

Question Paper Code: 57285

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester

Electronics and Communication Engineering

EC 6402 - COMMUNICATION THEORY

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 Marks)$

- 1. What theorem is used to calculate the average power of a periodic signal $g_p(t)$? State the theorem.
- 2. What is Pre envelope and complex envelope?
- A carrier signal is frequency modulated by a sinusoidal signal of 5 Vpp and 10 kHz. If
 the frequency deviation constant is 1 k Hz/V, determine the maximum frequency
 deviation and state whether the scheme is narrow band FM or wide band FM.
- 4. What is the need for pre-emphasis?
- 5. State Central Limit Theorem.
- 6. Define Auto correlation function.
- Give the definition of noise equivalent temperature.
- 8. Define capture effect in FM.
- 9. Define mutual information and channel capacity.
- 10. A Source is emitting symbols x_1 , x_2 and x_3 with probabilities, respectively 0.6, 0.3 and 0.1. What is the entropy of the source?

1

57285

$PART - B (5 \times 16 = 80 \text{ Marks})$

(16)

11. (a) Explain about Super Heterodyne Receiver with neat diagram.

			OR	
	(b)		ive the expression for DSB-SC AM and calculate its power & efficiency plain a method to generate and detect it.	(16)
12.	(a)	(i)	Derive an expression for a single tone FM signal with necessary diagrams	
		(ii)	and draw its frequency spectrum. An angle modulated wave is described by	(10)
		(11)	$v(t) = 100 \cos(2 * 10^6 \text{ nt} + 10 \cos 2000 \text{ nt}). \text{ Find (i) Power of the}$	
			modulating signal, (ii) Maximum frequency deviation, (iii) Band width	(6)
	4.	(1)	OR	
	(b)	(i)	Explain the Armstrong method of FM generation.	(8)
		(ii)	Draw the circuit diagram of a Foster – Seeley discriminator and explain its working with relevant phasor diagrams.	(8)
13.	(a)	(i)	Two random processes $X(t) = A \cos(\omega t + \theta)$ and $Y(t) = A \sin(\omega t + \theta)$	
			where A and ω are constants and θ is uniformly distributed random variable in $(0, 2\pi)$. Find the cross correlation function.	(8)
		(ii)	Explain in detail about the transmission of a random process through a linear time invariant filter.	(8)
			OR .	
	(b)	(i)	When is a random process said to be strict sense stationary (SSS), Wide sense stationary (WSS) and Ergodic process.	(8)
		(ii)	Give a random process, $X(t) = A\cos(wt + \mu)$ where A and w are constants and μ is a uniform random variable. Show that $X(t)$ is ergodic in both mean	
			and auto correlation.	(8)
14.	(a)	(i)	Define Narrow band noise and explain the representation of Narrow Band Noise in terms of In-Phase and Quadrature Components.	(8)
		(ii)	Explain Pre-emphasis and De-emphasis in FM.	(8)
			OR .	- 4
	(b)	Exp	plain the noise in DSB-SC receiver using synchronous or Coherent detection	1 0
		and	Calculate the figure of merit for a DSB-SC system ?	(16)
			. 2	7285

- (a) (i) State and prove mutual information and write the properties of mutual Information.
 - (ii) Derive Shannon Hartley theorem for the channel capacity of a continuous channel having an average power limitation and perturbed by an additive band – limited white Gaussian noise.

(8)

OR

(b) Consider a discrete memory less source with seven possible symbols $Xi = \{1, 2, 3, 4, 5, 6, 7\}$ with associated probabilities $Pr = \{0.37, 0.33, 0.16, 0.04, 0.02, 0.01\}$. Construct the Huffman's code and Shannon Fano code and determine the coding efficiency and redundancy. (16)

3