SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

Available @

www.AllAbtEngg.com

	Reg. No.:				190	

Question Paper Code: 91440

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019 Second/Third Semester

> Electrical and Electronics Engineering EC 6202 – ELECTRONIC DEVICES AND CIRCUITS

(Common to Biomedical Engineering/Electronics and Instrumentation Engineering/Instrumentation and Control Engineering/Medical Electronics/ Robotics and Automation Engineering) (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. Define Diffusion Capacitance.
- 2. When a reverse bias is applied to a germanium PN junction diode, the reverse saturation current at room temperature is $0.3\,\mu\text{A}$. Determine the current flowing in the diode when 0.15 V forward bias is applied at room temperature.
- Derive the relationship between α and β of a BJT.
- 4. The transistor has $I_{\rm E}$ = 10 mA and α = 0.98. Determine the values of $I_{\rm C}$ and $I_{\rm B}$
- 5. Give the characteristics of CE amplifier.
- 6. What is meant by β cut off frequency?
- 7. What is the need of Multistage amplifiers?
- 8. Mention the coupling schemes used in multistage amplifier.
- An amplifier has an open loop gain of 1000 and a feedback ratio of 0.04. If the open loop gain changes by 10% due to temperature, find the percentage change in gain of the amplifier with feedback.
- 10. In an RC phase shift oscillator, if $R_1=R_2=R_3=200~k\Omega$ and $C_1=C_2=C_3=100~pF$. Find the frequency of oscillations.

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more... Available @

www.AllAbtEngg.com

	-3-	91440
the equations for volt ii) A BJT has g _m = 38 mm	l model of FET amplifier in CS connectage gain, input impedance and output inhos, $r_{b'e} = 5.9 \text{ k}\Omega$, $h_{ie} = 6 \text{ k}\Omega$, $r_{bb'} = 100 \text{ k}\Omega$ at 1 kHz. Calculate α and β cut	at impedance. (8) Ω , $C_{b'c} = 12 \text{ pF}$,
14. a) What is neutralization (OR)	? Explain the hazeltine neutralization	n method. (13)
	rcuit of capacitance coupled single to for voltage gain.	uned amplifier (13)
15. a) What are the different to neat block diagram.	types of negative feedbacks? Explain	the types with (13)
(OR)		
b) Explain the working of	Hartley and Wien bridge oscillator.	(13)
	PART – C	(1×15=15 Marks)
feedback resistor is us Assume β = 100. Dete the new operating poi ii) In a colpitts oscillator	feedback resistor method, a silicon sed. The operating point is at 7 V, 1 mA armine the value of $R_{\rm B}$, stability factor a int if $\beta = 50$ with all other circuit value or the values of the inductors and ca 40 mH, $C_1 = 100$ pF and $C_2 = 500$ pF.	and $V_{CC} = 12 \text{ V}$. and what will be as are same? (8)
i) Find the frequen		
ii) If the output volt	tage is 10 V find the feedback voltage	
iii) Find the minimu alone.	um gains if the frequency is changed	by changing L
iv) Find the value of	f C1 for a gain of 10 and	
v) Find the new fre	quency.	(7)
(OR)		
	•	
	5-	1.