## ESTIMATION OF HARDNESS

### 1.3 ESTIMATION OF HARDNESS

## Estimation of hardness by EDTA method

## Principle

## Preparation of solutions

## Experimental procedure

## Calculations

### 1.4 PROBLEMS BASED ON EDTA METHOD

### 1.3 ESTIMATION OF HARDNESS

The estimation of hardness of water is of great importance for the chemical industry in general. There are various methods available for estimating the hardness of water.

Some of them are
$>$ Soap titration method
$>$ Alkali titration method
$>$ EDTA method
Here, let us discuss the determination of hardness of water by using EDTA method.

## ESTIMATION OF HARDNESS BY EDTA METHOD

EDTA is Ethylene Di-amine Tetra Acetic acid. The structure of EDTA is
Figure 1.3.1 Structure of EDTA
Source: https://www.toppr.com/ask/question/the-correct-structure-of-ethylenediamineteraaceticacid-edta-is/

Since, EDTA is insoluble in water; its disodium salt is used as a complexing agent.

## Principle

The amount of hardness causing ions $\left(\mathrm{Ca}^{2+}\right.$ and $\left.\mathrm{Mg}^{2+}\right)$ can be estimated by titrating the water sample against EDTA using Eriochrome-Black-T indicator (EBT) at a pH of 8-10. In order tomaintain the pH , buffer solution ( $\mathrm{NH} 4 \mathrm{Cl}-\mathrm{NH} 4 \mathrm{OH}$ mixture) is added. Only at this pH such a complexation is possible.

When the EBT indicator is added to the water sample, it forms wine red coloured weak complex with $\mathrm{Ca}^{2+}$ and $\mathrm{Mg}^{2+}$ ions.

$$
\left[\mathrm{Ca}^{2+} \mathrm{Mg}^{2+}\right]+\mathrm{EBT} \xrightarrow[\text { Wine red colored weak complex }]{\mathrm{pH}=8-10}[\mathrm{Ca} \mathrm{Mg} \mathrm{EBT]} \mathrm{complex}
$$

When this solution is titrated against EDTA, it replaces the indicator from the weak complex form stable EDTA complex. When all the hardness causing ions are complexed by EDTA,the indicator is set free. The color of the free indicator is steel blue. Thus the end point is the changeof color from wine red to steel blue.

$$
\underset{\text { Wine red colored weak complex }}{[\mathrm{Ca} \mathrm{Mg} \mathrm{EBT]} \mathrm{complex} \mathrm{+} \mathrm{EDTA}} \xrightarrow{\mathrm{pH}=8-10}[\mathrm{Ca} \mathrm{Mg} \mathrm{EDTA]+EBT}
$$

## Preparation of solutions

## EDTA Solution

It is prepared by dissolving 4 gms of EDTA in 1000 ml of distilled water.

## Standard hard water

1 gm of pure $\mathrm{CaCO}_{3}$ is dissolved in minimum quantity of HCl and then made up to 1000 ml using distilled water.
$\therefore 1 \mathrm{ml}$ of standard hard water $\equiv 1 \mathrm{mg}$ of $\mathrm{CaCO}_{3}$ equivalent hardness.

## EBT indicator

0.5 gms of EBT is dissolved in 100 ml of alcohol.

## Buffer solution

67.5 gms of $\mathrm{NH}_{4} \mathrm{Cl}$ and 570 ml of $\mathrm{NH}_{3}$ are dissolved and the solution is made up to 1000 mlusing distilled water.

## Experimental procedure

Standardization of EDTA
Pipette out 50 ml of standard hard water into a clean conical flask. Add 10 ml of buffer solution and 4-5 drops of EBT indicator and titrate it against EDTA solution taken in the burette. The end point is the change of colour from wine red to steel blue.
$>$ Let the volume of EDTA consumed be $\mathrm{V}_{1} \mathrm{ml}$

## Estimation of total hardness of water sample

Pipette out 50 ml of the given hard water sample into a clean conical flask and titrate it against EDTA as before.
$>$ Let the volume of EDTA consumed be $\mathrm{V}_{2} \mathrm{ml}$

## Estimation of permanent hardness of water sample

Take 100 ml of the same hard water sample in a 250 ml beaker. Boil it for 15 minutes. During boiling temporary hardness gets removed. Cool and filter the solution and make up to 100 ml in a standard flask by adding distilled water.

Pipette out 50 ml of the made up solution into a clean conical flask and titrate it against EDTA as before.
$>$ Let the volume of EDTA consumed be $\mathrm{V}_{3} \mathrm{ml}$.

## Calculations

## Standardization of EDTA

1 ml of Std. hard water $=1 \mathrm{mg}$ of $\mathrm{CaCO}_{3}$
50 ml of Std . hard water $=50 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$
50 ml of Std . hard water consumes $=\mathrm{V}_{1} \mathrm{ml}$ of EDTA
$\therefore \mathrm{V}_{1} \mathrm{ml}$ of EDTA $\equiv 50 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$ equivalent hardness
(or)
1 ml of EDTA $\equiv 50 \mathrm{~V}_{1} \mathrm{mgs}^{2} \mathrm{CaCO}_{3}$ equivalent hardness Estimation of total hardness of water sample
50 ml of the given hard water sample consumes $=\mathrm{V}_{2} \mathrm{ml}$ of EDTA
$=\mathrm{V}_{2} \times 50 / \mathrm{V}_{1}$ mgs of $\mathrm{CaCO}_{3}$ equivalent hardness

$$
\left[\therefore 1 \mathrm{ml} \text { of EDTA }=50 \mathrm{~V}_{1} \mathrm{mgs} \text { of } \mathrm{CaCO}_{3}\right]
$$

$\therefore 1000 \mathrm{ml}$ of the given hard water sample $=\mathrm{V}_{2} \times 50 / \mathrm{V}_{1} \times 1000 / 50$

$$
\begin{gathered}
=1000 \times \mathrm{V}_{2} / \mathrm{V}_{1} \mathrm{mgs} \text { of } \mathrm{CaCO}_{3} \text { equivalent hardness } \\
\therefore \text { Total hardness }=1000 \times \mathrm{V}_{2} / \mathrm{V}_{1} \mathrm{ppm}
\end{gathered}
$$

## Estimation of permanent hardness of water sample

50 ml of the same hard water sample after boiling, filtering, etc., consumes $=\mathrm{V}_{3} \mathrm{ml}$ of EDTA
$=\mathrm{V}_{3} \times 50 / \mathrm{V}_{1} \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$ equivalent hardness
$\therefore 1000 \mathrm{ml}$ of the given hard water sample $=\mathrm{V}_{3} \times 50 / \mathrm{V}_{1} \times 1000 / 50$

$$
=1000 \times \mathrm{V}_{3} / \mathrm{V}_{1} \mathrm{mgs} \text { of } \mathrm{CaCO}_{3} \text { equivalent hardness }
$$

$\therefore$ Permanent hardness $=1000 \times \mathrm{V}_{3} / \mathrm{V}_{1} \mathrm{ppm}$

## Temporary hardness

Temporary hardness $=$ Total hardness - Permanent hardness

$$
=\left[1000 \times V_{2} / V_{1}\right]-\left[1000 \times V_{3} / V_{1}\right]
$$

$\therefore$ Temporary hardness $=1000 / \mathrm{V}_{1}\left(\mathrm{~V}_{2}-\mathrm{V}_{3}\right) \mathrm{ppm}$

### 1.4 Problems based on EDTA method

## Problem 1

100 ml of a water sample requires 20 ml of EDTA solution for titration. 1 ml of EDTA solution is equivalent to 1.1 mgs of $\mathrm{CaCO}_{3}$. Calculate hardness in ppm.

## Solution

Given 1 ml of EDTA solution $=1.1 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$
$\therefore 20 \mathrm{ml}$ of EDTA solution $=20 \times 1.1 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$

$$
=22 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3}
$$

100 ml of water sample requires $=20 \mathrm{ml}$ of EDTA

$$
=22 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3}
$$

$\therefore 1000 \mathrm{ml}$ of water sample $=22 \times 1000100 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$
Hardness $=220 \mathrm{mgs} / \mathrm{lit}$ or ppm .

## Problem 2

100 ml of a sample of water requires 18 ml of an EDTA solution for titration. 22 ml of thesame EDTA solution was required for the titration of 100 ml of standard hard water containing $1 \mathrm{gm} \mathrm{CaCO}_{3}$ per litre. Calculate hardness of water sample in ppm .

## Solution

Given 1 litre of std. hard water contains 1 gm of $\mathrm{CaCO}_{3}$
i.e. 1000 ml of std. hard water contains 1000 mgs of $\mathrm{CaCO}_{3}$
$\therefore 1 \mathrm{ml}$ of std. hard water $=1 \mathrm{mg}$ of $\mathrm{CaCO}_{3}$
22 ml of EDTA $=100 \mathrm{ml}$ of std . hard water

$$
=100 \times 1 \mathrm{mg} \text { of } \mathrm{CaCO}_{3}
$$

$\therefore 1 \mathrm{ml}$ of EDTA $=100 / 22 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$
100 ml of sample of water $=18 \mathrm{ml}$ of EDTA
$\therefore$ for 1000 ml of sample of water $=18 \times 100 / 22 \times 1000$
x 100 Hardness $=818.18 \mathrm{mgs} / \mathrm{lit}$ or ppm.

## Problem 3

0.28 gm of CaCO 3 was dissolved in HCl and the solution was made up to one litre with distilled water. 100 ml of the above solution required 28 ml of EDTA solution on titration. 100 ml of hard water sample required 33 ml of same EDTA solution on titration. 100 ml of this water, after boilingcooling and filtering required 10 ml of EDTA solution on titration. Calculate the temporary and permanent harness of water.

## Solution

Given 1000 ml of std. hard water contains $=0.28 \mathrm{gm}$ of $\mathrm{CaCO}_{3}$ ie., 1000 ml of std. hard water contains $=0.28 \times 1000 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$
$=280 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$ $\therefore 1 \mathrm{ml}$ of std. hard water $=0.28 \mathrm{mg}$ of $\mathrm{CaCO}_{3}$

28 ml of EDTA $=100 \mathrm{ml}$ of the std. hard water

$$
\begin{aligned}
& =100 \times 0.28 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3} \\
& =100 \times 0.28 \times 28
\end{aligned}
$$

1 ml of EDTA $=1 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$.
Total hardness
100 ml of hard water $=33 \mathrm{ml}$ of EDTA

$$
\begin{aligned}
& =33 \times 1 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3} \\
& =33 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3}
\end{aligned}
$$

$\therefore 1000 \mathrm{ml}$ of hard water $=33 \times$
$1000 / 100$ Total hardness $=330 \mathrm{mgs} /$ lit
(or) ppm.

## Permanent hardness (NCH)

100 ml of the same water, after boiling, cooling and filtering required $=10 \mathrm{ml}$ of EDTA

$$
\begin{aligned}
& =10 \times 1 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3} \\
& =10 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3}
\end{aligned}
$$

$\therefore 1000 \mathrm{ml}$ of the water $=10 \times 1000100 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$
Permanent hardness $=100 \mathrm{mgs} / \mathrm{lit}($ or $) \mathrm{ppm}$.

## Temporary hardness (CH)

Temporary hardness $=$ Total hardness - permanent hardness

$$
=330-100
$$

Temporary hardness $=230 \mathrm{mgs} /$ lit $($ or) ppm .

## Problem 4

100 ml of a sample of water required 25.0 ml of 0.01 M EDTA for the titration using Eriochrome-Black-T indicator. Calculate the total hardness.

## Solution

We know that,
1 ml of 0.01 M EDTA $=1 \mathrm{mg}$ of $\mathrm{CaCO}_{3}$
25 ml of 0.01 M EDTA $=25 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$
100 ml of sample of water required $=25.0 \mathrm{ml}$ of 0.01 M EDTA
$=25.0 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$ equivalent
$\therefore 1000 \mathrm{ml}$ of water is equal to $=25.0 \times 1000100 \mathrm{mgs}^{\text {of }} \mathrm{CaCO}_{3}$ equivalent
Total hardness $=250 \mathrm{mgs} / \mathrm{lit}$ or ppm .

## Problem 5

Calculate permanent hardness from the following. 500 ml of a water sample is boiled for 1 hr . It isthen cooled and filtered. The filtrate is made up to 500 ml again with distilled water. 50 ml of this solution requires 10 ml of $\mathrm{N} / 50$ EDTA with EBT-indicator and $\mathrm{NH}_{4} \mathrm{Cl}$ - $\mathrm{NH}_{4} \mathrm{OH}$ buffer.

## Solution

Given50 ml of water sample after boiling, filtering requires 10 ml of $\mathrm{N} / 50$ EDTA
We know that,
1 ml of $\mathrm{N} / 50 \mathrm{EDTA} \equiv 1 \mathrm{mg}$ of $\mathrm{CaCO}_{3}$ equivalent hardness
$\therefore 10 \mathrm{ml}$ of $\mathrm{N} / 50 \mathrm{EDTA} \equiv 10 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$
50 ml of the boiled water sample requires $=10 \mathrm{ml}$ of $\mathrm{N} / 50$ EDTA

$$
=10 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3}
$$

$\therefore 1000 \mathrm{ml}$ of the water sample $=10 \times 1000 / 50$

## Problem 6

100 ml of a sample of water required 15.0 ml of 0.01 M EDTA for titration using Erio-chrome Black-T indicator. In another experiment, 100 ml of the same sample was boiled to remove the CH , the precipitate was removed and the cold solution required 8.0 ml of 0.01 M EDTA using Erio- chrome Black-T indicator. Calculate (i) the total hardness, (ii) permanent hardness or NCH , (iii) carbonate hardness $(\mathrm{CH})$, in terms of $\mathrm{mg} /$ lit of $\mathrm{CaCO}_{3}$.

## Solution

We know that,
1 ml of $1 \mathrm{MEDTA} \equiv 100 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$
1 ml of $0.01 \mathrm{MEDTA} \equiv 1 \mathrm{mg}$ of $\mathrm{CaCO}_{3}$

## Total Hardness

100 ml of a sample of water required $=15 \mathrm{ml}$ of 0.01 M EDTA

$$
\begin{aligned}
& =15 \times 1 \mathrm{mgs} \\
& =15 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3}
\end{aligned}
$$

$\therefore 1000 \mathrm{ml}$ of sample of water is equivalent to $=15 \times 1000 / 100 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$ $=150 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$ equivalents Total hardness $=150 \mathrm{mgs} / \mathrm{lit}$ or ppm.

## Permanent Hardness (NCH)

100 ml of the same water sample after boiling, filtering consumes $=8.0 \mathrm{ml}$ of 0.01 M EDTA

$$
\begin{aligned}
& =8.0 \times 1 \mathrm{mgs} \\
& =8.0 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3}
\end{aligned}
$$

$\therefore 1000 \mathrm{ml}$ of sample of water is equal to $=8.0 \times 1000 / 100 \mathrm{mgs}$

$$
=80 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3} \text { equivalents }
$$

Permanent hardness of the water sample $=80 \mathrm{ppm}$.

## Temporary Hardness (CH)

Temporary hardness $=$ Total hardness - Permanent hardness

$$
=150-80=70 \mathrm{ppm}
$$

Temporary hardness $=70 \mathrm{ppm}$.

## Problem 7

100 ml of a water sample required 20 ml of 0.01 M EDTA for the titration with Eriochrome
Black- T indicator 100 ml of the same water sample after boiling and filtering required 10 ml of 0.01 M EDTA. Calculate the total, carbonate and non-carbonate hardness of the sample.

## Solution

We know that ,
1 ml of $1 \mathrm{MEDTA} \equiv 100 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$
1 ml of $0.01 \mathrm{M} \mathrm{EDTA} \equiv 1 \mathrm{mg}$ of $\mathrm{CaCO}_{3}$
Total Hardness 100 ml of a sample of water required $=20 \mathrm{ml}$ of 0.01 M EDTA

$$
\begin{aligned}
& =20 \times 1 \mathrm{mgs} \\
& =20 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3}
\end{aligned}
$$

$\therefore 1000 \mathrm{ml}$ of sample of water is equivalent to $=20 \times 1000 / 100 \mathrm{mgs}^{2}$ of $\mathrm{CaCO}_{3}$

$$
=200 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3} \text { equivalent }
$$

Total hardness $=200 \mathrm{mgs} / \mathrm{lit}$ or ppm .

## Non-carbonate Hardness (NCH)

100 ml of the same water sample after boiling, filtering consumes $=10 \mathrm{ml}$ of 0.01 M EDTA

$$
\begin{aligned}
& =10 \times 1 \mathrm{mgs} \\
& =10 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3}
\end{aligned}
$$

$\therefore 1000 \mathrm{ml}$ of sample of water is equal to $=10 \times 1000 / 100 \mathrm{mgs}$

$$
=100 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3} \text { equivalent }
$$

Permanent hardness of the water sample $=100 \mathrm{ppm}$.

## Carbonate Hardness (CH)

Carbonate hardness $=$ Total hardness - Non-carbonate hardness

$$
\begin{aligned}
& =200-100 \\
& =100 \mathrm{ppm}
\end{aligned}
$$

Carbonate hardness $=100 \mathrm{ppm}$.

## Problem 8

In an estimation of hardness of water by EDTA titration, 250 ml of a sample of water required 15 ml of 0.025 M EDTA solution to get the end point. Calculate the hardness of water.

## Solution

We know that 1 ml of $1 \mathrm{MEDTA} \equiv 100 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$
1 ml of $0.01 \mathrm{M} \mathrm{EDTA} \equiv 1 \mathrm{mg}$ of $\mathrm{CaCO}_{3}$
$\therefore 1 \mathrm{ml}$ of $0.0 \beta 5 \mathrm{M} \mathrm{EDTA} \equiv 2.5 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$ equivalent
Total Hardness
250 ml of a sample of water required $=15 \mathrm{ml}$ of 0.025 M EDTA

$$
\begin{aligned}
& =15 \times 2.5 \mathrm{mgs} \\
& =37.5 \mathrm{mgs} \text { of } \mathrm{CaCO}_{3} \text { equivalent }
\end{aligned}
$$

$\therefore 1000 \mathrm{ml}$ of a sample of water required $=37.5 \times 1000250 \mathrm{mgs}$
$=150 \mathrm{mgs}$ of $\mathrm{CaCO}_{3}$ equivalent

