
www.binils.com for Anna University | Polytechnic and Schools

2.9. CPU SCHEDULING

2.9.1 Basic Concepts

Download Binils Android App in Playstore Download Photoplex App

Almost all programs have some alternating cycle of CPU number crunching and waiting

for I/O of some kind. (Even a simple fetch from memory takes a long time relative to CPU

speeds.)

In a simple system running a single process, the time spent waiting for I/O is wasted,

and those CPU cycles are lost forever.

A scheduling system allows one process to use the CPU while another is waiting for

I/O, thereby making full use of otherwise lost CPU cycles.

The challenge is to make the overall system as "efficient" and "fair" as possible, subject

to varying and often dynamic conditions, and where "efficient" and "fair" are somewhat

subjective terms, often subject to shifting priority policies.

CPU-I/O Burst Cycle

• Almost all processes alternate between two states in a continuing cycle, as shown

in Figure below :

• A CPU burst of performing calculations, and

• An I/O burst, waiting for data transfer in or out of the system.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

CPU Scheduler

• Whenever the CPU becomes idle, it is the job of the CPU Scheduler (a.k.a. the short-

term scheduler) to select another process from the ready queue to run next.

• The storage structure for the ready queue and the algorithm used to select the next

process are not necessarily a FIFO queue. There are several alternatives to choose from, as

well as numerous adjustable parameters for each algorithm, which is the basic subject of this

entire chapter.

Download Binils Android App in Playstore Download Photoplex App

Preemptive Scheduling

CPU scheduling decisions take place under one of four conditions:

1. When a process switches from the running state to the waiting state, such

as for an I/O request or invocation of the wait() system call.

2. When a process switches from the running state to the ready state, for

example in response to an interrupt.

3. When a process switches from the waiting state to the ready state, say at

completion of I/O or a return from wait().

4. When a process terminates.

• For conditions 1 and 4 there is no choice - A new process must be selected.

• For conditions 2 and 3 there is a choice - To either continue running the current

process, or select a different one.

• If scheduling takes place only under conditions 1 and 4, the system is said to be non-

preemptive, or cooperative. Under these conditions, once a process starts running it keeps

running, until it either voluntarily blocks or until it finishes. Otherwise the system is said to

be preemptive.

• Windows used non-preemptive scheduling up to Windows 3.x, and started using pre-

emptive scheduling with Win95. Macs used non-preemptive prior to OSX,

and pre-emptive since then. Note that pre-emptive scheduling is only possible on hardware

that supports a timer interrupt.

Note that pre-emptive scheduling can cause problems when two processes share data,

because one process may get interrupted in the middle of updating shared data structures.

Chapter 5 examined this issue in greater detail.

• Preemption can also be a problem if the kernel is busy implementing a system call (

e.g. updating critical kernel data structures) when the preemption occurs. Most modern

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

UNIX deal with this problem by making the process wait until the system call has either

completed or blocked before allowing the preemption Unfortunately this solution is

problematic for real-time systems, as real-time response can no longer be guaranteed.

• Some critical sections of code protect themselves from con currency problems by

disabling interrupts before entering the critical section and re-enabling interrupts on

exiting the section. Needless to say, this should only be done in rare situations, and only

on very short pieces of code that will finish quickly, (usually just a few machine

instructions.)

Dispatcher

The dispatcher is the module that gives control of the CPU to the process selected by

the scheduler. This function involves:

• Switching context.

• Switching to user mode.

• Jumping to the proper location in the newly loaded program.

• The dispatcher needs to be as fast as possible, as it is run on every context switch. The

time consumed by the dispatcher is known as dispatch latency.

2.9.2 Scheduling Criteria

There are several different criteria to consider when trying to select the "best"

scheduling algorithm for a particular situation and environment, including:

CPU utilization

- Ideally the CPU would be busy 100% of the time, so as to waste 0

CPU cycles. On a real system CPU usage should range from 40% (lightly loaded) to 90% (

heavily loaded.)

Throughput

- Number of processes completed per unit time. May range from 10 / second to 1 /

hour depending on the specific processes.

Turnaround time

- Time required for a particular process to complete, from submission time to

completion. (Wall clock time.)

Waiting time

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

- How much time processes spend in the ready queue waiting their turn to get on the

CPU.

(Load average - The average number of processes sitting in the ready queue waiting their turn

to get into the CPU. Reported in 1-minute, 5-minute, and 15-minute averages by "uptime"

and "who".)

Response time

- The time taken in an interactive program from the issuance of a command to the

commence of a response to that command.

In general one wants to optimize the average value of a criteria (Maximize CPU

utilization and throughput, and minimize all the others.) However sometimes one wants to

do something different, such as to minimize the maximum response time.

Sometimes it is most desirable to minimize the variance of a criteria than the actual

value.

I.e. users are more accepting of a consistent predictable system than an inconsistent one,

even if it is a little bit slower.

2.9.3 Scheduling Algorithms

The following subsections will explain several common scheduling strategies, looking

at only a single CPU burst each for a small number of processes. Obviously real systems have

to deal with a lot more simultaneous processes executing their CPU-I/O burst cycles.

1. First-Come First-Serve Scheduling, FCFS

• FCFS is very simple - Just a FIFO queue, like customers waiting in line at the

bank or the post office or at a copying machine.

• Unfortunately, however, FCFS can yield some very long average wait times,

particularly if the first process to get there takes a long time. For example, consider the

following three processes:

Process Burst Time

P1 24

P2 3

P3 3

• In the Gantt chart below, process P1 arrives first. The average waiting time for

the three processes is (0 + 24 + 27) / 3 = 17.0 ms.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

P1 P2 P3

0 24 27 30

In the Gantt chart below, the same three processes have an average wait time of (0 + 3

+ 6) / 3 = 3.0 ms. The total run time for the three bursts is the same, but in the second

case two of the three finish much quicker, and the other process is only delayed by a

short amount.

0 3 6 30

• FCFS can also block the system in a busy dynamic system in another way,

known as the convoy effect. When one CPU intensive process blocks the CPU, a number of

I/O intensive processes can get backed up behind it, leaving the I/O devices idle. When the

CPU hog finally relinquishes the CPU, then the I/O processes pass through the CPU quickly,

leaving the CPU idle while everyone queues up for I/O, and then the cycle repeats itself when

the CPU intensive process gets back to the ready queue.

• Calculate Waiting time, average waiting time, turn around time, average turn

around time

2. Shortest-Job-First Scheduling, SJF

• The idea behind the SJF algorithm is to pick the quickest fastest little job that

needs to be done, get it out of the way first, and then pick the next smallest fastest job to do

next.

(Technically this algorithm picks a process based on the next shortest CPU burst, not the

overall process time.)

• For example, the Gantt chart below is based upon the following CPU burst

times, (and the assumption that all jobs arrive at the same time.)

Process Burst Time

P1 6

P2 8

P3 7

P4 3

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

P4 P1 P3 P2

0 3 9 16 24

• In the case above the average wait time is (0 + 3 + 9 + 16) / 4 = 7.0 ms, (as opposed

to 10.25 ms for FCFS for the same processes.)

• SJF can be proven to be the fastest scheduling algorithm, but it suffers from one

important problem: How do you know how long the next CPU burst is going to be?

• For long-term batch jobs this can be done based upon the limits that users set for their

jobs when they submit them, which encourages them to set low limits, but risks their having

to re-submit the job if they set the limit too low. However that does not work for short-term

CPU scheduling on an interactive system.

SJF can be either preemptive or non-preemptive. Preemption occurs when a new

process arrives in the ready queue that has a predicted burst time shorter than the time

remaining in the process whose burst is currently on the CPU. Preemptive SJF is sometimes

referred to as

3. Shortest remaining time first scheduling.

• For example, the following Gantt chart is based upon the following data:

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

p4 3 5

P1 P2 P4 P1 P3

0 1 5 10 17 26

The average wait time in this case is ((5 - 3) + (10 - 1) + (17 - 2)) / 4 = 26 /

4 = 6.5 ms.(As opposed to 7.75 ms for non-preemptive SJF or 8.75 for FCFS.)

Calculate Waiting time, average waiting time, turn around time, average turn around

time

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

3. Priority Scheduling

• Priority scheduling is a more general case of SJF, in which each job is assigned a priority

and the job with the highest priority gets scheduled first. (SJF uses the inverse of the next

expected burst time as its priority - The smaller the expected burst, the higher the priority.)

• Note that in practice, priorities are implemented using integers within a fixed range,

but there is no agreed-upon convention as to whether "high" priorities use large numbers or

small numbers. This book uses low number for high priorities, with 0 being the highest

possible priority.

• For example, the following Gantt chart is based upon these process burst times and

priorities, and yields an average waiting time of 8.2 ms:

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

P1

P2

P1

P3

P

4

0 1 6 16 18 19

• Priorities can be assigned either internally or externally. Internal priorities are assigned

by the OS using criteria such as average burst time, ratio of CPU to I/O activity, system

resource use, and other factors available to the kernel. External priorities are assigned by

users, based on the importance of the job, fees paid, politics, etc.

Priority scheduling can be either preemptive or non-preemptive.

• Priority scheduling can suffer from a major problem known as indefinite blocking, or

starvation, in which a low-priority task can wait forever because there are always some other

jobs around that have higher priority.

• If this problem is allowed to occur, then processes will either run eventually when the

system load lightens (at say 2:00 a.m.), or will eventually get lost when the system is shut

down or crashes. (There are rumors of jobs that have been stuck for years.)

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

• One common solution to this problem is aging, in which priorities of jobs increase the

longer they wait. Under this scheme a low-priority job will eventually get its priority raised

high enough that it gets run.

• Calculate Waiting time, average waiting time, turn around time, average turn around

time

4. Round Robin Scheduling

• Round robin scheduling is similar to FCFS scheduling, except that CPU bursts are

assigned with limits called time quantum.

• When a process is given the CPU, a timer is set for whatever value has been set for a

time quantum.

• If the process finishes its burst before the time quantum timer expires, then it is

swapped out of the CPU just like the normal FCFS algorithm.

• If the timer goes off first, then the process is swapped out of the CPU and moved to

the back end of the ready queue.

• The ready queue is maintained as a circular queue, so when all processes have had a

turn, then the scheduler gives the first process another turn, and so on.

• RR scheduling can give the effect of all processors sharing the CPU equally, although

the average wait time can be longer than with other scheduling algorithms. In the following

example the average wait time is 5.66 ms.

Process Burst Time

P1 24

P2 3

P3 3

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

• The performance of RR is sensitive to the time quantum selected. If the quantum is

large enough, then RR reduces to the FCFS algorithm; If it is very small, then each process

gets 1/nth of the processor time and share the CPU equally.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

• BUT, a real system invokes overhead for every context switch, and the smaller the time

quantum the more context switches there are. Most modern systems use time quantum

between 10 and 100 milliseconds, and context switch times on the order of 10 microseconds,

so the overhead is small relative to the time quantum.

The way in which a smaller time quantum increases context switches.

• Turn around time also varies with quantum time, in a non-apparent manner. Consider, for

example the processes shown in Figure 6.5:

The way in which turnaround time varies with the time quantum.

In general, turnaround time is minimized if most processes finish their next cpu burst

within one time quantum. For example, with three processes of 10 ms bursts each, the

average turnaround time for 1 ms quantum is 29, and for 10 ms quantum it reduces to 20.

However, if it is made too large, then RR just degenerates to FCFS. A rule of thumb is that 80%

of CPU bursts should be smaller than the time quantum.

Calculate Waiting time, average waiting time, turn around time, average turn around

time

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

5. Multilevel Queue Scheduling

• When processes can be readily categorized, then multiple separate queues can be

established, each implementing whatever scheduling algorithm is most appropriate for that

type of job, and/or with different parametric adjustments.

• Scheduling must also be done between queues, that is scheduling one queue to get

time relative to other queues. Two common options are strict priority (no job in a lower

priority queue runs until all higher priority queues are empty) and round-robin (each queue

gets a time slice in turn, possibly of different sizes.)

• Note that under this algorithm jobs cannot switch from queue to queue – Once they

are assigned a queue, that is their queue until they finish.

6. Multilevel Feedback-Queue Scheduling

Multilevel feedback queue scheduling is similar to the ordinary multilevel queue

scheduling described above, except jobs may be moved from one queue to another for a

variety of reasons:

If the characteristics of a job change between CPU-intensive and I/O intensive, then it

may be appropriate to switch a job from one queue to another.

Aging can also be incorporated, so that a job that has waited for a long time can get

bumped up into a higher priority queue for a while.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Multilevel feedback queue scheduling is the most flexible, because it can be tuned for

any situation. But it is also the most complex to implement because of all the adjustable

parameters. Some of the parameters which define one of these systems include:

1. The number of queues.

2. The scheduling algorithm for each queue.

3. The methods used to upgrade or demote processes from one

queue to another. (Which may be different.)

4. The method used to determine which queue a process enters

initially.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.10 DEADLOCKS

2.10.1 System Model

For the purposes of deadlock discussion, a system can be modelled as a collection of

limited resources, which can be partitioned into different categories, to be allocated to a

number of processes, each having different needs.

• Resource categories may include memory, printers, CPUs, open files, tape

drives, CDROMS, etc.

• By definition, all the resources within a category are equivalent, and a request

of this category can be equally satisfied by any one of the resources in that category.

If this is not the case (i.e. if there is some difference between the resources within a

category), then that category needs to be further divided into separate categories. For

example, "printers" may need to be separated into "laser printers" and "color inkjet

printers".

• Some categories may have a single resource.

• In normal operation a process must request a resource before using it, and

release it when it is done, in the following sequence:

• Request - If the request cannot be immediately granted, then the process must

wait until the resource(s) it needs become available. For example the system calls

open(), malloc(), new(), and request().

• Use - The process uses the resource, e.g. prints to the printer or reads from the

file.

• Release - The process relinquishes the resource. so that it becomes available

for other processes. For example, close(), free(), delete(), and release().

• For all kernel-managed resources, the kernel keeps track of what resources are

free and which are allocated, to which process they are allocated, and a queue of

processes waiting for this resource to become available. Application-managed

resources can be controlled using mutexes or wait() and signal() calls, (i.e. binary or

counting semaphores.)

• A set of processes is deadlocked when every process in the set is waiting for a

resource that is currently allocated to another process in the set (and which can only

be released when that other waiting process makes progress.)

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.10.2 Deadlock Characterization

Necessary Conditions

There are four conditions that are necessary to achieve deadlock:

1. Mutual Exclusion - At least one resource must be held in a non-sharable mode; If any other

process requests this resource, then that process must wait for the resource to be released.

2. Hold and Wait - A process must be simultaneously holding at least one resource and waiting

for at least one resource that is currently being held by some other process.

3. No preemption - Once a process is holding a resource (i.e. once its request has been

granted), then that resource cannot be taken away from that process until the process

voluntarily releases it.

4. Circular Wait - A set of processes { P0, P1, P2, . . ., PN } must exist such that every P[i] is

waiting for P[(i + 1) % (N + 1)].

Resource-Allocation Graph

In some cases deadlocks can be understood more clearly through the use of Resource-

Allocation Graphs, having the following properties:

A set of resource categories, { R1, R2, R3, . . ., RN }, which appear as square nodes on

the graph. Dots inside the resource nodes indicate specific instances of the resource. (E.g.

two dots might represent two laser printers.)

A set of processes, { P1, P2, P3, . . ., PN }

Request Edges

- A set of directed arcs from Pi to Rj, indicating that process Pi has requested Rj, and

is currently waiting for that resource to become available.

Assignment Edges

- A set of directed arcs from Rj to Pi indicating that resource Rj has been allocated to

process Pi, and that Pi is currently holding resource Rj.

Note that a request edge can be converted into an assignment edge by reversing the

direction of the arc when the request is granted. (However note also that request edges point

to the category box, whereas assignment edges emanate from a particular instance dot within

the box.)

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

For example:

• If a resource-allocation graph contains no cycles, then the system is not deadlocked. (

When looking for cycles, remember that these are directed graphs.) See the example in Figure

above.

• If a resource-allocation graph does contain cycles AND each resource category

contains only a single instance, then a deadlock exists.

• If a resource category contains more than one instance, then the presence of a cycle

in the resource-allocation graph indicates the possibility of a deadlock, but does not guarantee

one. Consider, for example, Figures below:

Resource allocation graph with a deadlock

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Resource allocation graph with a cycle but no deadlock

2.10.3 Methods for Handling Deadlocks

Generally there are three ways of handling deadlocks:

1. Deadlock prevention or avoidance - Do not allow the system to get into a deadlocked state.

2. Deadlock detection and recovery - Abort a process or preempt some resources when

deadlocks are detected.

3. Ignore the problem all together – If deadlocks only occur once a year or so, it may be better

to simply let them happen and reboot as necessary than to incur the constant overhead and

system performance penalties associated with deadlock prevention or detection. This is the

approach that both Windows and UNIX take.

• In order to avoid deadlocks, the system must have additional information about all

processes. In particular, the system must know what resources a process will or may request

in the future. (Ranging from a simple worst-case maximum to a complete resource request

and release plan for each process, depending on the particular algorithm.)

• Deadlock detection is fairly straightforward, but deadlock recovery requires either

aborting processes or preempting resources, neither of which is an attractive alternative.

• If deadlocks are neither prevented nor detected, then when a deadlock occurs the

system will gradually slow down, as more and more processes become stuck waiting for

resources currently held by the deadlock and by other waiting processes. Unfortunately this

slowdown can be indistinguishable from a general system slowdown when a real-time process

has heavy computing needs.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.10.4 Deadlock Prevention

Deadlocks can be prevented by preventing at least one of the four required conditions:

Mutual Exclusion

• Shared resources such as read-only files do not lead to deadlocks.

• Unfortunately some resources, such as printers and tape drives, require exclusive

access by a single process.

Hold and Wait

• To prevent this condition processes must be prevented from holding one or more

resources while simultaneously waiting for one or more others. There are several

possibilities for this:

• Require that all processes request all resources at one time. This can be wasteful of

system resources if a process needs one resource early in its execution and doesn't need

some other resource until much later.

• Require that processes holding resources must release them before requesting new

resources, and then re-acquire the released resources along with the new ones in a single

new request. This can be a problem if a process has partially completed an operation using

a resource and then fails to get it re-allocated after releasing it.

• Either of the methods described above can lead to starvation if a process requires one

or more popular resources.

No Preemption

• Preemption of process resource allocations can prevent this condition of deadlocks,

when it is possible.

• One approach is that if a process is forced to wait when requesting a new resource,

then all other resources previously held by this process are implicitly released, (preempted),

forcing this process to re-acquire the old resources along with the new resources in a single

request, similar to the previous discussion.

• Another approach is that when a resource is requested and not available, then the

system looks to see what other processes currently have those resources and are themselves

blocked waiting for some other resource. If such a process is found, then some of their

resources may get preempted and added to the list of resources for which the process is

waiting.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

• Either of these approaches may be applicable for resources whose states are easily

saved and restored, such as registers and memory, but are generally not applicable to other

devices such as printers and tape drives.

Circular Wait

• One way to avoid circular wait is to number all resources, and to require that processes

request resources only in strictly increasing (or decreasing) order.

• In other words, in order to request resource Rj, a process must first release all Ri such

that i>= j.

• One big challenge in this scheme is determining the relative ordering of the different

resources

2.10.5 Deadlock Avoidance

• The general idea behind deadlock avoidance is to prevent deadlocks from ever

happening, by preventing at least one of the aforementioned conditions.

• This requires more information about each process, AND tends to lead to low

device utilization. (I.e. it is a conservative approach.)

• In some algorithms the scheduler only needs to know the maximum number

of each resource that a process might potentially use. In more complex algorithms the

scheduler can also take advantage of the schedule of exactly what resources may be needed

in what order.

• When a scheduler sees that starting a process or granting resource requests

may lead to future deadlocks, then that process is just not started or the request is not

granted.

• A resource allocation state is defined by the number of available and allocated

resources, and the maximum requirements of all processes in the system.

Safe State

A state is safe if the system can allocate all resources requested by all processes

(up to their stated maximums) without entering a deadlock state.

More formally, a state is safe if there exists a safe sequence of processes { P0,

P1, P2, ..., PN } such that all of the resource requests for Pi can be granted using the

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

resources currently allocated to Pi and all processes Pj where j <i. (I.e. if all the processes

prior to Pi finish and free up their resources, then Pi will be able to finish also, using the

resources that they have freed up.)

• If a safe sequence does not exist, then the system is in an unsafe state, which

may lead to deadlock. (All safe states are deadlock free, but not all unsafe states lead to

deadlocks.)

Safe, unsafe, and deadlocked state spaces.

For example, consider a system with 12 tape drives, allocated as follows. Is this a safe state?

What is the safe sequence?

•

•

• What happens to the above table if process P2 requests and is granted one more tape

drive?

• Key to the safe state approach is that when a request is made for resources, the

request is granted only if the resulting allocation state is a safe one.

Resource-Allocation Graph Algorithm

If resource categories have only single instances of their resources, then deadlock

states can be detected by cycles in the resource-allocation graphs.

 Maximum Needs Current Allocation

P0 10 5

P1 4 2

P2 9 2

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

• In this case, unsafe states can be recognized and avoided by augmenting the resource-

allocation graph with claim edges, noted by dashed lines, which point from a process to a

resource that it may request in the future.

• In order for this technique to work, all claim edges must be added to the graph for any

particular process before that process is allowed to request any resources. (Alternatively,

processes may only make requests for resources for which they have already established claim

edges, and claim edges cannot be added to any process that is currently holding resources.)

• When a process makes a request, the claim edge Pi->Rj is converted to a request edge.

Similarly when a resource is released, the assignment reverts back to a claim edge.

• This approach works by denying requests that would produce cycles in the resource-

allocation graph, taking claim edges into effect.

• Consider for example what happens when process P2 requests resource R2:

Resource allocation graph for deadlock avoidance

The resulting resource-allocation graph would have a cycle in it, and so the request cannot be

granted.

An unsafe state in a resource allocation graph

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Banker's Algorithm

For resource categories that contain more than one instance the resourceallocation

graph method does not work, and more complex (and less efficient) methods must be

chosen.

• The Banker's Algorithm gets its name because it is a method that bankers could use to

assure that when they lend out resources they will still be able to satisfy all their clients. (A

banker won't loan out a little money to start building a house unless they are assured that

they will later be able to loan out the rest of the money to finish the house.)

• When a process starts up, it must state in advance the maximum allocation of

resources it may request, up to the amount available on the system.

• When a request is made, the scheduler determines whether granting the request

would leave the system in a safe state. If not, then the process must wait until the request can

be granted safely.

• The banker's algorithm relies on several key data structures: (where n is the number

of processes and m is the number of resource categories.)

Available[m] indicates how many resources are currently available of each type.

Max[n][m] indicates the maximum demand of each process of each

resource.

Allocation[n][m] indicates the number of each resource category allocated to each

process.

Need[n][m] indicates the remaining resources needed of each type for each process.

(Note that Need[i][j] = Max[i][j] - Allocation[i][j] for all i, j.)

Safety Algorithm

In order to apply the Banker's algorithm, we first need an algorithm for determining

whether or not a particular state is safe.

This algorithm determines if the current state of a system is safe, according to the

following steps:

1. Let Work and Finish be vectors of length m and n respectively.

2. Work is a working copy of the available resources, which will be modified during the

analysis.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

3. Finish is a vector of boolean indicating whether a particular process can finish. (or has

finished so far in the analysis.)

4. Initialize Work to Available, and Finish to false for all elements.

5. Find an i such that both (A) Finish[i] == false, and (B) Need[i] < Work. This process has

not finished, but could with the given available working set. If no such i exists, go to step 4.

6. Set Work = Work + Allocation[i], and set Finish[i] to true. This corresponds to process i

finishing up and releasing its resources back into the work pool. Then loop back to step 2.

7. If finish[i] == true for all i, then the state is a safe state, because a safe sequence has been

found.

Resource-Request Algorithm (The Bankers Algorithm)

Now that we have a tool for determining if a particular state is safe or not, we are now

ready to look at the Banker's algorithm itself.

This algorithm determines if a new request is safe, and grants it only if it is safe to do

so.

When a request is made (that does not exceed currently available resources), pretend

it has been granted, and then see if the resulting state is a safe one. If so, grant the request,

and if not, deny the request, as follows:

1. Let Request[n][m] indicate the number of resources of each type currently requested by

processes. If Request[i] > Need[i] for any process i, raise an error condition.

3. If Request[i] > Available for any process i, then that process

must wait for resources to become available. Otherwise the process can continue to step 3.

Check to see if the request can be granted safely, by pretending it has been granted

and then seeing if the resulting state is safe. If so, grant the request, and if not, then the

process must wait until its request can be granted safely.The procedure for granting a request

(or pretending to for testing purposes) is:

 Available = Available - Request

 Allocation = Allocation + Request

 Need = Need - Request

2.10.6 Deadlock Detection

• If deadlocks are not avoided, then another approach is to detect when they

have occurred and recover somehow.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

• In addition to the performance hit of constantly checking for deadlocks, a

policy / algorithm must be in place for recovering from deadlocks, and there is

potential for lost work when processes must be aborted or have their resources

preempted.

Single Instance of Each Resource Type

If each resource category has a single instance, then we can use a variation of the

resource-allocation graph known as a wait-for graph.

A wait-for graph can be constructed from a resource-allocation graph by eliminating

the resources and collapsing the associated edges, as shown in the figure below.

An arc from Pi to Pj in a wait-for graph indicates that process Pi is waiting for a resource

that process Pj is currently holding.

(a) Resource allocation graph. (b) Corresponding wait-for graph

As before, cycles in the wait-for graph indicate deadlocks.

This algorithm must maintain the wait-for graph, and periodically search it for

cycles.

Several Instances of a Resource Type

The detection algorithm outlined here is essentially the same as the

Banker's algorithm, with two subtle differences:

In step 1, the Banker's Algorithm sets Finish[i] to false for all i. The

algorithm presented here sets Finish[i] to false only if Allocation[i] is not zero. If the currently

allocated resources for this process are zero, the algorithm sets Finish[i] to true. This is

essentially assuming that IF all of the other processes can finish, then this process can finish

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

also. Furthermore, this algorithm is specifically looking for which processes are involved in a

deadlock situation, and a process that does not have any resources allocated cannot be

involved in a deadlock, and so can be removed from any further consideration.

Steps 2 and 3 are unchanged

In step 4, the basic Banker's Algorithm says that if Finish[i] == true for all

i, that there is no deadlock. This algorithm is more specific, by stating that if Finish[i] == false

for any process Pi, then that process is specifically involved in the deadlock which has been

detected.

2.10.7 Recovery From Deadlock

• There are three basic approaches to recovery from deadlock:

• Inform the system operator, and allow him/her to take manual intervention. •

Terminate one or more processes involved in the deadlock

• Preempt resources.

Process Termination

Two basic approaches, both of which recover resources allocated to terminated

processes:

• Terminate all processes involved in the deadlock. This definitely solves the deadlock,

but at the expense of terminating more processes than would be absolutely necessary.

• Terminate processes one by one until the deadlock is broken. This is more

conservative, but requires doing deadlock detection after each step.

In the latter case there are many factors that can go into deciding which processes to

terminate next:

 Process priorities.

 How long the process has been running, and how close it is to finishing.

 How many and what type of resources is the process holding. (Are they easy to

preempt and restore?)

 How many more resources does the process need to complete. • How many

processes will need to be terminated

 Whether the process is interactive or batch.

 (Whether or not the process has made non-restorable changes to any resource.)

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Resource Preemption

When preempting resources to relieve deadlock, there are three important issues to

be addressed:

1. Selecting a victim - Deciding which resources to preempt from which processes

involves many of the same decision criteria outlined above.

2. Rollback - Ideally one would like to roll back a preempted process to a safe state prior

to the point at which that resource was originally allocated to the process. Unfortunately it

can be difficult or impossible to determine what such a safe state is, and so the only safe

rollback is to roll back all the way back to the beginning. (I.e. abort the process and make it

start over.)

Starvation - How do you guarantee that a process won't starve because its resources are

constantly being preempted? One option would be to use a priority system, and increase the

priority of a process every time its resources get preempted. Eventually it should get a high

enough priority that it won't get pre-empt.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.4 INTERPROCESS COMMUNICATION

 A process is independent if it cannot affect or be affected by the other processes

executing in the system. Any process that does not share data with any other process

is independent.

 A process is cooperating if it can affect or be affected by the other processes executing

in the system. Clearly, any process that shares data with other processes is a

cooperating process.

 Advantages of cooperating process

i) Information sharing

ii) Computation speedup

iii) Modularity

iv) Convenience.

DEFINITION:

An Inter process communication is a mechanism that allows the cooperating process

to exchange data and communication among each other.

There are two fundamental models of Inter process communication

 Shared Memory model

 Message passing model

 In shared memory model a region of memory is shared by the cooperating process.

Processes can then exchange information by reading and writing data to the shared

region.

 In the message-passing model, communication takes place by means of messages

exchanged between the cooperating processes.

 Message passing is easier to implement in a distributed system than shared memory.

 The shared memory is faster than that of message passing.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Communications models: (a) Message passing. (b) Shared memory.

2.4.1 Shared-Memory Systems

 Inter process communication using shared memory requires communicating

processes to establish a region of shared memory.

 Shared-memory region resides in the address space of the process creating the shared-

memory segment.

 Other processes that wish to communicate using this shared-memory segment must

attach it to their address space. They can then exchange information by reading and

writing data in the shared areas.

EXAMPLE: PRODUCER – CONSUMER PROCESS:

 A producer process produces information that is consumed by a consumer process.

 One solution to the producer–consumer problem uses shared memory

 To allow producer and consumer processes to run concurrently, we must have

available a buffer of items that can be filled by the producer and emptied by the

consumer.

 This buffer will reside in a region of memory that is shared by the producer and

consumer processes. A producer can produce one item while the consumer is

consuming another item.

 Two types of buffers can be used.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

 Bounded Buffer.

 Unbounded Buffer.

 The unbounded buffer places no practical limit on the size of the buffer. The consumer

may have to wait for new items, but the producer can always produce new items.

 The bounded buffer assumes a fixed buffer size. In this case, the consumer must wait

if the buffer is empty, and the producer must wait if the buffer is full.

CODE FOR PRODUCER PROCESS:

item next produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER SIZE) == out);

/* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

}

The producer process has local variable next produced in which the new item to be produced

is stored.

The consumer process has a local variable next consumed in which the item to be consumed

is stored.

This scheme allows at most BUFFER SIZE − 1 items in the buffer at the same time.

CODE FOR CONSUMER PROCESS

item next consumed;

while (true) {

while (in == out); /* do nothing */

/* Get the next available item */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

}

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.4.2 Message-Passing Systems

• Message passing systems must support at a minimum system calls for "send

message" and "receive message".

• A communication link must be established between the cooperating processes

before messages can be sent.

• There are three key issues to be resolved in message passing systems

• Direct or indirect communication (naming)

• Synchronous or asynchronous communication

• Automatic or explicit buffering.

2.4.2.1 Naming

Each process that wants to communicate must explicitly name the recipient or

sender of the communication. Direct communication can be done in two ways symmetric

addressing and asymmetric addressing.

• With direct communication the sender must know the name of the receiver to

which it wishes to send a message.

• There is a one-to-one link between every sender-receiver pair.

• For symmetric communication, the receiver must also know the specific name of

the sender from which it wishes to receive messages.

send(P, message)—Send a message to process P.

receive(Q, message)—Receive a message from process Q.

• For asymmetric communications, this is not necessary.

send(P, message)—Send a message to process P.

receive(id, message)—Receive a message from any process

• Indirect communication uses shared mailboxes, or ports.

send(A, message)—Send a message to mailbox A.

receive(A, message)—Receive a message from mailbox A.

• Multiple processes can share the same mailbox or boxes.

• Only one process can read any given message in a mailbox. Initially the process

that creates the mailbox is the owner, and is the only one allowed to read mail in

the mailbox, although this privilege may be transferred.

The OS must provide system calls to create and delete mailboxes, and to send and receive

messages to/from mailboxes.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

3.4.2.2 Synchronization

Either the sending or receiving of messages (or neither or both) may be either blocking or

non-blocking.

 Blocking send. The sending process is blocked until the message is received by the

receiving process or by the mailbox

 Nonblocking send. The sending process sends the message and resumes Operation

 Blocking receive. The receiver blocks until a message is available.

 Nonblocking receive. The receiver retrieves either a valid message or a null.

3.4.2.3 Buffering

Messages are passed via queues, which may have one of three capacity configurations:

1. Zero capacity - Messages cannot be stored in the queue, so senders must block until

receivers accept the messages.

2. Bounded capacity- There is a certain pre-determined finite capacity in the queue.

Senders must block if the queue is full, until space becomes available in the queue, but may

be either blocking or non-blocking otherwise.

3. Unbounded capacity - The queue has a theoretical infinite capacity, so senders are

never forced to block.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.9 MONITORS

• Semaphores can be very useful for solving concurrency problems, but only if

programmers use them properly. If even one process fails to abide by the proper use of

semaphores, either accidentally or deliberately, then the whole system breaks down. (And

since concurrency problems are by definition rare events, the problem code may easily go

unnoticed and/or be heinous to debug.)

• For this reason a higher-level language construct has been developed, called

monitors. monitor monitor-name

{

// shared variable declarations procedure P1 (…) { …. } procedure Pn (…) {……}

Initialization code (…) { … }

}

}

2.9.1 Monitor Usage

• A monitor is essentially a class, in which all data is private, and with the

special restriction that only one method within any given monitor object may be active at

the same time. An additional restriction is that monitor methods may only access the shared

data within the monitor and any data passed to them as parameters. I.e. they cannot access

any data external to the monitor.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Figure shows a schematic of a monitor, with an entry queue of processes waiting their turn

to execute monitor operations (methods.)

• In order to fully realize the potential of monitors, we need to introduce one additional

new data type, known as a condition.

• A variable of type condition has only two legal operations, wait and signal. I.e. if X was

defined as type condition, then legal operations would be X.wait() and X.signal()

• The wait operation blocks a process until some other process calls signal, and adds the

blocked process onto a list associated with that condition.

• The signal process does nothing if there are no processes waiting on that condition.

Otherwise it wakes up exactly one process from the condition's list of waiting processes. (

Contrast this with counting semaphores, which always affect the semaphore on a signal call.

)

• Figure below illustrates a monitor that includes condition variables within its data

space. Note that the condition variables, along with the list of processes currently waiting

for the conditions, are in the data space of the monitor - The processes on these lists are not

"in" the monitor, in the sense that they are not executing any code in the monitor.

Monitor with condition variables

• But now there is a potential problem - If process P within the monitor issues a signal that

would wake up process Q also within the monitor, then there would be two processes running

simultaneously within the monitor, violating the exclusion requirement. Accordingly there are

two possible solutions to this dilemma:

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Signal and wait - When process P issues the signal to wake up process Q, P then waits, either

for Q to leave the monitor or on some other condition.

Signal and continue - When P issues the signal, Q waits, either for P to exit the monitor or for

some other condition.

There are arguments for and against either choice. Concurrent Pascal offers a third alternative

- The signal call causes the signalling process to immediately exit the monitor, so that the

waiting process can then wake up and proceed.

2.9.2 Dining-Philosophers Solution Using Monitors

• This solution to the dining philosophers uses monitors, and the restriction that

a philosopher may only pick up chopsticks when both are available. There are also two key

data structures in use in this solution:

1. enum { THINKING, HUNGRY,EATING } state[5]; A philosopher may only set

their state to eating when neither of their adjacent neighbors is eating. (state[(i + 1) % 5]

!= EATING && state[(i + 4) % 5] != EATING).

2. Conditionself[5]; This condition is used to delay a hungry philosopher who is

unable to acquire chopsticks.

In the following solution philosophers share a monitor, DiningPhilosophers, and eat using the

following sequence of operations:

3. DiningPhilosophers.pickup() - Acquires chopsticks, which may block the

process.

4. eat

5. DiningPhilosophers.putdown() - Releases the chopsticks.

monitorDiningPhilosophers

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (inti) { state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait; }

void putdown (inti)

{ state[i] = THINKING;

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

// test left and right neighborstest((i + 4) % 5);

test((i + 1) % 5);

}

void test (inti) { if ((state[(i + 4) % 5] != EATING) && (state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING))

state[i] = EATING ; {

self[i].signal () ;

} } initialization_code()

{ for (inti = 0; i< 5; i++)

state[i] = THINKING;

}

}

2.9.3 Implementing a Monitor Using Semaphores

• One possible implementation of a monitor uses a semaphore "mutex" to control

mutual exclusionary access to the monitor, and a counting semaphore "next" on which

processes can suspend themselves after they are already "inside" the monitor (in conjunction

with condition variables, see below.) The integer next_count keeps track of how many

processes are waiting in the next queue. Externally accessible monitor processes are then

implemented as:

• Condition variables can be implemented using semaphores as well. For a condition x,

a semaphore "x_sem" and an integer "x_count" are introduced, both initialized to zero. The

wait and signal methods are then implemented as follows. (This approach to the condition

implements the signal-and-wait option described above for ensuring that only one process at

a time is active inside the monitor.)

Variables semaphoremutex;

// (initially = 1) semaphore next;

// (initially = 0) intnext_count = 0;

Each procedure F will be replaced by wait(mutex);

…

body of F;

… if (next_count> 0) signal(next) else signal(mutex);

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Mutual exclusion within a monitor is ensured

For each condition variable x, we have: semaphore x_sem; // (initially = 0) intx_count = 0;

The operation x.waitcan be implemented as:

x_count++; if (next_count> 0) signal(next); else

signal(mutex); wait(x_sem); x_count--;

The operation x.signalcan be implemented as:

if (x_count> 0) { next_count++;

signal(x_sem); wait(next);

next_count--;

}

2.9.4 Resuming Processes Within a Monitor

• When there are multiple processes waiting on the same condition within a monitor,

how does one decide which one to wake up in response to a signal on that condition? One

obvious approach is FCFS, and this may be suitable in many cases.

• Another alternative is to assign (integer) priorities, and to wake up the process with

the smallest (best) priority.

• Figure illustrates the use of such a condition within a monitor used for resource

allocation. Processes wishing to access this resource must specify the time they expect to use

it using the acquire(time) method, and must call the release() method when they are done

with the resource.

monitorResourceAllocator

{ boolean busy; condition x; void acquire(int time) { if (busy)

x.wait(time); busy = TRUE;

} void release() { busy = FALSE;

x.signal();

} initialization code() { busy = FALSE;

}

}

A monitor to allocate a single resource.

Unfortunately the use of monitors to restrict access to resources still only works if

programmers make the requisite acquire and release calls properly. One option would be to

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

place the resource allocation code into the monitor, thereby eliminating the option for

programmers to bypass or ignore the monitor, but then that would substitute the monitor's

scheduling algorithms for whatever other scheduling algorithms may have been chosen for

that particular resource.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.3 OPERATIONS ON PROCESSES

The operating system must provide a mechanism for process creation and

termination. The process can be created and deleted dynamically by the operating system.

The Operations on the process includes

 Process creation

 Process Termination

2.3.1 Process Creation

During Execution a process may create several new processes.

 The creating process is called as the parent process and the newly created process is

called as the child process.

o Processes may create other processes through appropriate system calls, such

as fork or spawn.

o The operating systems identify the processes according to their unique process

identifier.

:

 Fig: A tree of processes on a typical Linux system

 The init process serves as the root parent process for all the user process.

 Once the system has booted, the init process can also create various user processes,

such as a web or printserver, an ssh server.

 The kthreadd process is responsible for creating additional processes that perform

tasks on behalf of the kernel

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

 The sshd process is responsible for managing clients that connect to the system by

using ssh(Secure shell)

The login process is responsible for managing clients that directly log onto the system

The command ps –el will list complete information for all processes currently active in

the system.

When a process creates a new process, two possibilities for execution exist:

 The parent continues to execute concurrently with its children.

 The parent waits until some or all of its children have terminated

There are also two address-space possibilities for the new process:

 The child process is a duplicate of the parent process (it has the same program as the

parent).

 The child process has a new program loaded into it.

 The return code for the fork() is zero for the new (child) process, whereas the

(nonzero) process identifier of the child is returned to the parent.

o After a fork() system call, one of the two processes typically uses the exec()

system call to replace the process’s memory space with a new program.

o A new process is created by the fork() system call. The new process consists of

a copy of the address space of the original process. This mechanism allows the

parent process to communicate easily with its child process.

Depending on system implementation, a child process may receive some amount of

shared resources with its parent. Child processes may or may not be limited to a subset of the

resources originally allocated to the parent, preventing runaway children from consuming all

of a certain system resource.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Creating a separate process using the UNIX fork()system call.

Process creation using the fork() system call

2.3.2 Process Termination

 A process terminates when it finishes executing its final statement and asks the

operating system to delete it by using the exit() system call.

 At that point, the process may return a status value (typically an integer) to its parent

process.

 All the resources of the process—including physical and virtual memory, open files,

and I/O buffers—are deallocated by the operating system

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

 A parent may terminate the execution of one of its children for a variety of reasons,

such as

 The child has exceeded its usage of some of the resources that it has been allocated.

 The task assigned to the child is no longer required.

 The parent is exiting, and the operating system does not allow a child to continue if its

parent terminates.

 Some systems do not allow a child to exist if its parent has terminated. In such systems,

if a process terminates (either normally or abnormally), then all its children must also

be terminated. This phenomenon is referred to as cascading termination.

 A parent process may wait for the termination of a child process by using the wait()

system call

 This system call also returns the process identifier of the terminated child so that the

parent can tell which of its children has terminated:

pid t pid;

int status;

pid = wait(&status);

o A process that has terminated, but whose parent has not yet called wait(), is

known as a zombie process.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.1 PROCESSES

2.1 Process Concept

• A process is an instance of a program in execution.

• Batch systems work in terms of "jobs". Many modern process concepts are still

expressed in terms of jobs, (e.g. job scheduling), and the two terms are often used

interchangeably.

2.1.1 The Process

Process memory is divided into four sections as shown in Figure below:

 The text section comprises the compiled program code, read in from non-volatile

storage when the program is launched.

 The data section stores global and static variables, allocated and initialized prior to

executing main.

 The heap is used for dynamic memory allocation, and is managed via calls to new,

delete, malloc, free, etc.

 The stack is used for local variables. Space on the stack is reserved for local variables

when they are declared (at function entrance or elsewhere, depending on the

language), and the space is freed up when the variables go out of scope. Note that the

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

stack is also used for function return values, and the exact mechanisms of stack

management may be language specific.

 Note that the stack and the heap start at opposite ends of the process's free space and

grow towards each other. If they should ever meet, then either a stack overflow error

will occur, or else a call to new or malloc will fail due to insufficient memory available.

 When processes are swapped out of memory and later restored, additional

information must also be stored and restored. Key among them are the program

counter and the value of all program registers.

2.1.2 Process State

Processes may be in one of 5 states, as shown in Figure below.

New - The process is in the stage of being created.

Ready - The process has all the resources available that it needs to run, but the CPU is not

currently working on this process's instructions.

Running - The CPU is working on this process's instructions.

Waiting - The process cannot run at the moment, because it is waiting for some resource to

become available or for some event to occur. For example the process may be waiting for

keyboard input, disk access request, inter-process messages, a timer to go off, or a child

process to finish.

Terminated - The process has completed.

The load average reported by the "w" command indicate the average number of

processes in the "Ready" state over the last 1, 5, and 15 minutes, i.e. processes who have

everything they need to run but cannot because the CPU is busy doing something else.

Some systems may have other states besides the ones listed here.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.1.3 Process Control Block

For each process there is a Process Control Block, PCB, which stores the following

(types of) process-specific information, as illustrated in Figure (Specific details may vary from

system to system.)

Process State - Running, waiting, etc., as discussed above.

Process ID, and parent process ID.

CPU registers and Program Counter - These need to be saved and restored when swapping

processes in and out of the CPU.

CPU-Scheduling information - Such as priority information and pointers to scheduling queues.

Memory-Management information - E.g. page tables or segment tables.

Accounting information - user and kernel CPU time consumed, account numbers, limits, etc.

I/O Status information - Devices allocated, open file tables, etc.

2.1.4 Threads

Modern systems allow a single process to have multiple threads of execution, which

execute concurrently.

2.2 Process Scheduling

The two main objectives of the process scheduling system are to keep the CPU busy at

all times and to deliver "acceptable" response times for all programs, particularly for

interactive ones.

The process scheduler must meet these objectives by implementing suitable policies

for swapping processes in and out of the CPU.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.2.1 Scheduling Queues

 All processes are stored in the job queue.

 Processes in the Ready state are placed in the ready queue.

 Processes waiting for a device to become available are placed in device queues. There

is generally a separate device queue for each device.

 Other queues may also be created and used as needed.

.

Ready queue − This queue keeps a set of all processes residing in main

queue.

I/O device constitute this queue.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.2.2 Schedulers

• A long-term scheduler is typical of a batch system or a very heavily loaded

system. It runs infrequently, It is also called a job scheduler. It selects processes from the

queue and loads them into memory for execution.

• The short-term scheduler, or CPU Scheduler, runs very frequently, on the order

of 100 milliseconds, and must very quickly swap one process out of the CPU and swap in

another one. CPU scheduler selects a process among the processes that are ready to execute

and allocates CPU to one of them.

• Some systems also employ a medium-term scheduler. When system loads get

high, this scheduler will swap one or more processes out of the ready queue system for a few

seconds, in order to allow smaller faster jobs to finish up quickly and clear the system. See the

differences in Figures below.

• An efficient scheduling system will select a good process mix of CPU-bound

processes and I/O boundprocesses.

Queueing-diagram representation of process scheduling

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Addition of a medium-term scheduling to the queuing diagram

2.2.3 Context Switch

Definition: Switching the CPU between processes is called context switch. A context switch is

the mechanism to store and restore the state or context of a CPU in Process Control block

• Whenever an interrupt arrives, the CPU must do a state-save of the currently

running process, then switch into kernel mode to handle the interrupt, and then do a state-

restore of the interrupted process.

• Similarly, a context switch occurs when the time slice for one process has

expired and a new process is to be loaded from the ready queue. This will be initiated by a

timer interrupt, which will then cause the current process's state to be saved and the new

process's state to be restored.

• Saving and restoring states involves saving and restoring all of the registers and

program counter(s), as well as the process control blocks described above.

• Context switching happens VERY VERY frequently, and the overhead of doing

the switching is just lost CPU time, so context switches (state saves & restores) need to be

as fast as possible.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.8 PROCESS SYNCHRONIZATION

2.8.1 Background

Cooperating processes (those that can effect or be effected by other simultaneously

running processes) with the producer-consumer problem as an example

Producer code :

item nextProduced; while(true)

{

/* Produce an item and store it in nextProduced */

nextProduced = makeNewItem(. . .);

/* Wait for space to become available */

while(((in + 1) % BUFFER_SIZE) == out)

; /* Do nothing */

/* And then store the item and repeat the loop. */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE; }

Consumer code :

itemnextConsumed;

while(true) {

/* Wait for an item to become available */

while(in == out) ;

/* Do nothing */

/* Get the next available item */

nextConsumed = buffer[out] ;

out = (out + 1) % BUFFER_SIZE;

/* Consume the item in nextConsumed

(Do something with it) */

}

The only problem with the above code is that the maximum number of items which

can be placed into the buffer is BUFFER_SIZE - 1. One slot is unavailable because there always

has to be a gap between the producer and the consumer.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

• We could try to overcome this deficiency by introducing a counter variable, as shown

in the following code segments:

• Unfortunately we have now introduced a new problem, because both the producer

and the consumer are adjusting the value of the variable counter, which can lead to a

condition known as a race condition.

• In this condition a piece of code may or may not work correctly, depending on which

of two simultaneous processes executes first, and more importantly if one of the processes

gets interrupted such that the other process runs between important steps of the first

process. (Bank balance example discussed in class.)

• The particular problem above comes from the producer executing "counter++" at the

same time the consumer is executing "counter--". If one process gets part way through making

the update and then the other process butts in, the value of counter can get left in an incorrect

state.

• But, you might say, "Each of those are single instructions - How can they get

interrupted halfway through?" The answer is that although they are single instructions in C++,

they are actually three steps each at the hardware level: (1) Fetch counter from memory into

a register, (2) increment or decrement the register, and (3) Store the new value of counter

back to memory. If the instructions from the two processes get interleaved, there could be

serious problems, such as illustrated by the following:

2.8.2 The Critical-Section Problem

• The general idea is that in a number of cooperating processes, each has a critical

section of code, with the following conditions and terminologies:

• Only one process in the group can be allowed to execute in their critical section at any

one time.

• The code preceding the critical section, and which controls access to the critical

section, is termed the entry section.

• The code following the critical section is termed the exit section.

• The rest of the code not included in either the critical section or the entry or exit

sections is termed the remainder section.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

General structure of a typical process Pi

2.8.3 Solution to critical section problem

A solution to the critical section problem must satisfy the following three

conditions:

Mutual Exclusion

- Only one process at a time can be executing in their critical section.

Progress

- If no process is currently executing in their critical section, and one or more processes

want to execute their critical section, then only the processes not in their remainder sections

can participate in the decision, and the decision cannot be postponed indefinitely. (I.e.

processes cannot be blocked forever waiting to get into their critical sections.)

Bounded Waiting

- There exists a limit as to how many other processes can get into their critical sections

after a process requests entry into their critical section and before that request is granted. (

I.e. a process requesting entry into their critical section will get a turn eventually, and there is

a limit as to how many other processes get to go first.)

• We assume that all processes proceed at a non-zero speed, but no assumptions can

be made regarding the relative speed of one process versus another.

• Kernel processes can also be subject to race conditions, which can be especially

problematic when updating commonly shared kernel data structures such as open file tables

or virtual memory management. Accordingly kernels can take on one of two forms:

• Non-preemptive kernels do not allow processes to be interrupted while in kernel

mode. This eliminates the possibility of kernel-mode race conditions, but requires kernel

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

mode operations to complete very quickly, and can be problematic for realtime systems,

because timing cannot be guaranteed.

• Preemptive kernels allow for real-time operations, but must be carefully written to

avoid race conditions. This can be especially tricky on SMP systems, in which multiple kernel

processes may be running simultaneously on different processors.

2.8.4 Peterson's Solution

 Peterson's Solution is a classic software-based solution to the critical section

problem. It is unfortunately not guaranteed to work on modern hardware, due to

vagaries of load and store operations, but it illustrates a number of important

concepts.

 Peterson's solution is based on two processes, P0 and P1, which alternate between

their critical sections and remainder sections. For convenience of discussion, "this"

process is Pi, and the "other" process is Pj. (I.e. j = 1 - i)

 Peterson's solution requires two shared data items:

 int turn - Indicates whose turn it is to enter into the critical section. If turn = = i, then

process i is allowed into their critical section.

 boolean flag[2] - Indicates when a process wants to enter into their critical section.

 When process i wants to enter their critical section, it sets flag[i] to true.

 In the following diagram, the entry and exit sections are enclosed in boxes.

 In the entry section, process i first raises a flag indicating a desire to enter the critical

section.

 Then turn is set to j to allow the other process to enter their critical section if process

j so desires.

 The while loop is a busy loop (notice the semicolon at the end), which makes process

i wait as long as process j has the turn and wants to enter the critical section.

 Process i lowers the flag[i] in the exit section, allowing process j to continue if it has

been waiting.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

To prove that the solution is correct, we must examine the three conditions listed above:

• Mutual exclusion - If one process is executing their critical section when the other

wishes to do so, the second process will become blocked by the flag of the first process. If

both processes attempt to enter at the same time, the last process to execute "turn = j" will

be blocked.

• Progress - Each process can only be blocked at the while if the other process wants to

use the critical section (flag[j] = = true), AND it is the other process's turn to use the critical

section (turn = = j). If both of those conditions are true, then the other process (j) will be

allowed to enter the critical section, and upon exiting the critical section, will set flag[j] to

false, releasing process i. The shared variable turn assures that only one process at a time can

be blocked, and the flag variable allows one process to release the other when exiting their

critical section.

• Bounded Waiting - As each process enters their entry section, they set the turn

variable to be the other processes turn. Since no process ever sets it back to their own turn,

this ensures that each process will have to let the other process go first at most one time

before it becomes their turn again.

Note that the instruction "turn = j" is atomic, that is it is a single machine instruction

which cannot be interrupted.

2.8.5 Synchronization Hardware

• To generalize the solution(s) expressed above, each process when entering

their critical section must set some sort of lock, to prevent other processes from

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

entering their critical sections simultaneously, and must release the lock when exiting

their critical section, to allow other processes to proceed. Obviously it must be possible

to attain the lock only when no other process has already set a lock. Specific

implementations of this general procedure can get quite complicated, and may include

hardware solutions as outlined in this section.

• One simple solution to the critical section problem is to simply prevent a

process from being interrupted while in their critical section, which is the approach

taken by non preemptive kernels. Unfortunately this does not work well in

multiprocessor environments, due to the difficulties in disabling and the re-enabling

interrupts on all processors. There is also a question as to how this approach affects

timing if the clock interrupt is disabled.

• Another approach is for hardware to provide certain atomic operations. These

operations are guaranteed to operate as a single instruction, without interruption. One

such operation is the "Test and Set", which simultaneously sets a boolean lock variable

and returns its previous value, as shown in Figures

booleantest_and_set (boolean *target)

{

booleanrv = *target;

*target = TRUE;

return rv: }

Solution using test-and-set:

do

{ while (test_and_set(&lock))

; /* do nothing */ /* critical section */

lock = false;

/* remainder section */

} while (true);

int compare _and_swap(int *value, int expected, intnew_value)

{ int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

}

Solution using compare-and swap:

do {

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */ /* critical section */

lock = 0;

/* remainder section */

} while (true);

• The above examples satisfy the mutual exclusion requirement, but

unfortunately do not guarantee bounded waiting. If there are multiple processes trying to

get into their critical sections, there is no guarantee of what order they will enter, and any

one process could have the bad luck to wait forever until they got their turn in the critical

section. (Since there is no guarantee as to the relative rates of the processes, a very fast

process could theoretically release the lock, whip through their remainder section, and re-

lock the lock before a slower process got a chance. As more and more processes are involved

vying for the same resource, the odds of a slow process getting locked out completely

increase.)

• Figure illustrates a solution using test-and-set that does satisfy this

requirement, using two shared data structures, boolean lock and boolean waiting[N],

where N is the number of processes in contention for critical sections:

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Bounded-waiting mutual exclusion with TestAndSet().

The key feature of the above algorithm is that a process blocks on the AND of the

critical section being locked and that this process is in the waiting state. When exiting a critical

section, the exiting process does not just unlock the critical section and let the other processes

have a free-for-all trying to get in.

Rather it first looks in an orderly progression (starting with the next process on the list

) for a process that has been waiting, and if it finds one, then it releases that particular process

from its waiting state, without unlocking the critical section, thereby allowing a specific

process into the critical section while continuing to block all the others. Only if there are no

other processes currently waiting is the general lock removed, allowing the next process to

come along access to the critical section.

2.8.6 Mutex Locks

• The hardware solutions presented above are often difficult for ordinary programmers

to access, particularly on multi-processor machines, and particularly because they are often

platform-dependent.

• Therefore most systems offer a software API equivalent called mutex locks or simply

mutexes. (For mutual exclusion)

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

• The terminology when using mutexes is to acquire a lock prior to entering a critical

section, and to release it when exiting, as shown in Figure :

acquire()

{ while (!available)

; /* busy wait */

available = false;;

} release() {

available = true;

}

• Just as with hardware locks, the acquire step will block the process if the lock is in use

by another process, and both acquire () and release () operations are atomic.

• Acquire and release can be implemented as shown here, based on a Boolean variable

"available":

• One problem with the implementation shown here, (and in the hardware solutions

presented earlier), is the busy loop used to block processes in the acquire phase. These

types of locks are referred to as spinlocks, because the CPU just sits and spins while blocking

the process.

• Spinlocks are wasteful of CPU cycles, and are a really bad idea on single-cpu single

threaded machines, because the spinlock blocks the entire computer, and doesn't allow any

other process to release the lock. (Until the scheduler kicks the spinning process off of the

cpu.)

• On the other hand, spinlocks do not incur the overhead of a context switch, so they

are effectively used on multi-threaded machines when it is expected that the lock will be

released after a short time.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.8.7 Semaphores

A more robust alternative to simple mutexes is to use semaphores, which are integer

variables for which only two (atomic) operations are defined, the wait and signal operations,

as shown in the following figure.

wait(S) { while (S <= 0) ; // busy wait S--; } signal(S) {

S++;

}

Note that not only must the variable-changing steps (S-- and S++) be indivisible, it is

also necessary that for the wait operation when the test proves false that there be no

interruptions before S gets decremented. It IS okay, however, for the busy loop to be

interrupted when the test is true, which prevents the system from hanging forever.

Semaphore Usage

In practice, semaphores can take on one of two forms:

• Binary semaphores can take on one of two values, 0 or 1. They can be used to solve

the critical section problem as described above, and can be used as mutexes on systems that

do not provide a separate mutex mechanism.. The use of mutexes for this purpose is shown

in Figure.

• Counting semaphores can take on any integer value, and are usually used to count the

number remaining of some limited resource. The counter is initialized to the number of such

resources available in the system, and whenever the counting semaphore is greater than zero,

then a process can enter a critical section and use one of the resources. When the counter

gets to zero (or negative in some implementations), then the process blocks until another

process frees up a resource and increments the counting semaphore with a signal call. (The

binary semaphore can be seen as just a special case where the number of resources initially

available is just one.)

• Semaphores can also be used to synchronize certain operations between processes.

For example, suppose it is important that process P1 execute statement S1 before process P2

executes statement S2.

• First we create a semaphore named synch that is shared by the two processes, and

initialize it to zero.

Then in process P1 we insert the code:

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

S1; signal(synch);

and in process P2 we insert the code:

wait(synch) ;

S2;

Because synch was initialized to 0, process P2 will block on the wait until after P1 executes

the call to signal.

Semaphore Implementation

• The big problem with semaphores as described above is the busy loop in the

wait call, which consumes CPU cycles without doing any useful work. This type

of lock is known as a spinlock, because the lock just sits there and spins while it waits. While

this is generally a bad thing, it does have the advantage of not invoking context switches, and

so it is sometimes used in multi-processing systems when the wait time is expected to be short

- One thread spins on one processor while another completes their critical section on another

processor.

• An alternative approach is to block a process when it is forced to wait for an

available semaphore, and swap it out of the CPU. In this implementation each semaphore

needs to maintain a list of processes that are blocked waiting for it, so that one of the

processes can be woken up and swapped back in when the semaphore becomes available. (

Whether it gets swapped back into the CPU immediately or whether it needs to hang out in

the ready queue for a while is a scheduling problem.)

• The new definition of a semaphore and the corresponding wait and signal

operations are shown as follows:

typedefstruct{ int value;

struct process *list;

} semaphore; wait(semaphore *S) { S->value--;

if (S->value < 0) {

add this process to S->list; block();

}

} signal(semaphore *S) { S->value++;

if (S->value <= 0) {

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

remove a process P from S->list;

}

wakeup(P);

}

• Note that in this implementation the value of the semaphore can actually become

negative, in which case its magnitude is the number of processes waiting for that

semaphore. This is a result of decrementing the counter before checking its value.

• Key to the success of semaphores is that the wait and signal operations be atomic, that

is no other process can execute a wait or signal on the same semaphore at the same time. (

Other processes could be allowed to do other things, including working with other

semaphores, they just can't have access to this semaphore.) On single processors this can

be implemented by disabling interrupts during the execution of wait and signal;

Multiprocessor systems have to use more complex methods, including the use of

spinlocking.

Deadlocks and Starvation

• One important problem that can arise when using semaphores to block processes

waiting for a limited resource is the problem of deadlocks, which occur when multiple

processes are blocked, each waiting for a resource that can only be freed by one of

the other (blocked) processes, as illustrated in the following example.

• Let S andQbe two semaphores initialized to 1

P0P1

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

wait(S); wait(Q); wait(Q); wait(S);

... ...

signal(S); signal(Q); signal(Q);

signal(S);

Another problem to consider is that of starvation, in which one or more processes gets

blocked forever, and never get a chance to take their turn in the critical section. For example,

in the semaphores above, we did not specify the algorithms for adding processes to the

waiting queue in the semaphore in the wait() call, or selecting one to be removed from the

queue in the signal() call. If the method chosen is a FIFO queue, then every process will

eventually get their turn, but if a LIFO queue is implemented instead, then the first process to

start waiting could starve.

Priority Inversion

 A challenging scheduling problem arises when a high-priority process gets blocked

waiting for a resource that is currently held by a low-priority process.

 If the low-priority process gets pre-empted by one or more medium-priority

processes, then the high-priority process is essentially made to wait for the medium

priority processes to finish before the low-priority process can release the needed

resource, causing a priority inversion. If there are enough medium-priority processes,

then the high-priority process may be forced to wait for a very long time.

 One solution is a priority-inheritance protocol, in which a low-priority process holding

a resource for which a high-priority process is waiting will temporarily inherit the high

priority from the waiting process. This prevents the medium-priority processes from

preempting the low-priority process until it releases the resource, blocking the priority

inversion problem.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.7 THREADS

2.7.1 Overview

A thread is a basic unit of CPU utilization, consisting of a program counter, a stack, and a set

of registers, (and a thread ID.)

• Traditional (heavyweight) processes have a single thread of control - There is one

program counter, and one sequence of instructions that can be carried out at any given time.

• As shown in Figure multi-threaded applications have multiple threads within a single

process, each having their own program counter, stack and set of registers, but sharing

common code, data, and certain structures such as open files.

Single-threaded and multithreaded processes

2.7.1.1 Motivation

• Threads are very useful in modern programming whenever a process has

multiple tasks to perform independently of the others.

• This is particularly true when one of the tasks may block, and it is desired to

allow the other tasks to proceed without blocking.

• For example in a word processor, a background thread may check spelling and

grammar while a foreground thread processes user input (keystrokes), while yet a third

thread loads images from the hard drive, and a fourth does periodic automatic backups

of the file being edited.

• Another example is a web server - Multiple threads allow for multiple requests

to be satisfied simultaneously, without having to service requests sequentially or to fork

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

off separate processes for every incoming request. (The latter is how this sort of thing

was done before the concept of threads was developed. A daemon would listen at a port,

fork off a child for every incoming request to be processed, and then go back to listening

to the port.)

Multithreaded server architecture

2.7.1.2 Benefits

There are four major categories of benefits to multi-threading:

1. Responsiveness - One thread may provide rapid response while other threads are blocked or

slowed down doing intensive calculations.

2. Resource sharing - By default threads share common code, data, and other resources, which

allows multiple tasks to be performed simultaneously in a single address space.

3. Economy - Creating and managing threads (and context switches between them) is much

faster than performing the same tasks for processes.

4. Scalability, i.e. Utilization of multiprocessor architectures - A single threaded process can

only run on one CPU, no matter how many may be available, whereas the execution of a multi-

threaded application may be split amongst available processors.

(Note that single threaded processes can still benefit from multi-processor architectures when

there are multiple processes contending for the CPU, i.e. when the load average is above some

certain threshold.)

2.7.2 Multicore Programming

• A recent trend in computer architecture is to produce chips with multiple cores,

or CPUs on a single chip.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

• A multi-threaded application running on a traditional single-core chip would

have to interleave the threads, as shown in Figure.

• On a multi-core chip, however, the threads could be spread across the available

cores, allowing true parallel processing, as shown in figure

Concurrent execution on a single-core system.

Parallel execution on a multicore system

• For operating systems, multi-core chips require new scheduling algorithms to

make better use of the multiple cores available.

• As multi-threading becomes more pervasive and more important (thousands

instead of tens of threads), CPUs have been developed to support more simultaneous

threads per core in hardware.

2.7.2.1 Programming Challenges

For application programmers, there are five areas where multi-core chips present new

challenges:

 Identifying tasks - Examining applications to find activities that can be performed

concurrently.

 Balance - Finding tasks to run concurrently that provide equal value. I.e. don't waste a

thread on trivial tasks.

 Data splitting - To prevent the threads from interfering with one another.

 Data dependency - If one task is dependent upon the results of another, then the tasks

need to be synchronized to assure access in the proper order.

 Testing and debugging - Inherently more difficult in parallel processing situations, as

the race conditions become much more complex and difficult to identify.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.7.2.2 Types of Parallelism

In theory there are two different ways to parallelize the workload:

 Data parallelism divides the data up amongst multiple cores (threads), and

performs the same task on each subset of the data. For example dividing a large image up

into pieces and performing the same digital image processing on each piece on different

cores.

 Task parallelism divides the different tasks to be performed among the

different cores and performs them simultaneously.

In practice no program is ever divided up solely by one or the other of these, but instead by

some sort of hybrid combination.

2.7.3 Multithreading Models

There are two types of threads to be managed in a modern system: User threads and kernel

threads.

User threads are supported above the kernel, without kernel support. These are the

threads that application programmers would put into their programs.

Kernel threads are supported within the kernel of the OS itself. All modern OSes

support kernel level threads, allowing the kernel to perform multiple simultaneous tasks and/or

to service multiple kernel system calls simultaneously.

In a specific implementation, the user threads must be mapped to kernel threads, using

one of the following strategies.

2.7.3.1 Many-To-One Model

 In the many-to-one model, many user-level threads are all mapped onto a single kernel

thread.

 Thread management is handled by the thread library in user space, which is very

efficient.

 However, if a blocking system call is made, then the entire process blocks, even if the

other user threads would otherwise be able to continue.

 Because a single kernel thread can operate only on a single CPU, the many-to-one

model does not allow individual processes to be split across multiple CPUs.

 Green threads for Solaris and GNU Portable Threads implement the many-to one model

in the past, but few systems continue to do so today.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Many-to-one model

2.7.3.2 One-To-One Model

 The one-to-one model creates a separate kernel thread to handle each user thread.

 One-to-one model overcomes the problems listed above involving blocking system calls

and the splitting of processes across multiple CPUs.

 However the overhead of managing the one-to-one model is more significant, involving

more overhead and slowing down the system.

 Most implementations of this model place a limit on how many threads can be created.

 Linux and Windows from 95 to XP implement the one-to-one model for threads.

One-to-one model

2.7.3.3 Many-To-Many Model

 The many-to-many model multiplexes any number of user threads onto an equal or

smaller number of kernel threads, combining the best features of the one-to one and many-to-

one models.

 Users have no restrictions on the number of threads created.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

 Blocking kernel system calls do not block the entire process.

 Processes can be split across multiple processors.

 Individual processes may be allocated variable numbers of kernel threads, depending

on the number of CPUs present and other factors.

Many-to-many model

 One popular variation of the many-to-many model is the two-tier model, which allows

either many-to-many or one-to-one operation.

 IRIX, HP-UX, and Tru64 UNIX use the two-tier model, as did Solaris prior to Solaris

9.

Two-level model

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.7.4 Windows 7 Threads and SMP Management

Windows process design is driven by the need to provide support for a variety of OS

environments. Processes supported by different OS environments differ in a number of ways,

including the following:

 How processes are named

 Whether threads are provided within processes

 How processes are represented

 How process resources are protected

 What mechanisms are used for interprocess communication and

synchronization

 How processes are related to each other

Important characteristics of Windows processes are the following:

 Windows processes are implemented as objects.

 A process can be created as new process, or as a copy of an existing process.

 An executable process may contain one or more threads.

 Both process and thread objects have built-in synchronization capabilities.

 Figure illustrates the way in which a process relates to the resources it controls

or uses.

 Each process is assigned a security access

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.7.4.1 Thread States

An existing Windows thread is in one of six states

• Ready: A ready thread may be scheduled for execution. The Kernel dispatcher keeps

track of all ready threads and schedules them in priority order.

• Standby: A standby thread has been selected to run next on a particular processor. The

thread waits in this state until that processor is made available. If the standby thread’s priority

is high enough, the running thread on that processor may be preempted in favor of the standby

thread. Otherwise, the standby thread waits until the running thread blocks or exhausts its time

slice.

• Running: Once the Kernel dispatcher performs a thread switch, the standby thread

enters the Running state and begins execution and continues execution until it is preempted by

a higher priority thread, exhausts its time slice, blocks, or terminates. In the first two cases, it

goes back to the Ready state.

• Waiting: A thread enters the Waiting state when (1) it is blocked on an event (e.g., I/O),

(2) it voluntarily waits for synchronization purposes, or (3) an environment subsystem directs

the thread to suspend itself. When the waiting condition is satisfied, the thread moves to the

Ready state if all of its resources are available.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

• Transition: A thread enters this state after waiting if it is ready to run but the resources

are not available. For example, the thread’s stack may be paged out of memory. When the

resources are available, the thread goes to the Ready state.

• Terminated: A thread can be terminated by itself, by another thread, or when its parent

process terminates. Once housekeeping chores are completed, the thread is removed from the

system, or it may be retained by the Executive 6 for future reinitialization.

2.7.4.2 Symmetric Multiprocessing Support

• Windows supports SMP hardware configurations. The threads of any process,

including those of the executive, can run on any processor.

• In the absence of affinity restrictions, explained in the next paragraph, the kernel

dispatcher assigns a ready thread to the next available processor.

• This assures that no processor is idle or is executing a lower-priority thread when

a higher priority thread is ready.

• Multiple threads from the same process can be executing simultaneously on

multiple processors.

• As a default, the kernel dispatcher uses the policy of soft affinity in assigning

threads to processors:

• The dispatcher tries to assign a ready thread to the same processor it last ran on.

• This helps reuse data still in that processor’s memory caches from the previous

execution of the thread.

• It is possible for an application to restrict its thread execution only to certain

processors (hard affinity).

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

