	Reg. No.
	Question Paper Code: 80335
	B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.
	Third Semester
	Electronics and Communication Engineering
	EC 6304 - ELECTRONIC CIRCUITS - I
	(Regulations 2013)
Tim	me: Three hours 100 marks Maximum: 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
L	What is a Q point?
2	What is the impact of temperature on drain current of MOSFET?
3.	What is an ac load line?
4	Draw the small-signal ac equivalent circuit of the BJT.
5.	What is the impact of including a source resistor in the FET amplifier?
6.	Why multi-stage amplifiers are required?
7.	What is the reason for reduction in gain at lower and higher frequencies in case of amplifiers?
8.	Determine the unity-gain bandwidth of a FET with parameters, $Cgd = 10$ fF, $Cgs = 50$ fF and $g_m = 1.2$ mA/V.
9.	Why active loads are not used with discrete circuits?
10.	Define CMRR.
	PART B — $(5 \times 13 = 65 \text{ marks})$
IL	(a) Analyze a BJT with a voltage divider bias circuit, and determine the change in the Q-point with a variation in β when the circuit contains an emitter resistor. Let the biasing resistors be $R_{\rm B1} = 56 k \Omega$, $R_{\rm B2} = 12.2 k \Omega$,

Consider the circuit shown below with transistor parameters I_{DSS}=12 mA, $V_{\rm p}=-4V_{\rm p}$ and $R_{\rm p}=0.008~V^{-1}$. Determine the small-signal voltage gain $A_{\rm p}=0.008~V^{-1}$.

Analyse a basic common-base amplifier circuit and derive the expressions for its small-signal voltage gain, current gain, input impedance and control impedance.

Or

- With nest diagrams, explain the operation and advantages of Darlington
 pair circuit. Also analyze its small-signal voltage gain and input
- Determine the small-signal voltage gain of a multistage cascade circuit shown in the figure below. The transistor parameters are $K_{ab}=0.5$ mAV², $K_{ab}=0.2$ mA/V², $V_{TN1}=V_{TN2}=1.2$ V and $\lambda_1=\lambda_2=0$. The prescent drain currents are $I_{D1}=0.2$ mA and $I_{D2}=0.5$ mA.

Or

- (b) (i) Draw the circuit of a basic common source amplifier with voltage divider bias and derive the expressions for voltage gain, input impedance and output impedance using small-signal model. (8)
 - (ii) Determine the voltage gain of the circuit, assuming the following parameters: $V_{DD}=3.3$ V, $R_D=10$ k Ω , $R_{G1}=140$ k Ω , $R_{G2}=60$ k Ω , and $R_{Si}=4$ k Ω . The transistor parameters are: $V_{TN}=0.4$ V, $K_D=0.5$ mA/V², and $\lambda=0.02$ V⁻¹.
- 14. (a) Derive the expression for cut-off frequency of a BJT.

0

- (b) Construct the high frequency equivalent circuit of a MOSFET from its geometry and derive the expression for short circuit current gain in the common-source configuration.
- 15. (a) Draw and explain the operation of a simple MOSFET amplifier with active load and derive its voltage gain using small-signal equivalent

Or

(b) With necessary diagrams, explain the operation of a CMOS differential amplifier. Using small signal analysis, derive the expression for its voltage gain.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

(Application/Design/Analysis/Evaluation/Creativity/Case study)

Design the circuit given below such that $I_{DQ} = 100 \,\mu\text{A}$, $V_{SDQ} = 3V$, and $V_{RS} = 0.8 \, V$. Note that V_{RS} is the voltage across the source resistor R_S . The value of the larger bias resistor, either R_1 or R_2 is to be $200 \, k\Omega$. Transistor parameter values are $Kp = 100 \, \mu\text{A}/V^2$ and $V_{TP} = -0.4 \, V$. The conduction parameter, Kp may vary by ± 5 percent.

