malloc, free,etc.

» The stackis used for local variables. Space on the stack is reserved for local variables
when they are declared (at function entrance or elsewhere, depending on the

language), and the space is freed up when the variables go out of scope. Note thatthe

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

stack is also used for function return values, and the exact mechanisms of stack
management may be language specific.

> Note that the stack and the heap start at opposite ends of the process's free space and
growtowardseachother. Ifthey should evermeet, theneitherastack overflowerror
willoccur, orelseacallto newormallocwillfaildue toinsufficientmemoryavailable.

» When processes are swapped out of memory and later restored, additional
information must also be stored and restored. Key among them are the program
counter and the value of all program registers.

2.1.2 Process State

Processes may be in one of 5 states, as shown in Figure below.

New - The process is in the stage of being created.
Ready - The process has allthe resources available thatitneeds to run, butthe CPU s not
currently working on this process's instructions.
Running - The CPU is working on this process's instructions.
Waiting - The process cannotrunatthe moment, because itis waitingforsomeresourceto
become available orfor some eventto occur. For example the process may be waiting for
keyboard input, disk access request, inter-process messages, a timer to go off, or a child
process to finish.
Terminated - The process has completed.

The load average reported by the "w" command indicate the average number of
processesinthe "Ready" state overthelast1,5,and 15 minutes, i.e. processes who have
everythingtheyneedtorunbutcannotbecausethe CPU isbusydoing somethingelse.

Some systems may have other states besides the ones listed here.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.1.3 Process Control Block

For each process thereis a Process Control Block, PCB, which stores the following
(types of) process-specificinformation, asillustrated in Figure (Specific details may vary from
system to system.)
Process State - Running, waiting, etc., as discussed above.
Process ID, and parent process ID.
CPUregistersand Program Counter - These needto be saved and restored when swapping
processes in and out of the CPU.
CPU-Scheduling information - Such as priority information and pointers to scheduling queues.
Memory-Management information - E.g. page tables or segment tables.
Accountinginformation -userandkernel CPUtime consumed, accountnumbers, limits, etc.

I/O Status information - Devices allocated, open file tables, etc.

| process state
process number

program counter

registers

memory limits

list of open files

'Figure:3:31 Piseessipontiol block (PCB)..

2.1.4 Threads

Modern systems allow a single process to have multiple threads of execution, which
execute concurrently.
2.2 Process Scheduling

The two main objectives of the process scheduling system are to keep the CPU busy at
all times and to deliver "acceptable” response times for all programs, particularly for
interactive ones.

The process scheduler must meet these objectives by implementing suitable policies

for swapping processes in and out of the CPU.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.2.1 Scheduling Queues

» All processes are stored in the job queue.

» Processes inthe Ready state are placed inthe ready queue.

> Processeswaitingforadevicetobecomeavailableareplacedindevicequeues. There

is generally a separate device queue for each device.

» Otherqueuesmay also be created and used as needed.

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

Job queue - This queue keeps all the processesinthe system
Readyqueue-Thisqueue keepsasetofallprocessesresidinginmain
memory, ready and waiting to execute. A new process is always put in this
queue.

Device queues - The processes which are blocked due to unavailability of an

I/O device constitute this queue.

queue header PCB- PCB,
head -
tail N registers registers
head —T——=
tail —
head —T—=
TR PCB, PCB,, PCB;
/_ h i
head 1
PCB¢
head > T
@l

Figure 3.5 The ready queue and various /O device gueues.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.2.2 Schedulers

= Along-term scheduler istypical of abatch system oravery heavily loaded
system. Itrunsinfrequently, Itis also called a job scheduler. It selects processes from the
gueue and loads them into memory for execution.

= The short-term scheduler, or CPU Scheduler, runs very frequently, on the order
of 100 milliseconds, and must very quickly swap one process out of the CPU and swap in
anotherone. CPU scheduler selects a process among the processes that are ready to execute
and allocates CPU to one of them.

= Some systems also employ a medium-term scheduler. When system loads get
high, this scheduler will swap one or more processes out of the ready queue system for a few
seconds, in order to allow smaller faster jobs to finish up quickly and clear the system. See the
differences in Figuresbelow.

= Anefficientscheduling systemwill selectagood process mix of CPU-bound

processes and 1/0O boundprocesses.

ready queue J/(f:PU |
- 1
N
N

—\lfo)*— YO queue I/O request
time slice

expired

/" child fork a

‘\Executeﬁ/ child

/T nterrupt ™\ wait for an
occurs/ interrupt

Queueing-diagram represeniation of process scheduling

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

swap in partially executed swap out
swapped-out processes

o ——

ready queue » CPU | » end
N

./ | !C;\' 1/0 waiting

'\ /' queues

Addition of a medium-term scheduling to the queuing diagram

2.2.3 Context Switch
Definition: Switching the CPU between processesis called context switch. A context switchis
the mechanismto store andrestore the state orcontextofa CPUin Process Control block
= Whenever an interrupt arrives, the CPU must do a state-save of the currently
running process, thenswitchinto kernelmodetohandletheinterrupt,andthendoastate-
restore of the interrupted process.
= Similarly, acontext switch occurs whenthe time slice for one process has
expired and anew processistobe loaded fromthe ready queue. Thiswill beinitiated by a
timer interrupt, which will then cause the current process's state to be saved and the new
process's state to be restored.
= Savingandrestoring statesinvolves saving and restoring all ofthe registers and
program counter(s), as well as the process control blocks described above.
» Contextswitching happens VERY VERY frequently, and the overhead of doing
the switchingisjustlost CPUtime, socontextswitches (state saves &restores)needtobe

as fast aspossible.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

process P,

executing

executing ||
g ‘u ‘¥

:.l

www.binils.com for Anna University | Polytechnic and Schools

operating system

interrupt or system call

| save state into PCB, |

lreload state from PCB |

ridle interrupt or system call

| save state into PCB, |

-

|reload state from PCB.,|

Download Binils Android App in Playstore

process P,

ridle

executing

|
J

Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.8 PROCESS SYNCHRONIZATION
2.8.1 Background
Cooperating processes (those that can effect or be effected by other simultaneously
running processes) with the producer-consumer problem as an example
Producer code :
item nextProduced; while(true)
{
/*Produce anitem and storeitin nextProduced */
nextProduced = makeNewltem(. . .);
[*Waitfor space to become available */
while(((in+1)%BUFFER_SIZE)==out)
; I* Do nothing */
/* Andthenstoretheitemandrepeattheloop.*/
buffer[in] = nextProduced;

in=(in+1)% BUFFER_SIZE; }

Consumer code :
itemnextConsumed,
while(true) {
/*Wait for an item to become available */
while(in ==out) ;
/* Do nothing */
[* Get the next available item */
nextConsumed = buffer[out];
out=(out+1)%BUFFER_SIZE;
[* Consume the item in nextConsumed
(Do something with it) */
}
The only problem with the above code is that the maximum number of items which
canbeplacedintothe bufferisBUFFER_SIZE - 1. Oneslotisunavailable becausethere always

has to be a gap between the producer and the consumer.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

. We could try to overcome this deficiency by introducing a counter variable, as shown
in the following code segments:

. Unfortunately we have nowintroduced a new problem, because both the producer
and the consumer are adjusting the value of the variable counter, which can lead to a
condition known as a race condition.

. Inthis condition a piece of code may or may notwork correctly, depending onwhich
of two simultaneous processes executes first, and more importantly if one of the processes
gets interrupted such that the other process runs between important steps of the first
process. (Bank balance example discussed in class.)

. The particular problem above comes from the producer executing "counter++" at the
same time the consumer is executing "counter--". If one process gets part way through making
theupdateandthentheotherprocessbuttsin,the value ofcountercangetleftinanincorrect
state.

. But, you might say, "Each of those are single instructions - How can they get
interrupted halfway through?" The answer s that although they are single instructionsin C++,
theyareactuallythree stepseachatthe hardwarelevel: (1) Fetch counterfrommemoryinto
areqister, (2) increment or decrementthe register, and (3) Store the new value of counter
backto memory. If the instructions from the two processes getinterleaved, there could be

serious problems, such as illustrated by the following:

2.8.2 The Critical-Section Problem
. The generalidea is that in a number of cooperating processes, each has a critical

section of code, with the following conditions and terminologies:

. Only one process inthe group can be allowed to execute in their critical section at any
one time.
. The code preceding the critical section, and which controls access to the critical

section, is termed the entry section.
. The code following the critical section is termed the exit section.
. The rest of the code not included in either the critical section or the entry or exit

sections is termed the remainder section.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

do {

Ic’m‘ry section |

critical section
remainder section
} while (true);

General structure of a typical process Pi

2.8.3 Solution to critical section problem
A solution to the critical section problem must satisfy the following three

conditions:
Mutual Exclusion

- Only one process at a time can be executing in their critical section.
Progress

- Ifno processis currently executing in their critical section, and one or more processes
want to execute their critical section, then only the processes not in their remainder.sections
can participate in the decision, and the decision cannot be postponed indefinitely. (1.e.
processes cannot be blocked forever waiting to get into their critical sections.)
Bounded Waiting

- There exists a limit as to how many other processes can get into their critical sections
afteraprocessrequests entryintotheir critical section and before thatrequestis granted. (
|.e.aprocessrequestingentryintotheircritical sectionwillgetaturneventually,andthereis
a limit as to how many other processes get to go first.)
. We assume that all processes proceed at a non-zero speed, but no assumptions can
be made regarding the relative speed of one process versus another.
. Kernel processes can also be subject to race conditions, which can be especially
problematic when updating commonly shared kernel data structures such as open file tables
orvirtual memory management. Accordingly kernels can take on one of two forms:
. Non-preemptive kernels do not allow processes to be interrupted while in kernel

mode. This eliminates the possibility of kernel-mode race conditions, but requires kernel

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

mode operations to complete very quickly, and can be problematic for realtime systems,
because timing cannot be guaranteed.

. Preemptive kernels allow for real-time operations, but must be carefully written to
avoid race conditions. This can be especially tricky on SMP systems, in which multiple kernel

processes may be running simultaneously on different processors.

2.8.4 Peterson's Solution
» Peterson's Solution is a classic software-based solution to the critical section
problem. Itis unfortunately not guaranteed to work on modern hardware, due to
vagaries of load and store operations, but it illustrates a number of important
concepts.
» Peterson's solution is based on two processes, PO and P1, which alternate between
their critical sections and remainder sections. For convenience of discussion, "this"

process is Pi, and the "other" processis Pj. (l.e.j=1-1i)

A\

Peterson's solution requires two shared data items:

\4

intturn - Indicates whose turnitis to enterinto the critical section. Ifturn = =i, then
process i is allowed;inta their critical section.

booleanflag[2] - Indicates when a process wants to enter into their critical section.
When process i wants to enter their critical section, it sets flag[i] to true.

In the following diagram, the entry and exit sections are enclosed in boxes.

vV V V VY

Inthe entrysection, processifirstraisesaflagindicatingadesiretoenterthe critical

section.

» Thenturnis setto jto allowthe other processto enter their critical section if process
j sodesires.

» Thewhileloopisabusyloop (notice the semicolon atthe end), which makes process
iwait as long as process j has the turn and wants to enter the critical section.

» Processilowerstheflag[i]inthe exitsection, allowing processjto continueifithas

been waiting.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

do {

flag[i]l = true;
turn = j;
while (flag[j] &k turn == j);

critical section

flag[i] = false;

remainder section
} while (true);

To prove that the solution is correct, we must examine the three conditions listed above:
. Mutual exclusion - If one process is executing their critical section when the other
wishes to do so, the second process will become blocked by the flag of the first process. If
both processes attemptto enter at the same time, the last process to execute "turn =j" will
be blocked.
. Progress - Each process can only be blocked at the while if the other process wants to
usethe critical section (flag[j] ==true), AND itisthe other process's turnto usethe critical
section (turn ==j). If both of those conditions are true, then the other process (j) will be
allowed to enter the critical section, and upon exiting the critical section, will set flag[j] to
false, releasing processi. The shared variable turn assures that only one process atatime can
be blocked, andthe flag variable allows one process torelease the other when exiting their
critical section.
. Bounded Waiting - As each process enters their entry section, they set the turn
variable to be the other processesturn. Since no process ever setsitbacktotheirownturn,
this ensures that each process will have to let the other process go first at most one time
before it becomes their turn again.

Note thatthe instruction "turn =j"is atomic, thatisitis a single machine instruction

which cannot beinterrupted.

2.8.5 Synchronization Hardware
. To generalize the solution(s) expressed above, each process when entering

their critical section must set some sort of lock, to prevent other processes from
Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

entering their critical sections simultaneously, and must release the lock when exiting
their critical section, to allow other processes to proceed. Obviously it must be possible
to attain the lock only when no other process has already set a lock. Specific
implementations of this general procedure can get quite complicated, and may include
hardware solutions as outlined in this section.
. One simple solution to the critical section problem is to simply prevent a
process from being interrupted while in their critical section, which is the approach
taken by non preemptive kernels. Unfortunately this does not work well in
multiprocessor environments, due to the difficulties in disabling and the re-enabling
interruptsonallprocessors. Thereisalsoaquestionastohowthis approach affects
timing if the clock interrupt is disabled.
. Another approach is for hardware to provide certain atomic operations. These
operations are guaranteed to operate as a single instruction, without interruption. One
such operationisthe "Testand Set", which simultaneously sets aboolean lock variable
and returns its previous value, as shown in Figures
booleantest_and_ set (boolean *target)
{

booleanrv = *target;

*target=TRUE;

returnrv: }

Solution using test-and-set:

do

{ while (test_and_set(&lock))
; I* do nothing */ [*critical section*/

lock =false;

/* remainder section */
} while (true);

int compare _and_swap(int *value, int expected, intnew_value)

{ inttemp =*value;

if (*value ==expected)

*value = new_value;

return temp;
Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

}
Solution using compare-and swap:
do {
while (compare_and_swap(&lock, 0, 1) !=0)
; I* do nothing */ [*critical section */
lock =0;

/* remainder section */
} while (true);

. The above examples satisfy the mutual exclusion requirement, but
unfortunately do notguarantee bounded waiting. If there are multiple processestryingto
getinto their critical sections, there is no guarantee of what order they will enter, and any
one process could have the bad luck to wait forever until they got their turn in the critical
section. (Since thereisno guarantee astothe relative rates of the processes, a very fast
process could theoretically release the lock, whip through their remainder section, and re-
lockthe lock before aslower process gotachance. As mare and more processesare involved
vying for the same resource, the odds of a slow process getting locked out completely
increase.)

. Figure illustrates a solution using test-and-set that does satisfy this
requirement, using two shared data structures, boolean lock and boolean waiting[N],

where N is the number of processes in contention for critical sections:

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

do {
waiting[i] = true;
key = true;

while (waitingli] && key)
key = test_and_set(&lock);
waiting[i] = false;

/* critical section */
j=@+1) % n;

while ((j !'= i) && !'waiting[jl)
j=G + 1) %n;

if (j == 1)
lock = false;
else

waiting[j] = false;

/* remainder section */
} while (true);

Bounded-waiting mutual exclusion with TestAndSet().

The key feature ofthe above algarithmis that a process blocks onthe AND of the
critical section being locked and that this process is in the waiting state. When exiting a critical
section, the exiting process does notjust unlock the critical section and letthe other processes
have a free-for-all trying to get in.

Ratheritfirstlooksinanorderly progression (starting with the next process onthe list
) for a process that has been waiting, and if it finds one, then it releases that particular process
from its waiting state, without unlocking the critical section, thereby allowing aspecific
process into the critical section while continuing to block all the others. Only if there are no
otherprocesses currently waitingisthe generallockremoved, allowing the next processto

come along access to the critical section.

2.8.6 Mutex Locks

= The hardware solutions presented above are often difficult for ordinary programmers
to access, particularly on multi-processor machines, and particularly because they are often
platform-dependent.

« Therefore most systems offer a software APl equivalent called mutex locks or simply

mutexes. (For mutual exclusion)

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

= Theterminology when using mutexes isto acquire alock priorto entering a critical

section, and to release it when exiting, as shownin Figure :

do {
critical section
remainder section
} while (true);
acquire()
{ while ('available)
; [* busy wait */
available =false;;
} release() {
available =true;
}
. Justaswithhardwarelocks, theacquire stepwill blockthe processifthelockisinuse
by another process, and both acquire () and release () operations are atomic.
. Acquire and release can beimplemented as shown here, based on a Boolean variable
"available":
. One problem with the implementation shown here, (and in the hardware solutions
presented earlier), is the busy loop usedto block processesin the acquire phase. These
types oflocks are referredto as spinlocks, because the CPU just sits and spins while blocking
the process.
. Spinlocks are wasteful of CPU cycles, and are a really bad idea on single-cpu single
threaded machines, because the spinlock blocks the entire computer, and doesn't allow any
otherprocesstoreleasethelock. (Untilthe schedulerkicksthe spinning process off ofthe
cpu.)
. Onthe other hand, spinlocks do notincur the overhead of a context switch, so they
are effectively used on multi-threaded machines when itis expected that the lock will be

released after a short time.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.8.7 Semaphores
A more robust alternative to simple mutexes is to use semaphores, which are integer
variables for which only two (atomic) operations are defined, the wait and signal operations,
as shown in the following figure.
wait(S){ while(S<=0) ;//busywait S--;}signal(S){
S++;
Note that not only must the variable-changing steps (S-- and S++) be indivisible, itis
also necessary that for the wait operation when the test proves false that there be no
interruptions before S gets decremented. It IS okay, however, for the busy loop to be

interrupted when the test is true, which prevents the system from hanging forever.

Semaphore Usage

In practice, semaphores can take on one of two forms:

. Binary semaphorescantake ononeoftwovalues,Qor1. Theycanbeusedtosolve
the critical section problem as described above, and can be used as mutexes on systems that
do not provide a separate mutex mechanism.. The use of mutexes for this purpose is shown
in Figure.

. Counting semaphores cantake onanyintegervalue, and are usually usedto countthe
numberremainingofsomelimitedresource. The counterisinitializedtothe numberofsuch
resources available inthe system, and wheneverthe counting semaphore is greater than zero,
thenaprocess canenter acritical section and use one of the resources. When the counter
getstozero (ornegative in some implementations), then the process blocks until another
process frees up aresource and increments the counting semaphore with a signal call. (The
binary semaphore can be seen as just a special case where the number of resources initially
available is just one.)

. Semaphores can also be used to synchronize certain operations between processes.
Forexample, supposeitisimportantthat process P1 execute statement S1 before process P2
executes statement S2.

. Firstwe create asemaphore named synchthatis shared by the twoprocesses, and
initialize it to zero.

Then in process P1 we insert the code:

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

S1; signal(synch);
andinprocess P2 we insertthe code:
wait(synch) ;
S2;
Because synchwasinitializedto O, process P2 willblock on the waituntil after P1 executes

the call tosignal.

Semaphore Implementation

= The bigproblemwithsemaphoresasdescribedaboveisthe busyloopinthe

wait call, which consumes CPU cycles without doing any useful work. This type
oflockisknownasaspinlock, becausethelockjustsitsthere and spinswhile itwaits. While
this is generally a bad thing, it does have the advantage of not invoking context switches, and
soitissometimes used in multi-processing systems when the waittime is expected to be short
- One thread spins on one processor while another completes their critical section on another
processor.

= An alternative approach isto block a process when itis forced to wait for an
available semaphore, and swap itoutof the CPU. Inthisimplementation each semaphore
needs to maintain a list of processes that are blocked waiting for it, so that one of the
processes can be woken up and swapped back in when the semaphore becomes available. (
Whether it gets swapped backinto the CPUimmediately orwhetheritneedsto hangoutin
the ready queue for a while is a scheduling problem.)

= The new definition of a semaphore and the corresponding wait and signal

operations are shown as follows:

typedefstruct{ int value;
struct process*list;
}semaphore; wait(semaphore*S){ S->value--;
if (S->value < 0) {
addthisprocesstoS->list; block();
}

}signal(semaphore *S){ S->value++;
if (S->value <=0) {

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

removeaprocessPfromS->list; wakeup(P);

}
}

. Note that in this implementation the value of the semaphore can actually become
negative, in which case its magnitude is the number of processes waiting for that
semaphore. This is aresult of decrementing the counter before checkingits value.

. Keytothe success of semaphoresisthat the wait and signal operations be atomic, that
isnootherprocesscanexecute awaitorsignalonthe samesemaphoreatthesametime. (
Other processes could be allowed to do other things, including working with other
semaphores, they just can't have access to this semaphore.) On single processors this can
be implemented by disabling interrupts during the execution of wait and signal;
Multiprocessor systems have to use more complex methods, including the use of

spinlocking.

Deadlocks and Starvation

= Oneimportantproblemthatcan arise whenusingsemaphoresto block processes
waiting for a limited resource is the problem of deadlocks, which occur when multiple
processesare blocked, each waiting for aresource thatcan only be freed by one of

the other (blocked) processes, as illustrated in the following example.

* LetS andQbe two semaphores initialized to 1

PoP1

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

wait(S); wait(Q); wait(Q); wait(S);
signal(S); signal(Q); signal(Q);
signal(S);

Another problemto consider is that of starvation, in which one or more processes gets
blocked forever, and never get a chance to take their turn in the critical section. For example,
in the semaphores above, we did not specify the algorithms for adding processes to the
waiting queue inthe semaphore in the wait() call, or selecting one to be removed from the
gueue in the signal() call. If the method chosen is a FIFO queue, then every process will
eventuallygettheirturn, butifaLIFO queueisimplementedinstead, thenthefirstprocessto

start waiting could starve.

Priority Inversion

» A challenging scheduling problem arises when a high-priority process gets blocked
waiting for aresource that is currently held by a low-priority process.

> If the low-priority process gets pre-empted by one or more medium-priority
processes, thenthe high-priority processis essentially made towaitforthe medium
priority processes to finish before the low-priority process can release the needed
resource,causingapriorityinversion. Ifthere are enoughmedium-priority processes,
then the high-priority process may be forced to wait for a very long time.

» Onesolutionisapriority-inheritanceprotocol, inwhichalow-priority process holding
aresourceforwhichahigh-priority processiswaiting willtemporarilyinheritthe high
priority from the waiting process. This prevents the medium-priority processes from
preempting the low-priority process until it releases the resource, blocking the priority

inversion problem.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.7 THREADS

2.7.1 Overview

A thread is a basic unit of CPU utilization, consisting of a program counter, a stack, and a set

of registers, (and a thread ID.)
. Traditional (heavyweight) processes have a single thread of control - There is one
program counter, and one sequence of instructions that can be carried out at any given time.
. As shown in Figure multi-threaded applications have multiple threads within a single
process, each having their own program counter, stack and set of registers, but sharing

common code, data, and certain structures such as open files.

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —— ; ; ; §<—— thread
single-threaded process multithreaded process

Single-threaded and multithreaded processes

2.7.1.1 Motivation
. Threads are very useful in modern programming whenever a process has
multiple tasks to perform independently of the others.
. This is particularly true when one of the tasks may block, and it is desired to
allow the other tasks to proceed without blocking.
. For example in a word processor, a background thread may check spelling and
grammar while a foreground thread processes user input (keystrokes), while yet a third
thread loads images from the hard drive, and a fourth does periodic automatic backups
of the file being edited.
. Another example is a web server - Multiple threads allow for multiple requests

to be satisfied simultaneously, without having to service requests sequentially or to fork

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

off separate processes for every incoming request. (The latter is how this sort of thing
was done before the concept of threads was developed. A daemon would listen at a port,
fork off a child for every incoming request to be processed, and then go back to listening
to the port.)

(2) create new
(1) request thread to service
the request

thread

client server

L
3

(3) resume listening
for additional
client requests

Multithreaded server architecture

2.7.1.2 Benefits

There are four major categories of benefits to multi-threading:
1. Responsiveness - One thread may provide rapid response while other threads are blocked or
slowed down doing intensive calculations.
2. Resource sharing - By default threads share common code, data, and other resources, which
allows multiple tasks to be performed simultaneously in a single address space.
3. Economy - Creating and managing threads (and context switches between them) is much
faster than performing the same tasks for processes.
4. Scalability, i.e. Utilization of multiprocessor architectures - A single threaded process can
only run on one CPU, no matter how many may be available, whereas the execution of a multi-
threaded application may be split amongst available processors.
(Note that single threaded processes can still benefit from multi-processor architectures when
there are multiple processes contending for the CPU, i.e. when the load average is above some

certain threshold.)
2.7.2 Multicore Programming

. A recent trend in computer architecture is to produce chips withmultiple cores,

or CPUs on a single chip.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

. A multi-threaded application running on a traditional single-core chip would
have to interleave the threads, as shown in Figure.
. On a multi-core chip, however, the threads could be spread across the available

cores, allowing true parallel processing, as shown in figure

single core Ty T2 Ta T4 T4 T2 Ta Ty Ty cen

time

Concurrent execution on a single-core system.

core 1 T4 Tq T4 Ta T4 e

core 2 To Ta To Ta Tso -

time

Parallel execution on a multicore system

. For operating systems, multi-core chips require new scheduling algorithms-to
make better use of the multiple cores available.

. As multi-threading becomes more pervasive and more important (thousands
instead of tens of threads), CPUs have been developed to support more simultaneous

threads per core in hardware.

2.7.2.1 Programming Challenges
For application programmers, there are five areas where multi-core chips present new
challenges:
» ldentifying tasks - Examining applications to find activities that can be performed
concurrently.
» Balance - Finding tasks to run concurrently that provide equal value. l.e. don't waste a
thread on trivial tasks.
» Data splitting - To prevent the threads from interfering with one another.
» Data dependency - If one task is dependent upon the results of another, then the tasks
need to be synchronized to assure access in the proper order.
» Testing and debugging - Inherently more difficult in parallel processing situations, as

the race conditions become much more complex and difficult to identify.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.7.2.2 Types of Parallelism

In theory there are two different ways to parallelize the workload:
> Data parallelism divides the data up amongst multiple cores (threads), and
performs the same task on each subset of the data. For example dividing a large image up
into pieces and performing the same digital image processing on each piece on different
cores.
> Task parallelism divides the different tasks to be performed among the
different cores and performs them simultaneously.

In practice no program is ever divided up solely by one or the other of these, but instead by

some sort of hybrid combination.

2.7.3 Multithreading Models
There are two types of threads to be managed in a modern system: User threads and kernel
threads.

User threads are supported above the kernel, without kernel support. These are the
threads that application programmers would put into their programs.

Kernel threads are supported within the kernel of the OS itself. All modern OSes
support kernel level threads, allowing the kernel to perform multiple simultaneous tasks and/or
to service multiple kernel system calls simultaneously.

In a specific implementation, the user threads must be mapped to kernel threads, using
one of the following strategies.
2.7.3.1 Many-To-One Model

> In the many-to-one model, many user-level threads are all mapped onto a single kernel
thread.

» Thread management is handled by the thread library in user space, which is very
efficient.

> However, if a blocking system call is made, then the entire process blocks, even if the
other user threads would otherwise be able to continue.

» Because a single kernel thread can operate only on a single CPU, the many-to-one
model does not allow individual processes to be split across multiple CPUs.

» Green threads for Solaris and GNU Portable Threads implement the many-to one model
in the past, but few systems continue to do so today.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

& ,;‘ B "

4 L4 \;I

(«—— user thread
)

<

| =—— kernel thread

(&
N 4
Many-to-one model

2.7.3.2 One-To-One Model
» The one-to-one model creates a separate kernel thread to handle each user thread.
» One-to-one model overcomes the problems listed above involving blocking system calls
and the splitting of processes across multiple CPUs.
» However the overhead of managingthe one-to-ane model is more significant, involving
more overhead and slowing down the system.
» Most implementations of this model place a limit on how many threads.can be created.
» Linux and Windows from 95 to XP implement the one-to-one model for threads.

t;'} G < &
r:‘ r’ «—— user thread

r:
k
\

One-to-one model

' +«——kemel thread

f\ /“\l 2™
/‘ 4

k |
N

(

b

1

(
\~

2.7.3.3 Many-To-Many Model
» The many-to-many model multiplexes any number of user threads onto an equal or
smaller number of kernel threads, combining the best features of the one-to one and many-to-
one models.

> Users have no restrictions on the number of threads created.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

> Blocking kernel system calls do not block the entire process.
» Processes can be split across multiple processors.
» Individual processes may be allocated variable numbers of kernel threads, depending

on the number of CPUs present and other factors.

\
/ N
—\\/\.-”

~

& <-——— user thread

- s
L

| -— kemel thread

Many-to-many model
» One popular variation of the many-to-many model is the two-tier model, which allows

either many-to-many or one-te-one operation.
> IRIX, HP-UX, ‘and Tru64 UNPX use the two-tier model, as did Solaris prior to Solaris
0.

<—— user thread

| k\ «— kemel thread

B A
Ck) l\k_/“

Two-level model

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

2.7.4 Windows 7 Threads and SMP Management
Windows process design is driven by the need to provide support for a variety of OS

environments. Processes supported by different OS environments differ in a number of ways,

including the following:

>
>
>
>
>

How processes are named

Whether threads are provided within processes
How processes are represented

How process resources are protected

What mechanisms are wused for interprocess communication and

synchronization

» How processes are related to each other

Important characteristics of Windows processes are the following:

» Windows processes are implemented as objects.

» A process can be created as new process, or as a copy of an existing process.
» An executable process may'contain one or more threads.

>/ Both process and thread objects have built-in synchronization capabilities.

» Figure illustrates the way in which a process relates to the resources it controls
Or uses.

» Each process is assigned a security access

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

Object Type [oeee Object Type

Process ID
. = 2 ‘ .pm

Base priority _ Object Body
" Default processor affinity Attributes
Object Body Quota limits

Attributes Execution time
VO counters
VM operation counters
Exception/debugging ports
Exit status

Create process

Open process Services
Services Query process information

Set process information

Current process

Terminate process

(a) Process object
(b) Thread object

2.7.4.1 Thread States

An existing Windows thread isin oneof six states

. Ready: A ready thread may be scheduled for execution. The Kernel dispatcher keeps
track of all ready threads and schedules them in priority order.

. Standby: A standby thread has been selected to run next on a particular processor. The
thread waits in this state until that processor is made available. If the standby thread’s priority
is high enough, the running thread on that processor may be preempted in favor of the standby
thread. Otherwise, the standby thread waits until the running thread blocks or exhausts its time
slice.

. Running: Once the Kernel dispatcher performs a thread switch, the standby thread
enters the Running state and begins execution and continues execution until it is preempted by
a higher priority thread, exhausts its time slice, blocks, or terminates. In the first two cases, it
goes back to the Ready state.

. Waiting: A thread enters the Waiting state when (1) it is blocked on an event (e.g., 1/0),
(2) it voluntarily waits for synchronization purposes, or (3) an environment subsystem directs
the thread to suspend itself. When the waiting condition is satisfied, the thread moves to the

Ready state if all of its resources are available.

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

. Transition: A thread enters this state after waiting if it is ready to run but the resources
are not available. For example, the thread’s stack may be paged out of memory. When the
resources are available, the thread goes to the Ready state.

. Terminated: A thread can be terminated by itself, by another thread, or when its parent
process terminates. Once housekeeping chores are completed, the thread is removed from the

system, or it may be retained by the Executive 6 for future reinitialization.

Runnable w
ol —— 3 —
Pick - : —
ﬂ.l?/_ a Swiich

Running
£ 1 |
‘l l'. |r
Resource f' Ushlockresume Hlock! Thcoinal
mvuilable | Nesowree available suspend 7
|

Usblock
Hesowroe not availublie

Not muinnable

2.7.4.2 Symmetric Multiprocessing Support

. Windows supports SMP hardware configurations. The threads of any process,
including those of the executive, can run on any processor.

. In the absence of affinity restrictions, explained in the next paragraph, the kernel
dispatcher assigns a ready thread to the next available processor.

. This assures that no processor is idle or is executing a lower-priority thread when
a higher priority thread is ready.

. Multiple threads from the same process can be executing simultaneously on
multiple processors.

. As a default, the kernel dispatcher uses the policy of soft affinity in assigning
threads to processors:

. The dispatcher tries to assign a ready thread to the same processor it last ran on.
. This helps reuse data still in that processor’s memory caches from the previous

execution of the thread.
. It is possible for an application to restrict its thread execution only to certain

processors (hard affinity).

Download Binils Android App in Playstore Download Photoplex App

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

