		1000
Quest	ion Paper Code:	: 40528
	DEGREE EXAMINATION, Sixth Semester Aeronautical Engineerin, 01 – FINITE ELEMENT M (Regulations 2013)	g
Time: Three Hours		Maximum: 100 Mark
	Answer ALL questions	
	PART – A	(10×2=20 Marks
1. Enumerate the phases	of finite element analysis.	
2. What is finite difference	ce method?	
3. Why polynomials are g	generally used as shape functi	on?
4. Write the advantages of	of natural coordinates over glo	obal coordinates.
5. Give one example each	for plane stress and plane st	rain problems.
6. Give four applications	where axisymmetric elements	s can be used.
7. Draw the eight-node qu	uadrilateral in x, y space.	
Formulate an equation t using Gauss-Legendre	to evaluate an integral T consid quadrature.	ering n-point approximation
9. State any two reasons	for preferring hollow shafts ov	ver solid shafts.
10. List any four Finite Ele	ement Analysis (FEA) softwar	re packages.
	PART – B	(5×13=65 Marks
of length 5 m which	ection under the point load of is carrying a point load of 5 k ⁵ N/mm ² and I = 1 ×10 ⁸ mm ⁴ , xact.	N, acting 3 m from the left
(0	R)	

-3-40528

b) A long cylinder (Figure 3) of inside diameter 80 mm and outside diameter 120 mm tightly fits in a hole over its full length. The cylinder is then subjected to an internal pressure of 2 MPa. Using two elements on the 10 mm length, find the displacements at the inner radius.

Figure 3

14. a) Derive the shape function for the four-node quadrilateral element. Also write the equation in matrix form to get the displacement at any point inside the element.

(OR)

- b) Evaluate the integral $I = \int_{-1}^{1} \left[a_1 + a_2 x + a_3 x^2 + a_4 x^3 \right] dx$ using three point Gauss quadrature and compare it with exact solution.
- 15. a) A composite wall consists of three materials, as shown in figure 4. The outer temperature is 20°C. Convection heat transfer takes place on the inner surface of the wall with 800°C. Determine the temperature distribution in the wall.

(OR)

40528 b) Solve the simultaneous algebraic equations using elimination method. $4x_1 - 2x_2 + x_3 - 3x_4 = 5$ $x_1 + 5x_2 + 2x_3 = 9$ $2x_1 + x_2 - 4x_3 + x_4 = 6$ $-3x_{1} - 4x_{2} - 2x_{4} = 7$ PART - C (1×15=15 Marks) 16. a) Using two finite elements, find the stress distribution in a uniformly tapering bar of cross sectional area 300 mm² and 200 mm² at their ends, length 100 mm, subjected to an axial tensile load of 50 N at smaller end and fixed at larger end. Take $E = 2 \times 10^5 \text{ N/mm}^2$. (OR) b) Determine the natural frequencies of transverse vibration for a beam fixed at both ends. The beam may be modeled by two elements, each of length L and cross sectional area A. The use of symmetry boundary condition is optional.