
www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

ACCESS SPECIFIERS

Access specifier or access modifiers in java specifies accessibility (scope) of a data

member , method, constructor or class. It determines whether a data or method in a class

can be used or invoked by other class or subclass.

Types of Access Specifiers

There are 4 types of java access specifiers:

1. Private

2. Default (no speciifer)

3. Protected

4. Public

The details about accessibility level for access specifiers are shown in following table.

Access Modifiers Default Private Protected Public

Accessible inside the class Yes Yes Yes Yes

Accessible within the subclass

inside the same package
Yes No Yes Yes

Accessible outside the package No No No Yes

Accessible within the subclass

outside the package
No No Yes Yes

Private access modifier

Private data fields and methods are accessible only inside the class where it is declared i.e

accessible only by same class members. It provides low level of accessibility. Encapsulation

and data hiding can be achieved using private specifier.

Example:

Role of private specifier

class PrivateEx{

private int x; // private data

public int y; // public data

private PrivateEx(){} // private

constructorpublic PrivateEx(int a,int b){ //

public constructor

x=a;

y=b;

}

}

public class Main {

public static void main(String[] args) {

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

PrivateEx obj1=new PrivateEx(); // Error: private constructor cannot be applied

PrivateEx obj2=new PrivateEx(10,20); // public constructor can be applied to

obj2 System.out.println(obj2.y); // public data y is accessible by a non-

memberSystem.out.println(obj2.x); //Error: x has private access in PrivateEx

}

}

In this example, we have created two classes PrivateEx and Main. A class contains private

data member, private constructor and public method. We are accessing these private members

from outside the class, so there is compile time error.

Default access modifier

If the specifier is mentioned, then it is treated as default. There is no default specifier

keyword. Using default specifier we can access class, method, or field which belongs to same

package, but not from outside this package.

Example:

Role of default specifier

class DefaultEx{

int y=10; // default data

}

public class Main {

public static void main(String[] args)

{DefaultEx obj=new DefaultEx();

System.out.println(obj.y); // default data y is accessible outside the class

}

}

Sample Output:

10

In the above example, the scope of class DefaultEx and its data y is default. So it can be

accessible within the same package and cannot be accessed from outside the package.

Protected access modifier

Protected methods and fields are accessible within same class, subclass inside same pack- age

and subclass in other package (through inheritance). It cannot be applicable to class and

interfaces.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Example:

Role of protected specifier

class Base{

protected void show(){

System.out.println(“In Base”);

}

}

public class Main extends Base{

public static void main(String[] args)

{Main obj=new Main();

obj.show();

}

}

Sample Output:

In Base

In this example, show() of class Base is declared as protected, so it can be accessed from

outside the class only through inheritance. Chapter 2 explains the concept of inheritance in

detail.

Public access modifier

The public access specifier has highest level of accessibility. Methods, class, and fields

declared as public are accessible by any class in the same package or in other package.

Example:

Role of public specifier

class PublicEx{

public int no=10;

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

public class Main{

public static void main(String[] args)

{PublicEx obj=new PublicEx();

System.out.println(obj.no);

}

}

Sample Output:

10

In this example, public data no is accessible both by member and non-member of the

class.

STATIC KEYWORD

The static keyword indicates that the member belongs to the class instead of a specific

instance. It is used to create class variable and mainly used for memory management.

The static keyword can be used with:

• Variable (static variable or class variable)

• Method (static method or class method)

• Block (static block)

• Nested class (static class)

• import (static import)

Static variable

Variable declared with keyword static is a static variable. It is a class level variable com-

monly shared by all objects of the class.

• Memory allocation for such variables only happens once when the class is loaded in

the memory.

• scope of the static variable is class scope (accessible only inside the class)

• lifetime is global (memory is assigned till the class is removed by JVM).

• Automatically initialized to 0.

• It is accessible using ClassName.variablename

• Static variables can be accessed directly in static and non-static methods.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Example :

Without static With static

class StaticEx{

int no=10;

StaticEx(){

System.out.println(no);

no++;

}

}

public class Main{

public static void main(String[] args)

{

StaticEx obj1=new StaticEx();

StaticEx obj2=new StaticEx();

StaticEx obj3=new StaticEx();

}

}

Sample Output:

10

10

10

class StaticEx{

static int no=10;

StaticEx(){

System.out.println(no);

no++;

}

}

public class Main{

public static void main(String[] args)

{

StaticEx obj1=new StaticEx();

StaticEx obj2=new StaticEx();

StaticEx obj3=new StaticEx();

}

}

Sample Output:

10

11

12

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Static Method

The method declared with static keyword is known as static method. main() is most

common static method.

• It belongs to the class and not to object of a class.

• A static method can directly access only static variables of class and directly

invokeonly static methods of the class.

• Static methods cannot access non-static members(instance variables or instance

methods) of the class

• Static method cannot access this and super references

• It can be called through the name of class without creating any instance of that class.

For example, ClassName.methodName()

Example:

class StaticEx{

static int x;

int y=10;

static void display(){

System.out.println(“Static Method “+x); // static method accessing static variable

}

public void show(){

System.out.println(“Non static method “+y);

System.out.println(“Non static method “+x); // non-static method can access static variable

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

}

}

public class Main

{

public static void main(String[] args)

{StaticEx obj=new StaticEx();

StaticEx.display(); // static method invoked without using

objectobj.show();

}

}

Sample Output:

Static Method 0

Non static method 10

Non static method 0

In this example, class StaticEx consists of a static variable x and static method display().

The static method cannot access a non-static variable. If you try to access y inside static

method display(), it will result in compilation error.

/*non-static variable y cannot be referred from a

static void display(){
static context*/

System.out.println(“Static Method “+x+y);

}

Static Block

A static block is a block of code enclosed in braces, preceded by the keyword static.

• The statements within the static block are first executed automatically before main

when the class is loaded into JVM.

• A class can have any number of static blocks.

• JVM combines all the static blocks in a class as single block and executes them.

• Static methods can be invoked from the static block and they will be executed as and

when the static block gets executed.

Syntax:

static{

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

…………….

}

Example:

class StaticBlockEx{

StaticBlockEx (){

System.out.println(“Constructor”);

}

static {

System.out.println(“First static block”);

}

static void show(){

System.out.println(“Inside method”);

}

static{

System.out.println(“Second static

block”);show();

}

public static void main(String[] args) {

StaticBlockEx obj=new StaticBlockEx

();

}

static{

System.out.println(“Static in main”);

}

}

Sample Output:

First static block

Second static block

Inside method

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Static in main

Constructor

Nested class (static class)

Nested class is a class declared inside another class. The inner class must be a static class

declared using keyword static. The static nested class can refer directly to static members of

the enclosing classes, even if those members are private.

Syntax:

class OuterClass{

……..

static class InnerClass{

……….

}

}

We can create object for static nested class directly without creating object for outer class.

For example:

OuterClassName.InnerClassName=new OuterClassName.InnerClassName();

Example:

class Outer{

static int

x=10;

static class

Inner{int

y=20;

public void show(){

System.out.println(x+y); // nested class accessing its own data &

outerclass static data

}

}

}

class Main{

public static void main(String args[]){

Outer.Inner obj=new Outer.Inner(); // Creating object for static nested

classobj.show();

}

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Sample Output:

30

Static Import

The static import allows the programmer to access any static members of imported class

directly. There is no need to qualify it by its name.

Syntax:

Import static package_name;

Advantage:

• Less coding is required if you have access any static member of a class oftenly.

Disadvantage:

• Overuse of static import makes program unreadable and unmaintable.

Example:

import static java.lang.System.*;

class StaticImportEx{

public static void main(String args[]){

out.println(“Static Import Example”); //Now no need of System.out

}

}

Sample Output:

Static Import Example

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

ARRAYS

Array is a collection of elements of similar data type stored in contiguous memory

location. The array size is fixed i.e we can’t increase/decrease its size at runtime. It is index

basedand the first element is stored at 0th index.

Advantages of Array

• Code Optimization: Multiple values can be stored under common name. Date retrieval

or sorting is an easy process.

• Random access: Data at any location can be retrieved randomly using the index.

Disadvantages of Array

• Inefficient memory usage: Array is static. It is not resizable at runtime based on number

of user’s input. To overcome this limitation, Java introduce collection concept.

Types of Array

There are two types of array.

• One Dimensional Array

• Multidimensional Array

One Dimensional Array

Declaring Array Variables

The syntax for declaring an array variable is

Syntax:

dataType[] arrayName; //preferred way

Or

dataType arrayName [];

Here datatype can be a primitive data type like: int, char, Double, byte etc. arrayName is

an identifier.

Example:

int[] a;

Instantiation of an Array

Array can be created using the new keyword. To allocate memory for array elements

we must mention the array size. The size of an array must be specified by an int value and

not long or short. The default initial value of elements of an array is 0 for numeric types

and false for boolean.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Syntax:

arrayName=new datatype[size];

Or

dataType[] arrayName=new datatype[size]; //declaration and instantiation

Example:

int[] a=new int[5]; //defining an integer array for 5 elements

Alternatively, we can create and initialize array using following syntax.

Syntax:

dataType[] arrayName=new datatype[]{list of values separated by comma};

Or

dataType[] arrayName={ list of values separated by comma};

Example:

int[] a={12,13,14};

int[] a=new int[]{12,13,14};

The built-in length property is used to determine length of the array i.e. number of

elements present in an array.

Accessing array elements

The array elements can be accessed by using indices. The index starts from 0 and ends at

(array size-1). Each element in an array can be accessed using for loop.

Example:

Program to access array elements.

class Main{

public static void main(String args[]){

int a[]=new int[]{10,20,30,40};//declaration and initialization

//printing array

for(int i=0;i<a.length;i++)//length is the property of

arraySystem.out.println(a[i]);

}

}

Sample Output:

10

20

30

40

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

The for-each loop

The for-each loop is used to traverse the complete array sequentially without using

an index variable. It’s commonly used to iterate over an array or a Collections class (eg,

Array-List).

Syntax:

for(type ar:arrayName){

Statements using var;

}

Example:

Program to calculate sum of array elements.

class Main{

public static void main(String args[]){

int a[]=new int[]{10,20,30,40};//declaration and

initializationint sum=0;

for(int i:a) // calculate sum of array

elementssum+=i;

System.out.println(“Sum:”+sum);

}

}

Sample Output:

Sum:100

Multidimensional Arrays

Multidimensional arrays are arrays of arrays with each element of the array holding the

reference of other array. These are also known as Jagged Arrays.

Syntax:

dataType[][] arrayName=new datatype[rowsize][columnnsize]; // 2 dimensional

arraydataType[][][] arrayName=new datatype[][][]; // 3 dimensional

array

Example:

int[][] a=new int[3][4];

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Example:

Program to access 2D array elements

class TwoDimEx

{

public static void main(String args[])

{

// declaring and initializing 2D array

int arr[][] = { {1,1,12},{2,16,1},{12,42,2} };

// printing 2D array

for (int i=0; i< arr.length; i++)

{

for (int j=0; j < arr[i].length ; j++)

System.out.print(arr[i][j] + “ “);

System.out.println();

}

}

}

Sample Output:

1 1 12

2 16 1

12 42 2

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Jagged Array

Jagged array is an array of arrays with different row size i.e. with different dimensions.

Example:

class Main {

public static void main(String[] args) {

int[][] a = {

{11, 3, 43},

{3, 5, 8, 1},

{9},

};

System.out.println(“Length of row 1: “ + a[0].length);

System.out.println(“Length of row 2: “ + a[1].length);

System.out.println(“Length of row 3: “ + a[2].length);

}

}

Sample Output:

Length of row 1: 3

Length of row 2: 4

Length of row 3: 1

Passing an array to a method

An array can be passed as parameter to method.

Example:

Program to find minimum element in an array

class Main{

static void min(int a[]){

int min=a[0];

for(int

i=1;i<a.length;i++)

if(min>a[i])

min=a[i];

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

System.out.println(“Minimum:”+min);

}

public static void main(String args[]){

int a[]={12,13,14,5};

min(a);//passing array to method

}

}

Sample Output:

Minimum:5

Returning an array from a method

A method may also return an array.

Example:

Program to sort array elements in ascending order.

class Main{

static int[] sortArray(int a[]){

int tmp;

for(int i=0;i<a.length-1;i++) { //code for sorting

for(int j=i+1;j<=a.length-1;j++) {

if(a[i]>a[j]){

tmp=a[i];

a[i]=a[j];

a[j]=tmp;

}

}

}

return(a); // returning array

}

public static void main(String args[]){

int a[]={33,43,24,5};

a=sortArray(a);

}

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

CHARACTERISTICS OF JAVA

Simple :

• Java is Easy to write and more readable.

• Java has a concise, cohesive set of features that makes it easy to learn and use.

• Most of the concepts are drawn from C++, thus making Java learning simpler.

Secure :

• Java program cannot harm other system thus making it secure.

• Java provides a secure means of creating Internet applications.

• Java provides secure way to access web applications.

Portable :

• Java programs can execute in any environment for which there is a Java run-time

system.

• Java programs can run on any platform (Linux, Window, Mac)

• Java programs can be transferred over world wide web (e.g applets)

Object-oriented :

• Java programming is object-oriented programming language.

• Like C++, java provides most of the object oriented features.

• Java is pure OOP Language. (while C++ is semi object oriented)

Robust :

• Java encourages error-free programming by being strictly typed and performing run-

time checks.

Multithreaded :

• Java provides integrated support for multithreaded programming.

Architecture-neutral :

• Java is not tied to a specific machine or operating system architecture.

• Java is machine independent.

Interpreted :

• Java supports cross-platform code through the use of Java bytecode.

• Bytecode can be interpreted on any platform by JVM (Java Virtual Machine).

High performance :

• Bytecodes are highly optimized.

• JVM can execute bytecodes much faster .

Distributed :

• Java is designed with the distributed environment.

• Java can be transmitted over internet.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Dynamic :

• Java programs carry substantial amounts of run-time type information with them that

is used to verify and resolve accesses to objects at run time.

JAVA RUNTIME ENVIRONMENT (JRE)

The Java Runtime Environment (JRE) is a set of software tools for development of Java

applications. It combines the Java Virtual Machine (JVM), platform core classes and

supporting libraries.

JRE is part of the Java Development Kit (JDK), but can be downloaded separately. JRE

was originally developed by Sun Microsystems Inc., a wholly-owned subsidiary of Oracle

Corporation.

JRE consists of the following components:

Name of the component Elements of the component

Deployment technologies Deployment

Java Web Start Java

Plug-in

User interface toolkits Abstract Window Toolkit (AWT) Swing

Java 2D Accessibility

Image I/O Print

Service Sound

Drag and Drop (DnD)

Input methods.

Integration libraries Interface Definition Language (IDL) Java

Database Connectivity (JDBC)

Java Naming and Directory Interface (JNDI) Remote

Method Invocation (RMI)

Remote Method Invocation Over Internet Inter-Orb

Protocol (RMI-IIOP)

Scripting.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

base libraries International support

Input/Output (I/O) Eextension

mechanism Beans

Java Management Extensions (JMX) Java Native

Interface (JNI)

Math Networking

Override Mechanism Security

Serialization and Java for XML Processing (XML

JAXP).

Lang and util base libraries lang and util

Management

Versioning Zip

Instrument Reflection

Collections

Concurrency

Java Archive (JAR) Logging

Preferences API Ref Objects

Regular Expressions.

Java Virtual Machine (JVM) Java HotSpot Client

Server Virtual Machines

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

JAVA VIRTUAL MACHINE (JVM)

The JVM is a program that provides the runtime environment necessary for Java pro-

grams to execute. Java programs cannot run without JVM for the appropriate hardware and OS

platform.

Java programs are started by a command line, such as:

java <arguments> <program name>

This brings up the JVM as an operating system process that provides the Java runtime

environment. Then the program is executed in the context of an empty virtual machine.

When the JVM takes in a Java program for execution, the program is not provided as Java

language source code. Instead, the Java language source must have been converted into a

form known as Java bytecode. Java bytecode must be supplied to the JVM in a format called

class files. These class files always have a .class extension.

The JVM is an interpreter for the bytecode form of the program. It steps through one

bytecode instruction at a time. It is an abstract computing machine that enables a computer to

run a Java program.

SETTING UP AN ENVIRONMENT FOR JAVA

Local Environment Setup

Download Java and run the .exe to install Java on the machine.

Setting Up the Path for Windows

Assuming Java is installed in c:\Program Files\java\jdk directory −

• Right-click on ‘My Computer’ and select ‘Properties’.

• Click the ‘Environment variables’ button under the ‘Advanced’ tab.

• Now, alter the ‘Path’ variable so that it also contains the path to the Java executable.

Example, if the path is currently set to ‘C:\WINDOWS\SYSTEM32’, then change

your path to read ‘C:\WINDOWS\SYSTEM32;c:\Program Files\java\jdk\bin’.

POPULAR JAVA EDITORS

To write Java programs, we need any of the following:

• Notepad − Text editor

• Netbeans − A Java IDE that is open-source and free

• Eclipse − A Java IDE developed by the eclipse open-source community

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

DEFINING CLASSES IN JAVA

A class is an entity that determines how an object will behave and what the object will

contain. A class is the basic building block of an object-oriented language such as Java. It

is acting as a template that describes the data and behavior associated with instances of that

class.

When you instantiate a class means creating an object. The class contains set of variables

and methods.

The data associated with a class or object is stored in variables; the behavior associated

with a class or object is implemented with methods. A class is a blueprint from which indi-

vidual objects are created.

class MyClass {

// field,

//constructor, and

// method declarations

}

Example:

class Myclass{

public static void main(String[] args)

{

System.out.println(“Hello World!”); //Display the string.

}

}

The keyword class begins the class definition for a class named name. The variables and

methods of the class are embraced by the curly brackets that begin and end the class definition

block. The “Hello World” application has no variables and has a single method named main.

In Java, the simplest form of a class definition is

class name {

. . .

}

In general, class declarations can include these components, in order:

1. Modifiers : A class can be public or has default access.

2. Class name: The name should begin with a initial letter.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

3. Superclass(if any): The name of the class’s parent (superclass), if any, preceded by

the keyword extends. A class can only extend (subclass) one parent.

4. Interfaces(if any): A comma-separated list of interfaces implemented by the class,

if any, preceded by the keyword implements. A class can implement more than one

interface.

5. Body: The class body surrounded by braces, { }.

CONSTRUCTORS

Every class has a constructor. If the constructor is not defined in the class, the Java

compiler builds a default constructor for that class. While a new object is created, at least

one constructor will be invoked. The main rule of constructors is that they should have the

samename as the class. A class can have more than one constructor.

Constructors are used for initializing new objects. Fields are variables that provide the

state of the class and its objects, and methods are used to implement the behavior of the class

and its objects.

Rules for writing Constructor

• Constructor(s) of a class must have same name as the class name in which it resides.

• A constructor in Java cannot be abstract, final, static and synchronized.

• Access modifiers can be used in constructor declaration to control its access i.e which

other class can call the constructor.

Following is an example of a constructor −

Example

public class myclass {

public myclass() { // Constructor

}

public myclass(String name) {

// This constructor has one parameter, name.

}

}

Types of Constructors

There are two type of constructor in Java:

1. No-argument constructor:

A constructor that has no parameter is known as default constructor.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

If the constructor is not defined in a class, then compiler creates default constructor

(with no arguments) for the class. If we write a constructor with arguments or no-

argument then compiler does not create default constructor. Default constructor

provides the default values to the object like 0, null etc. depending on thetype.

// Java Program to illustrate calling a no-argument constructor

import

java.io.*;class

myclass

{

int num;

String

name;

// this would be invoked while object of that class

created.myclass()

{

System.out.println(“Constructor called”);

}

}

class myclassmain

{

public static void main (String[] args)

{

// this would invoke default

constructor.myclass m1 = new

myclass();

// Default constructor provides the default values to the object like 0,

nullSystem.out.println(m1.num);

System.out.println(m1.name);

}

}

2. Parameterized Constructor

A constructor that has parameters is known as parameterized constructor. If we want to

initialize fields of the class with your own values, then use parameterized constructor.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

// Java Program to illustrate calling of parameterized constructor.

import

java.io.*;class

myclass

{

// data members of the

class.String name;

int num;

// contructor with

arguments.myclass(String

name, int n)

{

this.name =

name;this.num =

n;

}

}

class myclassmain{

public static void main (String[] args)

{

// this would invoke parameterized

constructor.myclass m1 = new

myclass(“Java”, 2017);

System.out.println(“Name :” + m1.name + “ num :” + m1.num);

}

}

There are no “return value” statements in constructor, but constructor returns current class

instance. We can write ‘return’ inside a constructor.

CONSTRUCTOR OVERLOADING

Like methods, we can overload constructors for creating objects in different ways.

Compiler differentiates constructors on the basis of numbers of parameters, types of the

parameters and order of the parameters.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

// Java Program to illustrate constructor overloading

import

java.io.*;class

myclass

{

// constructor with one

argumentmyclass (String

name)

{

System.out.println(“Constructor with one “ + “argument - String : “ + name);

}

// constructor with two

argumentsmyclass (String

name, int id)

{

System.out.print(“Constructor with two arguments : “ +” String and Integer : “ +

name

+ “ “+ id);

}

// Constructor with one argument but with different type than

previous.myclass (long num)

{

System.out.println(“Constructor with one argument : “ +”Long : “ + num);

}

}

class myclassmain

{

public static void main(String[] args)

{

myclass m1 = new myclass (“JAVA”);

myclass m2 = new myclass (“Python”,

2017);myclass m3 = new myclass(3261567);

}

}

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Constructors are different from methods in Java

• Constructor(s) must have the same name as the class within which it defined while it

is not necessary for the method in java.

• Constructor(s) do not any return type while method(s) have the return type or void if

does not return any value.

• Constructor is called only once at the time of Object creation while method(s) can be

called any numbers of time.

Creating an Object

The class provides the blueprints for objects. The objects are the instances of the class. In

Java, the new keyword is used to create new objects.

There are three steps when creating an object from a class −

• Declaration − A variable declaration with a variable name with an object type.

• Instantiation − The ‘new’ keyword is used to create the object.

Initialization − The ‘new’ keyword is followed by a call to a constructor. This callinitializes the

new object

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

FUNDAMENTAL PROGRAMMING STRUCTURES IN JAVA

Java Comments

The java comments are statements that are not executed by the compiler and

interpreter. The comments can be used to provide information or explanation about the

variable, method, class or any statement. It can also be used to hide program code for

specific time.

Types of Java Comments

There are 3 types of comments in java.

1. Single Line Comment

2. Multi Line Comment

3. Documentation Comment

1) Java Single Line Comment

The single line comment is used to comment only one line. A single-line comment begins

with a // and ends at the end of the line.

Syntax Example

//Comment //This is single line comment

2) Java Multi Line Comment

This type of comment must begin with /* and end with */. Anything between these two

comment symbols is ignored by the compiler. A multiline comment may be several lines

long.

Syntax Example

/*Comment starts /* This is a

continues multi line

continues comment */

.

.

.

Commnent ends*/

3) Java Documentation Comment

This type of comment is used to produce an HTML file that documents our program. The

documentation comment begins with a /** and ends with a */.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Syntax Example

/**Comment start /**

* This

*tags are used in order to specify a parameter is

*or method or heading documentation

*HTML tags can also be used comment

*such as <h1> */

*

comment ends/

1.4 DATA TYPES

Java is a statically typed and also a strongly typed language. In Java, each type of data

(such as integer, character, hexadecimal, etc.) is predefined as part of the programming

language and all constants or variables defined within a given program must be described

with one of the data types.

Data types represent the different values to be stored in the variable. In java, there are two

categories of data types:

o Primitive data types

o Non-primitive data types

Figure: Data types in java

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The Primitive Types

Java defines eight primitive types of data: byte, short, int, long, char, float, double,

and boolean. The primitive types are also commonly referred to as simple types and they

are grouped into the following four groups:

i) Integers - This group includes byte, short, int, and long. All of these are signed,

positive and negative values. The width and ranges of these integer types vary widely,

as shown in the following table:

Name Width in bits Range

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

Table: Integer Data Types

ii) Floating-point numbers – They are also known as real numbers. This group includes

float and double, which represent single- and double-precision numbers, respectively.

The width and ranges of them are shown in the following table:

Table: Floating-point Data Types

Name Width in bits Range

double 64 4.9e–324 to 1.8e+308

float 32 1.4e–045 to 3.4e+038

iii) Characters - This group includes char, which represents symbols in a character set,

like letters and numbers. char is a 16-bit type. The range of a char is 0 to 65,536.

There are no negative chars.

iv) Boolean - This group includes boolean. It can have only one of two possible values,

true or false.

1.5 VARIABLES

A variable is the holder that can hold the value while the java program is executed.

A variable is assigned with a datatype. It is name of reserved area allocated in memory. In

other words, it is a name of memory location. There are three types of variables in java:

local,instance and static.

A variable provides us with named storage that our programs can manipulate. Each

variable in Java has a specific type, which determines the size and layout of the variable’s

memory; the range of values that can be stored within that memory; and the set of

operations thatcan be applied to the variable.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Before using any variable, it must be declared. The following statement expresses the

basic form of a variable declaration –

datatype variable [= value][, variable [= value] ...] ;

Here data type is one of Java’s data types and variable is the name of the variable. To de-

clare more than one variable of the specified type, use a comma-separated list.

Example

int a, b, c; // Declaration of variables a, b, and c.

int a = 20, b = 30; // initialization

byte B = 22; // Declaratrion initializes a byte type variable B.

Types of Variable

There are three types of variables in java:

• local variable

• instance variable

• static variable

Local Variable

Fig. Types of variables

• Local variables are declared inside the methods, constructors, or blocks.

• Local variables are created when the method, constructor or block is entered

• Local variable will be destroyed once it exits the method, constructor, or block.

• Local variables are visible only within the declared method, constructor, or block.

• Local variables are implemented at stack level internally.

• There is no default value for local variables, so local variables should be declared and

an initial value should be assigned before the first use.

• Access specifier cannot be used for local variables.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Instance Variable

• A variable declared inside the class but outside the method, is called instance

variable.Instance variables are declared in a class, but outside a method, constructor

or any block.

• A slot for each instance variable value is created when a space is allocated for

an object in the heap.

• Instance variables are created when an object is created with the use of the keyword

‘new’ and destroyed when the object is destroyed.

• Instance variables hold values that must be referenced by more than one

method, constructor or block, or essential parts of an object’s state that must be

present throughout the class.

• Instance variables can be declared in class level before or after use.

• Access modifiers can be given for instance variables.

• The instance variables are visible for all methods, constructors and block in the

class. It is recommended to make these variables as private. However, visibility for

subclasses can be given for these variables with the use of access modifiers.

• Instance variables have default values.

○ numbers, the default value is 0,

○ Booleans it is false,

○ Object references it is null.

• Values can be assigned during the declaration or within the constructor.

• Instance variables cannot be declared as static.

• Instance variables can be accessed directly by calling the variable name inside the class.

However, within static methods (when instance variables are given accessibility), they

should be called using the fully qualified name.

ObjectReference.VariableName.

Static variable

• Class variables also known as static variables are declared with the static keyword

ina class, but outside a method, constructor or a block.

• Only one copy of each class variable per class is created, regardless of how many

objects are created from it.

• Static variables are rarely used other than being declared as constants. Constants

are variables that are declared as public/private, final, and static. Constant

variables never change from their initial value.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Static variables are stored in the static memory. It is rare to use static variables

otherthan declared final and used as either public or private constants.

• Static variables are created when the program starts and destroyed when the program

stops.

• Visibility is same as instance variables. However, most static variables are

declared public since they must be available for users of the class.

• Default values are same as instance variables.

○ numbers, the default value is 0;

○ Booleans, it is false;

○ Object references, it is null.

• Values can be assigned during the declaration or within the constructor. Additionally,

values can be assigned in special static initializer blocks.

• Static variables cannot be local.

• Static variables can be accessed by calling with the class name ClassName.

VariableName.

• When declaring class variables as public static final, then variable names (constants)

are all in upper case. If the static variables are not public and final, the naming syntax

is the same as instance and local variables.

1.6 OPERATORS

Operator in java is a symbol that is used to perform operations. Java provides a rich set

of operators to manipulate variables. For example: +, -, *, / etc.

All the Java operators can be divided into the following groups −

• Arithmetic Operators :

Multiplicative : * / %

Additive : + -

• Relational Operators

Comparison : < > <= >= instanceof

Equality : == !=

• Bitwise Operators

bitwise AND : &

bitwise exclusive OR : ^

bitwise inclusive OR : |

Shift operator: << >> >>>

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Logical Operators

logical AND : &&

logical OR : ||

logical NOT : ~ !

• Assignment Operators: =

• Ternary operator: ? :

• Unary operator

Postfix : expr++ expr—

Prefix : ++expr --expr +expr -expr

The Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations in the same way as

theyare used in algebra. The following table lists the arithmetic operators −

Example:

int A=10,B=20;

Operator Description Example Output

+ (Addition) Adds values A & B. A + B 30

- (Subtraction) Subtracts B from A A - B -10

* (Multiplication) Multiplies values A & B A * B 200

/ (Division) Divides B by A B / A 2

% (Modulus)
Divides left-hand operand by right-

hand operand and returns remainder.

B % A

0

// Java program to illustrate arithmetic operators

public class Aoperators

{

public static void main(String[] args)

{

int a = 20, b = 10, c = 0, d = 20, e = 40, f = 30;

String x = “Thank”, y = “You”;

System.out.println(“a + b = “+(a +

b)); System.out.println(“a - b = “+(a -

b));

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

System.out.println(“x + y = “+x + y);

System.out.println(“a * b = “+(a *

b));System.out.println(“a / b = “+(a /

b));

System.out.println(“a % b = “+(a % b));

}

}

The Relational Operators

The following relational operators are supported by Java language.

Example:

int A=10,B=20;

Operator Description Example Output

== (equal to)

Checks if the values of two operands

are equal or not, if yes then condition

becomes true.

(A == B)

true

!= (not equal to)

Checks if the values of two operands

are equal or not, if values are not equal

then condition becomes true.

(A != B)

true

> (greater than)

Checks if the value of left operand is

greater than the value of right operand,

if yes then condition becomes true.

(A > B)

true

< (less than)

Checks if the value of left operand is

less than the value of right operand, if

yes then condition becomes true.

(A < B)

true

>= (greater than or

equal to)

Checks if the value of left operand is

greater than or equal to the value of

right operand, if yes then condition be-

comes true.

(A >= B)

true

<= (less than or

equal to)

Checks if the value of left operand is

less than or equal to the value of right

operand, if yes then condition becomes

true.

(A <= B)

true

instance of Operator

checks whether the object is of a partic-

ular type (class type or interface type)

(Object reference variable) instanceof

(class/interface type)

boolean re-

sult = name

instanceof

String;

True

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

// Java program to illustrate relational operators

public class operators

{

public static void main(String[] args)

{

int a = 20, b = 10;

boolean condition =

true;

//various conditional operators

System.out.println(“a == b :” + (a ==));

System.out.println(“a < b :” + (a < b));

System.out.println(“a <= b :” + (a <=));

System.out.println(“a > b :” + (a > b));

System.out.println(“a >= b :” + (a >=));

System.out.println(“a != b :” + (a !=));

System.out.println(“condition==true :” + (condition == true));

}

}

Bitwise Operators

Java supports several bitwise operators, that can be applied to the integer types, long, int,

short, char, and byte. Bitwise operator works on bits and performs bit-by-bit operation.

Example:

int a = 60,b = 13;

binary format of a & b will be as follows −

a = 0011 1100

b = 0000 1101

Bitwise operators follow the truth table:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

a b a&b a|b a^b ~a

0 0 0 0 1 1

0 1 0 1 0 1

1 0 0 1 0 0

1 1 1 1 1 0

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

The following table lists the bitwise operators −

int A=60,B=13;

Operator Description Example Output

& (bit-

wise and)

Binary AND Operator copies a

bit to the result if it exists in both

operands.

(A & B) will give 12

which is

12

(in binary

f o r m : 0 0 0 0
 1100)

| (bitwise Binary OR Operator copies a bit (A | B) 61

or) if it exists in either operand. (in binary form:

 0011 1101)

^ (bitwise Binary XOR Operator copies the (A ^ B) will give 49 49

XOR) bit if it is set in one operand but

not both.

which is 0011 0001 (in binary form:

0011 0001)

~ (bitwise

compli-

ment)

Binary Ones Complement Opera-

tor is unary and has the effect of

‘flipping’ bits.

(~A) will give -61

which is 1100 0011

in 2’s complement

form due to a signed

binary number.

-61

(in binary form:

1100 0011)

<< (left The left operands value is moved A << 2 will give 240 240

shift) left by the number of bits

specified by the right operand.

which is 1111 0000 (in binary form:

1111 0000)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

>> (right

shift)

The left operands value is moved

right by the number of bits speci-

fied by the right operand.

A >> 2 will give 15

which is 1111

15

(in binary form:

1111)

>>> (zero

fill right

shift)

The left operands value is moved

right by the number of bits speci-

fied by the right operand and

shifted values are filled up with

zeros.

A >>>2 will give 15

which is 0000 1111

15

(in binary form:

0000 1111)

// Java program to illustrate bitwise operators

public class operators

{

public static void main(String[] args)

{

int a = 10;

int b = 20;

System.out.println(“a&b = “ + (a &

b));System.out.println(“a|b = “ + (a |

b)); System.out.println(“a^b = “ + (a ^

b)); System.out.println(“~a = “ + ~a);

}

}

Logical Operators

The following are the logical operators supported by java.

Example:

A=true;

B=false;

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Operator Description Example Ouptput

&& (logical

and)

If both the operands are non-zero,

then the condition becomes true.
(A && B) false

|| (logical or) If any of the two operands are non-

zero, then the condition becomes

true.

(A || B)

true

! (logical not) Use to reverses the logical state of its

operand. If a condition is true then

Logical NOT operator will make

false.

!(A && B)

true

Assignment Operators

The following are the assignment operators supported by Java.

Operator Description Example

=

(Simple

assignment

operator)

Assigns values from right side oper-

ands to left side operand.

C = A + B will as-

sign value of

A + B into C

+=
It adds right operand to the left operand

and assigns the result to left operand.

C += A is equiva-

lent to C = C + A
(Add AND

assignment

operator)

-=
It subtracts right operand from the left

operand and assigns the result to left

operand.

C -= A is equiva-

lent to C = C – A

(Subtract

AND

assignment

operator)

*=
It multiplies right operand with the left

operand and assigns the result to left

operand.

C *= A is equiva-

lent to C = C * A

(Multiply

AND

assignment

operator)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

/=
It divides left operand with the right

operand and assigns the result to left

operand.

C /= A is equiva-

lent to C = C / A

(Divide

AND

assignment

operator)

%=

It takes modulus using two operands

and assigns the result to left operand.

C %= A is equiva-

lent to C = C % A

(Modulus

AND assign-

ment opera-

tor)

<<= Left shift AND assignment operator.
C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator.
C >>= 2 is same as

C = C >> 2

&=

Bitwise AND assignment operator.

C &= 2 is same as

C = C & 2

^=

bitwise exclusive OR and assignment

operator.

C ^= 2 is same as

C = C ^ 2

|=

bitwise inclusive OR and assignment

operator.

C |= 2 is same as C

= C | 2

// Java program to illustrate assignment operators

public class operators

{

public static void main(String[] args)

{

int a = 20, b = 10, c, d, e = 10, f = 4, g =

9;c = b;

System.out.println(“Value of c = “ +

c);a += 1;

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

b -= 1;

e *= 2;

f /= 2;

System.out.println(“a, b, e, f = “ +a + “,” + b + “,” + e + “,” + f);

}

}

Ternary Operator

Conditional Operator (? :)

Since the conditional operator has three operands, it is referred as the ternary operator.

This operator consists of three operands and is used to evaluate Boolean expressions. The

goal of the operator is to decide, which value should be assigned to the variable. The operator

is written as –

variable x = (expression) ? value if true : value if false

Following is an example −

Example:

public class example

{

public static void main(String args[])

{

int a,

b;a =

10;

b = (a == 0) ? 20: 30;

System.out.println(“b : “ + b);

}

}

Unary Operators

Unary operators use only one operand. They are used to increment, decrement or negate

a value.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Operator Description

- Unary minus negating the values

+ Unary plus converting a negative value to positive

++ :Increment operator incrementing the value by 1

— : Decrement operator decrementing the value by 1

! : Logical not operator inverting a boolean value

// Java program to illustrate unary operators

public class operators

{

public static void main(String[] args)

{

int a = 20, b = 10, c = 0, d = 20, e = 40, f = 30;

boolean condition =true;

c = ++a;

System.out.println(“Value of c (++a) = “ +c);

c = b++;

System.out.println(“Value of c (b++) = “ +);

c = --d;

System.out.println(“Value of c (--d) = “+c);

c = --e;

System.out.println(“Value of c (--e) = “ + c);

System.out.println(“Value of !condition =” + !condition);

}

}

Precedence of Java Operators

Operator precedence determines the grouping of operands in an expression. This affects

how an expression is evaluated. Certain operators have higher precedence than others; for

example, the multiplication operator has higher precedence than the addition operator

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

For example, the following expression,

x = 10 + 5 * 2;

is evaluated. So, the output is 20, not 30. Because operator * has higher precedence

than +.

The following table shows the operators with the highest precedence at the top of the table

and those with the lowest at the bottom. Within an expression, higher precedence operators

will be evaluated first.

Category Operator Associativity

Postfix >() [] . (dot operator) Left to right

Unary >++ - - ! ~ Right to left

Multiplicative >* / Left to right

Additive >+ - Left to right

Shift >>> >>> << Left to right

Relational >> >= < <= Left to right

Equality >== != Left to right

Bitwise AND >& Left to right

Bitwise XOR >^ Left to right

Bitwise OR >| Left to right

Logical AND >&& Left to right

Logical OR >|| Left to right

Conditional ?: Right to left

Assignment >= += -= *= /= %= >>=

<<= &= ^= |=

Right to left

CONTROL FLOW

Java Control statements control the flow of execution in a java program, based on data

values and conditional logic used. There are three main categories of control flow statements;

Selection statements: if, if-else and switch.

Loop statements: while, do-while and for.

Transfer statements: break, continue, return, try-catch-finally and assert.

Selection statements

The selection statements checks the condition only once for the program execution.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

If Statement:

The if statement executes a block of code only if the specified expression is true. If the

value is false, then the if block is skipped and execution continues with the rest of the pro-

gram.

The simple if statement has the following syntax:

if (<conditional expression>)

<statement action>

The following program explains the if statement.

public class programIF{

public static void main(String[] args)

{

int a = 10, b =

20;if (a > b)

System.out.println(“a >

b”);if (a < b)

System.out.println(“b <

a”);

}

}

The If-else Statement

The if/else statement is an extension of the if statement. If the condition in the if statement

fails, the statements in the else block are executed. The if-else statement has the following

syntax:

if (<conditional expression>)

<statement action>

else

<statement action>

The following program explains the if-else statement.

public class ProgramIfElse

{

public static void main(String[] args)

{

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

int a = 10, b =

20;if (a > b)

{

System.out.println(“a > b”);

}

else

{

System.out.println(“b < a”);

}

}

}

Switch Case Statement

The switch case statement is also called as multi-way branching statement with several

choices. A switch statement is easier to implement than a series of if/else statements. The

switch statement begins with a keyword, followed by an expression that equates to a no long

integral value.

After the controlling expression, there is a code block that contains zero or more labeled

cases. Each label must equate to an integer constant and each must be unique. When the

switch statement executes, it compares the value of the controlling expression to the values

of each case label.

The program will select the value of the case label that equals the value of the control-

ling expression and branch down that path to the end of the code block. If none of the case

label values match, then none of the codes within the switch statement code block will be

executed.

Java includes a default label to use in cases where there are no matches. A nested switch

within a case block of an outer switch is also allowed. When executing a switch statement,

the flow of the program falls through to the next case. So, after every case, you must insert a

break statement.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The syntax of switch case is given as follows:

switch (<non-long integral expression>) {

case label
1
: <statement

1>

case label
2
: <statement

2>

…

case label
n
: <statement

n>

default: <statement>

} // end switch

The following program explains the switch statement.

public class ProgramSwitch

{

public static void main(String[] args)

{

int a = 10, b = 20, c =

30;int status = -1;

if (a > b && a > c)

{

status = 1;

}

else if (b > c)

{

status = 2;

}

else

{

status = 3;

}

switch (status)

{

case 1:System.out.println(“a is the greatest”);

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

break;

case 2:System.out.println(“b is the

greatest”);break;

case 3:System.out.println(“c is the

greatest”);break;

default:System.out.println(“Cannot be determined”);

}

}

}

Iteration statements

Iteration statements execute a block of code for several numbers of times until the condi-

tion is true.

While Statement

The while statement is one of the looping constructs control statement that executes a

block of code while a condition is true. The loop will stop the execution if the testing expres-

sion evaluates to false. The loop condition must be a boolean expression. The syntax of the

while loop is

while (<loop condition>)

<statements>

The following program explains the while statement.

public class ProgramWhile

{

public static void main(String[] args)

{

int count = 1;

System.out.println(“Printing Numbers from 1 to

10”);while (count <= 10)

{

System.out.println(count++);}

}

}

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Do-while Loop Statement

The do-while loop is similar to the while loop, except that the test condition is performed

at the end of the loop instead of at the beginning. The do—while loop executes atleast once

without checking the condition.

It begins with the keyword do, followed by the statements that making up the body of the

loop. Finally, the keyword while and the test expression completes the do-while loop. When

the loop condition becomes false, the loop is terminated and execution continues with the

statement immediately following the loop.

The syntax of the do-while loop is

do

<loop body>

while (<loop condition>);

The following program explains the do--while statement.

public class DoWhileLoopDemo {

public static void main(String[] args)

{int count = 1;

System.out.println(“Printing Numbers from 1 to

10”);do {

System.out.println(count++);

} while (count <= 10);

}

}

For Loop

The for loop is a looping construct which can execute a set of instructions for a specified

number of times. It’s a counter controlled loop.

The syntax of the loop is as follows:

for (<initialization>; <loop condition>; <increment expression>)

<loop body>

• initialization statement executes once before the loop begins. The <initialization>

section can also be a comma-separated list of expression statements.

• test expression. As long as the expression is true, the loop will continue. If this

expression is evaluated as false the first time, the loop will never be executed.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Increment(Update) expression that automatically executes after each repetition of the

loop body.

• All the sections in the for-header are optional. Any one of them can be left empty, but

the two semicolons are mandatory.

The following program explains the for statement.

public class ProgramFor

{

public static void main(String[] args)

{

System.out.println(“Printing Numbers from 1 to10”);

for (int count = 1; count <= 10; count++)

{

System.out.println(count);

}

}

}

Transfer statements

Transfer statements are used to transfer the flow of execution from one statement to an-

other.

Continue Statement

A continue statement stops the current iteration of a loop (while, do or for) and causes

execution to resume at the top of the nearest enclosing loop. The continue statement can be

used when you do not want to execute the remaining statements in the loop, but you do not

want to exit the loop itself.

The syntax of the continue statement is

continue; // the unlabeled form

continue <label>; // the labeled form

It is possible to use a loop with a label and then use the label in the continue statement.

The label name is optional, and is usually only used when you wish to return to the outermost

loop in a series of nested loops.

The following program explains the continue statement.

public class ProgramContinue

{

public static void main(String[] args)

{System.out.println(“Odd Numbers”);

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and School

Download Binils Android App in Playstore Download Photoplex

for (int i = 1; i <= 10; ++i) {

if (i % 2 == 0)

continue;

System.out.println(i + “\t”);

}

}

}

Break Statement

The break statement terminates the enclosing loop (for, while, do or switch statement).

Break statement can be used when we want to jump immediately to the statement following

the enclosing control structure. As continue statement, can also provide a loop with a label,

and then use the label in break statement. The label name is optional, and is usually only used

when you wish to terminate the outermost loop in a series of nested loops.

The Syntax for break statement is as shown below;

break; // the unlabeled form break

<label>; // the labeled form

The following program explains the break statement.

public class ProgramBreak {

public static void main(String[] args) {

System.out.println(“Numbers 1 - 10”);

for (int i = 1;; ++i) {

if (i == 11)

break;

// Rest of loop body skipped when i is even

System.out.println(i + “\t”);

}

}

}

The transferred statements such as try-catch-finally, throw will be explained in the later

chapters.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

METHODS IN JAVA

A method is a collection of statement that performs specific task. In Java, each

method is a part of a class and they define the behavior of that class. In Java, method is a

jargon used for method.

Advantages of methods

• Program development and debugging are easier

• Increases code sharing and code reusability

• Increases program readability

• It makes program modular and easy to understanding

• It shortens the program length by reducing code redundancy

Types of methods

There are two types of methods in Java programming:

• Standard library methods (built-in methods or predefined methods)

• User defined methods

Standard library methods

The standard library methods are built-in methods in Java programming to handle tasks

such as mathematical computations, I/O processing, graphics, string handling etc. These

methods are already defined and come along with Java class libraries, organized in packages.

In order to use built-in methods, we must import the corresponding packages. Some of library

methods are listed below.

Packages Library Methods Descriptions

java.lang.Math acos() Computes arc cosine of the argument

All maths related methods

are defined in this class

exp()

abs()

Computes the e raised to given power

Computes absolute value of argument

 log() Computes natural logarithm

 sqrt() Computes square root of the argument

 pow() Computes the number raised to given

power

java.lang.String

All string related methods

are defined in this class

charAt()

concat()

compareTo()

Returns the char value at the specified

index.

Concatenates two string

indexOf()
Compares two string

toUpperCase()

Returns the index of the first occurrence
of the given character

converts all of the characters in the String

to upper case

java.awt add() inserts a component

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

contains classes for

graphics

setSize()

setLayout()

set the size of the component

defines the layout manager

setVisible() changes the visibility of the component

Example:

Program to compute square root of a given number using built-in

method.public class MathEx {

public static void main(String[] args) {

System.out.print(“Square root of 14 is: “ +

Math.sqrt(14));

}

}

Sample Output:

Square root of 14 is: 3.7416573867739413

User-defined methods

The methods created by user are called user defined methods.

Every method has the following.

• Method declaration (also called as method signature or method prototype)

• Method definition (body of the method)

• Method call (invoke/activate the method)

Method Declaration

The syntax of method declaration is:

Syntax:

return_type method_name(parameter_list);

Here, the return_type specifies the data type of the value returned by method. It will be

void if the method returns nothing. method_name indicates the unique name assigned to

the method. parameter_list specifies the list of values accepted by the method.

Method Definition

Method definition provides the actual body of the method. The instructions to complete a

specific task are written in method definition. The syntax of method is as follows:

Syntax:

modifier return_type method_name(parameter_list)

{

// body of the method

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Here,

Modifier – Defines the access type of the method i.e accessibility

region of method in the application

return_type – Data type of the value returned by the method or void if

method returns nothing

method_name – Unique name to identify the method. The name must follow

the rules of identifier

parameter_list – List of input parameters separated by comma. It must be

like datatype parameter1,datatype parameter2,……

List will be empty () in case of no input parameters.

method body – block of code enclosed within { and } braces to perform

specific task

The first line of the method definition must match exactly with the method prototype. A

method cannot be defined inside another method.

Method Call

A method gets executed only when it is called. The syntax for method call is.

Syntax:

method_name(parameters);

When a method is called, the program control transfers to the method definition where

the actual code gets executed and returns back to the calling point. The number and type of

parameters passed in method call should match exactly with the parameter list mentioned in

method prototype.

Example:

Modifier

Return type

class Addition{

public int add(int a,int b){

return(a+b);

}

Method name

Body of the method

Parameter list

}

class Main{

Method call

Method return

}

}

public static void main(String args[]){

int sum=0,a=1,b=12;

Addition obj=new Addition();

sum=obj.add(a,b);

System.out.println(“Sum:”+sum);

Sample Output:

Sum:13

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Memory allocation for methods calls

Method calls are implemented using stack. When a method is called, the parameters

passed in the call, local variables defined inside method, and return value of the method

are stored in stack frame. The allocated stack frame gets deleted automatically at the end of

method execution.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Types of User-defined methods

The methods in C are classified based on data flow between calling method and called

method. They are:

• Method with no arguments and no return value

• Method with no arguments and a return value

• Method with arguments and no return value

• Method with arguments and a return value.

Method with no arguments and no return value

In this type of method, no value is passed in between calling method and called method.

Here, when the method is called program control transfers to the called method, executes the

method, and return back to the calling method.

Example:

Program to compute addition of two numbers (no argument and no return value)

public class Main{

public void add(){ // method definition with no arguments and no return

valueint a=10,b=20;

System.out.println(“Sum:”+(a+b));

}

public static void main(String[] args)

{Main obj=new Main();

obj.add(); // method call with no arguments

}

}

Sample Output:

Sum:30

Method with no arguments and a return value

In this type of method, no value is passed from calling method to called method but a

value is returned from called method to calling method.

Example:

Program to compute addition of two numbers (no argument and with return value)

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

public class Main {

public int add(){ // method definition with no arguments and with return value

int a=10,b=20;

return(a+b);

}

public static void main(String[] args)

{int sum=0;

Main obj=new Main();

sum=obj.add();

/* method call with no arguments. The value returned

from the method is assigned to variable sum */

System.out.println(“Sum:”+sum);

}

}

Sample Output:

Sum:30

Method with arguments and no return value

In this type of method, parameters are passed from calling method to called method but

no value is returned from called method to calling method.

Example:

Program to compute addition of two numbers (with argument and without return value)

public class Main {

public void add(int x,int y){ // method definition with arguments and no return value

System.out.println(“Sum:”+(x+y));

}

public static void main(String[] args)

{int a=10,b=20;

Main obj=new Main();

obj.add(a,b); // method call with arguments

}

}

Sample Output:

Sum:30

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Method with arguments and a return value.

In this type of method, there is data transfer in between calling method and called method.

Here, when the method is called program control transfers to the called method with argu-

ments, executes the method, and return the value back to the calling method.

Example:

Program to compute addition of two numbers (with argument and return value)

public class Main {

public int add(int x,int y){ // function definition with arguments and return

valuereturn(x+y); //return value

}

public static void main(String[] args) {int a=10,b=20;

Main obj=new Main();

System.out.println(“Sum:”+obj.add(a,b));

}

}

Sample Output:

Sum:30

1.5 PARAMETER PASSING IN JAVA

The commonly available parameter passing methods are:

• Pass by value

• Pass by reference

Pass by Value

In pass by value, the value passed to the method is copied into the local parameter

and any change made inside the method only affects the local copy has no effect on the

original copy. In Java, parameters are always passed by value. All the scalar variables (of

type int, long, short, float, double, byte, char, Boolean) are always passed to the methods by

value. Only the non-scalar variables like Object, Array, String are passed by reference.

Note:

Scalar variables are singular data with one value; Non scalar variables are data with mul-

tiple values.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Example:

Pass by value

class Swapper{

int a;

int b;

Swapper(int x, int y) // constructor to initialize variables

{

a = x;

b = y;

}

void swap(int x, int y) // method to interchange values

{

int temp;

temp = x;

x=y;

y=temp;

}

}

/* only the local copy x, y gets swapped. The original object

value a, b remains unchanged*/

class Main{

public static void main(String[] args){

Swapper obj = new Swapper(10, 20); // create object

System.out.println(“Before swapping: a=”+obj.a+” b=”+obj.b);

obj.swap(obj.a,obj.b); // call the method by passing class object as

parameterSystem.out.println(“Before swapping: a=”+obj.a+” b=”+obj.b);

}

}

Sample Output:

Before swapping: a=10 b=20

After swapping: a=10 b=20

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Here, to call method swap() first create an object for class Swapper. Then the method is

called by passing object values a and b as input parameters. As these values are scalar, the

parameters are passed using pass by value technique. So the changes carried out inside the

method are not reflected in original value of a and b.

Pass by Reference

In pass-by-reference, reference (address) of the actual parameters is passed to the local

parameters in the method definition. So, the changes performed on local parameters are

reflected on the actual parameters.

Example:

class Swapper{

int a;

int b;

Swapper(int x, int y) // constructor to initialize variables

{

a = x;

b = y;

}

void swap(Swapper ref) // method to interchange values

{

int temp;

temp =

ref.a; ref.a =

ref.b; ref.b =

temp;

}

}

/* Object is passed by reference. So the original object value

a, b gets changed*/

class PassByRef{

public static void main(String[] args){

Swapper obj = new Swapper(10, 20); // create object

System.out.println(“Before swapping: a=”+obj.a+” b=”+obj.b);

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

obj.swap(obj); // call the method by passing class object as

parameterSystem.out.println(“After swapping: a=”+obj.a+”

b=”+obj.b);

}

}

Sample Output:

Before swapping: a=10 b=20

After swapping: a=20 b=10

In this example, the class object is passed as parameter using pass by reference technique.

So the method refers the original value of a and b.

Method using object as parameter and returning objects

A method can have object as input parameter (see pass by reference) and can return a class

type object.

Example:

class Addition{

int no;

Addition(){}

Addition(int x){

no=x;

}

public Addition display(Addition oa){

Addition tmp=new Addition();

tmp.no=no+oa.no;

return(tmp);

/*method with same class object as input parameter

&return value*/

}

}

class Main{

public static void main(String

args[]){Addition a1=new

Addition(10); Addition a2=new

Addition(10); Addition a3;

a3=a1.display(a2); // method is invoked using the object a1 with input parameter a2

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

System.out.println(“a1.no=”+a1.no+” a2.no=”+a2.no+” a3.no=”+a3.no);

}

}

Sample Output:

a1.no=10 a2.no=10 a3.no=20

Here, display() accepts class Addition object a2 as input parameter. It also return same

class object as output. This method adds the value of invoking object a1 and input parameter

a2. The summation result is stored in temporary object tmp inside the method. The value re-

turned by the method is received using object a3 inside main().

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
http://www.binils.com/

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

OBJECT-ORIENTED PROGRAMMING

Object-oriented programming (OOP) is a programming paradigm based on the concept

of“objects”, which may contain data, in the form of fields, often known as attributes; and

code,in the form of procedures, often known as methods.

List of object-oriented programming languages

Ada 95 Fortran 2003 PHP since v4,

BETA Graphtalk Python

C++ IDLscript Ruby

C# J# Scala

COBOL Java Simula

Cobra LISP Smalltalk

ColdFusion Objective-C Tcl

Common Lisp Perl since v5

Abstraction

Abstraction is one of the key concepts of object-oriented programming (OOP)

languages. Its main goal is to handle complexity by hiding unnecessary details from the

user. This enables the user to implement more complex logic on top of the provided

abstraction without understanding about all the hidden complexity.

A powerful way to manage abstraction is through the use of hierarchical

classifications. This allows us to layer the semantics of complex systems, breaking them

into more manage-able pieces.

➢ Hierarchical abstractions of complex systems can also be applied to

computer programs.

➢ The data from a traditional process oriented program can be transformed by

abstraction into its component object

➢ A sequence of process steps can become a collection of messages

between these objects.

➢ Thus, each of these objects describes its own unique behavior.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

public class Dog

{

String breed;

int age;

String color;

void barking()

{

}

}

➢ We can treat these objects as concrete entities that respond to messages

telling them to do something.

Object

Objects have states and behaviors. Example: A dog has states - color, name, breed as

wellas behaviors – wagging the tail, barking, eating. An object is an instance of a class.

Class

A class can be defined as a template/blueprint that describes the behavior/state that

theobject of its type support.

Objects in Java

If we consider the real-world, we can find many objects around us, cars, dogs, humans,

etc. All these objects have a state and a behavior.

If we consider a dog, then its state is - name, breed, color, and the behavior is - barking,

wagging the tail, running.

If we compare the software object with a real-world object, they have very similar

characteristics.

Software objects also have a state and a behavior. A software object’s state is stored in

fields and behavior is shown via methods.

So in software development, methods operate on the internal state of an object and

theobject-to-object communication is done via methods.

Classes in Java

A class is a blueprint from which individual objects are created.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

A class can contain any of the following variable types.

➢ Local variables − Variables defined inside methods, constructors or blocks are

called local variables. The variable will be declared and initialized within the

method and the variable will be destroyed when the method has completed.

➢ Instance variables − Instance variables are variables within a class but

outside any method. These variables are initialized when the class is

instantiated. Instance variables can be accessed from inside any method,

constructor or blocks of that particular class.

➢ Class variables − Class variables are variables declared within a class, outside

any method, with the static keyword.

A class can have any number of methods to access the value of various kinds of methods.

In the above example, barking(), hungry() and sleeping() are methods.

Encapsulation

Encapsulation is the mechanism that binds together code and the data it manipulates, and

keeps both safe from outside interference and misuse.

➢ In Java, the basis of encapsulation is the class. There are mechanisms for hiding

the complexity of the implementation inside the class.

➢ Each method or variable in a class may be marked private or public.

➢ The public interface of a class represents everything that external users of the

classneed to know, or may know.

➢ The private methods and data can only be accessed by code that is a member of

theclass.

➢ Therefore, any other code that is not a member of the class cannot access a

private method or variable.

➢ Since the private members of a class may only be accessed by other parts of

programthrough the class’ public methods, we can ensure that no improper actions

take place.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Inheritance

Inheritance is the process by which one object acquires the properties of another object.

For example a Dog is part of the classification mammal which in turn is part of the

animal class.Without the use of hierarchies, each object would need to define all of its

characteristics explicitly. However, by use of inheritance, an object need only define those

qualities that make it unique within its class. It can inherit its general attributes from its

parent. Thus, inheritance makes it possible for one object to be a specific instance of a

more general case.

Polymorphism

Polymorphism (from Greek, meaning “many forms”) is a feature that allows one

interface to be used for a general class of actions. The specific action is determined by the

exact natureof the situation.

For eg, a dog’s sense of smell is polymorphic. If the dog smells a cat, it will bark and

runafter it. If the dog smells its food, it will salivate and run to its bowl. The same sense of

smellis at work in both situations. The difference is what is being smelled, that is, the type

of databeing operated upon by the dog’s nose.

Consider a stack (which is a last-in, first-out LIFO list). We might have a program requires

three types of stacks. One stack is used for integer values, one for floating-point values,and

one for characters. The algorithm that implements each stack is the same, even though the

data being stored differs.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

OOP CONCEPTS IN JAVA

OOP concepts in Java are the main ideas behind Java’s Object Oriented

Programming.

They are:

Object

Any entity that has state and behavior is known as an object. It can be either

physical or logical.

For example: chair, pen, table, keyboard, bike etc.

Class & Instance

Collection of objects of the same kind is called class. It is a logical entity.

A Class is a 3-Compartment box encapsulating data and operations as shown in figure.

Class Name

Static Attributes

Dynamic Behaviors

Figure: Class Structure

The followings figure shows two classes ‘Student’ and ‘Circle’.

Name (Identifier) Studen

t

Circl

e

Variables (Static Attributes) name, gender, dept, marks radius, color

Methods

(Dynamic Behaviors)

getDetails()

calculateGrade()

getRadius()

printArea()

Figure: Examples of classes

A class can be visualized as a three-compartment box, as illustrated:

1. Name (or identity): identifies the class.

2. Variables (or attribute, state, field): contain the static attributes of the class.

3. Methods (or behaviors, function, operation): contain the dynamic behaviors of

theclass.

An instance is an instantiation of a class. All the instances of a class have similar

properties, as described in the class definition. The term “object” usually refers to

instance.

For example, we can define a class called “Student” and create three instances of the

class“Student” for “John”, “Priya” and “Anil”.

The following figure shows three instances of the class Student, identified as

“John”,“Priya” and “Anil”.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

John : Student Priya : Student Anil : Student

name = “John”

gender = “male”

name = “Priya”

gender = “female”

name = “Anil”

gender = “male”

dept = “CSE”

mark = 88

gender = “female”

dept = “IT”

gender = “male”

dept = “IT”

getDetails()

calculateGrade()

getDetails()

calculateGrade()

getDetails()

calculateGrade()

Abstraction

Figure: Instances of a class ‘Student’

Abstraction refers to the quality of dealing with ideas rather than events. It basically

dealswith hiding the details and showing the essential things to the user.

We all know how to turn the TV on, but we don’t need to know how it works in order

to enjoy it.

Abstraction means simple things like objects, classes, and variables represent more

complex underlying code and data. It avoids repeating the same work multiple times. In

java, weuse abstract class and interface to achieve abstraction.

Abstract class:

Abstract class in Java contains the ‘abstract’ keyword. If a class is declared abstract,

it cannot be instantiated. So we cannot create an object of an abstract class. Also, an

abstract class can contain abstract as well as concrete methods.

To use an abstract class, we have to inherit it from another class where we have to

provide implementations for the abstract methods there itself, else it will also become an

abstract class.

Interface:

Interface in Java is a collection of abstract methods and static constants. In an

interface, each method is public and abstract but it does not contain any constructor.

Along with abstraction, interface also helps to achieve multiple inheritance in Java.

So an interface is a group of related methods with empty bodies.

Encapsulation

Binding (or wrapping) code and data together into a single unit is known as

encapsulation.

It means to hide our data in order to make it safe from any modification.

The best way to understand encapsulation is to look at the example of a medical

capsule, where the drug is always safe inside the capsule. Similarly, through

encapsulation the method and variables of a class are well hidden and safe.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

A java class is the example of encapsulation. Encapsulation can be achieved in Java

by:

• Declaring the variables of a class as private.

• Providing public setter and getter methods to modify and view the variables

values.

Inheritance

This is a special feature of Object Oriented Programming in Java. It lets

programmerscreate new classes that share some of the attributes of existing classes.

For eg, a child inherits the properties from his father.

Similarly, in Java, there are two classes:

1. Parent class (Super or Base class)

2. Child class (Subclass or Derived class)

A class which inherits the properties is known as ‘Child class’ whereas a class

whoseproperties are inherited is known as ‘Parent class’.

Inheritance is classified into 4 types:

Single Inheritance

It enables a derived class to inherit the properties and behavior from a single

parentclass.

Here, Class A is a parent class and Class B is a child class which inherits the

propertiesand behavior of the parent class.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Multilevel Inheritance

When a class is derived from a class which is also derived from another class, i.e. a

classhaving more than one parent class but at different levels, such type of inheritance is

called Multilevel Inheritance.

Here, class B inherits the properties and behavior of class A and class C inherits the

properties of class B. Class A is the parent class for B and class B is the parent class for C.

So, classC implicitly inherits the properties and methods of class A along with Class B.

Hierarchical Inheritance

When a class has more than one child class (sub class), then such kind of inheritance is

knownas hierarchical inheritance.

Here, classes B and C are the child classes which are inheriting from the parent class

A.

Hybrid Inheritance

Hybrid inheritance is a combination of multiple inheritance and multilevel

inheritance. Since multiple inheritance is not supported in Java as it leads to ambiguity,

this type of inheritance can only be achieved through the use of the interfaces.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Here, class A is a parent class for classes B and C, whereas classes B and C are the parent

classes of D which is the only child class of B and C.

Polymorphism

Polymorphism means taking many forms, where ‘poly’ means many and ‘morph’

meansforms. It is the ability of a variable, function or object to take on multiple forms. In

other words, polymorphism allows us to define one interface or method and have multiple

implementations.

For eg, Bank is a base class that provides a method rate of interest. But, rate of interest

may differ according to banks. For example, SBI, ICICI and AXIS are the child classes

that provide different rates of interest.

Polymorphism in Java is of two types:

• Run time polymorphism

• Compile time polymorphism

Run time polymorphism:

In Java, runtime polymorphism refers to a process in which a call to an overridden

method is resolved at runtime rather than at compile-time. Method overriding is an

example of run time polymorphism.

Compile time polymorphism:

In Java, compile time polymorphism refers to a process in which a call to an

overloaded method is resolved at compile time rather than at run time. Method overloading

is an exampleof compile time polymorphism.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

