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Unit II 

Arithmetic Operations 

ALU - Addition and subtraction  Multiplication  Division  Floating Point operations 

 Subword parallelism. 

2.1 Arithmetic and logic unit (ALU) 

 An arithmetic logic unit (ALU) represents the fundamental building block of 

the central processing unit of a computer.  

 An ALU is a digital circuit used to perform arithmetic and logic operations. 

What is an ALU? 

 An arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic 

and logic operations. It represents the fundamental building block of the central 

processing unit (CPU) of a computer.  

 Modern CPUs contain very powerful and complex ALUs. In addition to ALUs, 

modern CPUs contain a control unit (CU). 

 Most of the operations of a CPU are performed by one or more ALUs, which 

load data from input registers. A register is a small amount of storage available 

as part of a CPU. 

  The control unit tells the ALU what operation to perform on that data and the 

ALU stores the result in an output register. The control unit moves the data 

between these registers, the ALU, and memory.

Symbol of ALU:

 Result lines provide result of the chosen function applied to values of A and B.  

Since this ALU operates on 32-bit operands, it is called 32-bit ALU. 

 Zero output indicates if all Result lines have value 0 

 Overflow indicates integer overflow of add and subtract functions; for 

unsigned integers, this overflow indicator does not provide any useful 

information 

 Carry out indicates carry out and unsigned integer overflow. 
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Figure : The symbol used to represent an ALU 

 

 

Figure: The values of the three ALU control lines Bnegate and Operation and 

the corresponding ALU operations. 

 

How an ALU Works

 An ALU performs basic arithmetic and logic operations. Examples of 

arithmetic operations are addition, subtraction, multiplication, and division. 

Examples of logic operations are comparisons of values such as NOT, AND, 

and OR. 

 All information in a computer is stored and manipulated in the form of binary 

numbers, i.e. 0 and 1. Transistor switches are used to manipulate binary 

numbers since there are only two possible states of a switch: open or closed. 

An open transistor, through which there is no current, represents a 0. A closed 

transistor, through which there is a current, represents a 1. 
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 Operations can be accomplished by connecting multiple transistors. One 

transistor can be used to control a second one in effect, turning the transistor 

switch on or off depending on the state of the second transistor. This is referred 

to as a gate because the arrangement can be used to allow or stop a current. 

 The simplest type of operation is a NOT gate. This uses only a single transistor. 

It uses a single input and produces a single output, which is always the 

opposite of the input. This figure shows the logic of the NOT gate. 

 

How a NOT gate processes binary data 

 Other gates consist of multiple transistors and use two inputs.  

 The OR gate results in a 1 if either the first or the second input is a 1.  

 The OR gate only results in a 0 if both inputs are 0.  

 This figure shows the logic of the OR gate. 

 

How an OR gate processes binary data 

 The AND gate results in a 1 only if both the first and second input are 1s. 

 This figure shows the logic of the AND gate. 
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How an AND gate processes binary data 

 The XOR gate, also pronounced X-OR gate, results in a 0 if both the inputs are 

0 or if both are 1. Otherwise, the result is a 1. This figure shows the logic of the 

XOR gate. 

 

How an XOR gate processes binary data. 

 The arithmetic and logic unit (ALU) performs necessary addition, subtraction, 

multiplication, division, shifting, and logical operations. 

 It requires one or two operands to operate and produces a result. 

 The complexity of an ALU is determined by the way in which its arithmetic 

instructions are realized. 

 Simple ALUs perform fixed point addition and subtraction, word based logic 

operations; can be realized by combinational circuits.The arithmetic logic unit 

(ALU) is the brain of the computer, the device that performs the arithmetic 

operations like addition and subtraction or logical operations like AND and 

OR. The MIPS word is 32 bits wide, so we need a 32-bit-wide ALU.  

 -bit ALUs to create the desired ALU. 

Therefore start by constructing a 1-bit ALU.  
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2.1.1 A 1-Bit ALU 

 The 1-bit logical unit for AND and OR looks like below figure.  

 The multiplexer on the right then selects a AND b or a OR b, depending on 

whether the value of Operation is 0 or 1.  

 The line that controls the multiplexor is shown in color to distinguish it from 

the lines containing data. 

 Notice that we have renamed the control and output lines of the multiplexer to 

give them names that reflect the function of the ALU. The next function to 

include is addition.  

 An adder must have two inputs for the operands and a single-bit output for the 

sum. There must be a second output to pass on the carry, called CarryOut. 

 Since the CarryOut from the neighbor adder must be included as an input, we 

need a third input. This input is called CarryIn. 

 

Figure :The 1-bit logical unit for AND and OR. 

 

 

Figure :A 1-bit adder.  

 This adder is called a full adder; it is also called a (3,2) adder because it has 3 

inputs and 2 outputs.  
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 An adder with only the a and b inputs is called a (2,2) adder or half adder.

 

Figure : Input and output specification for a 1-bit adder. 

 We can express the output functions CarryOut and Sum as logical equations, 

and these equations can in turn be implemented with logic gates.  

 We can turn this truth table into a logical equation: 

CarryOut = (b  CarryIn) + (a CarryIn) + (a  b) + (a  b  CarryIn)

 If a  b  CarryIn is true, then all of the other three terms must also be true, so 

we can leave out this last term corresponding to the fourth line of the table. We 

can thus simplify the equation to 

CarryOut = (b  CarryIn) + (a  CarryIn) + (a  b) 

 

 

Figure: Values of the inputs when CarryOut is a 1. 

 Figure below shows that the hardware within the adder for CarryOut consists 

of three AND gates and one OR gate.  

 The three AND gates correspond exactly to the three parenthesized terms of the 

formula above for CarryOut, and the OR gate sums the three terms.  

 The Sum bit is set when exactly one input is 1 or when all three inputs are 1.  

 The Sum results in a complex Boolean equation. 
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Figure: Adder hardware for the carry out signal. 

 Figure below shows a 1-bit ALU derived by combining the adder with the 

earlier components.  

 Sometimes designers also want the ALU to perform a few more simple 

operations, such as generating 0.  

 The easiest way to add an operation is to expand the multiplexer controlled by 

the Operation line and, for this example, to connect 0 directly to the new input 

of that expanded multiplexer. 

Sum = (a  b  CarryIn) + (a  b  CarryIn) + (a  b  CarryIn) + (a  b  CarryIn) 

 

Figure: A 1-bit ALU that performs AND, OR, and addition.



56
 

2.1.2 A 32-Bit ALU 

 The full 32- . 

 A single carry out of the least significant bit (Result0) can ripple all the way 

through the adder, causing a carry out of the most significant bit (Result31). 

 Hence, the adder created by directly linking the carries of 1-bit adders is called 

a ripple carry adder.  

 Subtraction is the same as adding the negative version of an operand, and this 

is how adders perform subtraction. Recall that the shortcut for negatin

complement number is to invert each bit (sometimes called the 

complement) and then add 1.  

 

FIGURE B.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. 
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 To invert each bit, we simply add a 2:1 multiplexor that chooses between b and 

 

 Suppose we connect 32 of these 1-bit ALUs. The added multiplexer gives the 

option of b or its inverted value, depending on Binvert, but this is only one step 

 

 The least significant bit still has a CarryIn signal, even though its unnecessary 

for addition.  

 If we set this CarryIn to 1 instead of 0. The adder will then calculate a + b + 1.  

 By selecting the inverted version of b, we can perform subtraction process that 

can obtain as 

  

 A MIPS ALU also needs a NOR function. Instead of adding a separate gate for 

NOR, we can reuse much of the hardware already in the  ALU, like we did for 

subtract. The insight comes from the following truth about NOR: 

 

 That is, NOT (a OR b) is equivalent to NOT a AND NOT b. This fact is called 

 

 Since we have AND and NOT b, we only need to add NOT a to the ALU. 

 

Figure: A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. 
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 By selecting b (Binvert = 1) and setting CarryIn to 1 in the least significant bit 

 subtraction of b from a instead of 

addition of b to a. 

 

FIGURE B.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or a 

and b. 

 By selecting a (Ainvert = 1) and b (Binvert = 1), we get a NOR b instead of a 

AND b. 

2.1.3 Tailoring the 32-Bit ALU to MIPS

 These four operations add, subtract, AND, OR are found in the ALU of 

almost every computer, and the operations of most MIPS instructions can be 

performed by this ALU.  

 But the design of the ALU is incomplete.One instruction that still needs 

support is the set on less than instruction (slt).  

 Recall that the operation roduces 1 if rs < rt, and 0 otherwise. Consequently, slt 

will set all but the least significant bit to 0, with the least significant bit set 

according to the comparison.  

 For the ALU to perform slt, we first need to expand the three-input multiplexer 

in below figure to add an input for the slt result.  
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 We call that new input Less and use it only for slt. The top drawing of below 

figure shows the new 1-bit ALU with the expanded multiplexor.  

 From the description of slt above, we must connect 0 to the Less input for the 

upper 31 bits of the ALU, since those bits are always set to 0. What remains to 

consider is how to compare and set the least significant bit for set on less than 

instructions. What happens if we subtract b from a? If the difference is 

negative, then a < b since 

 

(a  b) < 0  ((a  b) + b) < (0 + b) 

 a < b 

 We want the least significant bit of a set on less than operation to be a 1 if a < 

b; that is, a 1 if a   

 The result corresponds exactly to the sign bit values: 1 means negative and 0 

means positive. Following this line of argument, we need only connect the sign 

bit from the adder output to the least significant bit to get set on less than.  

 Unfortunately, the Result output from the most significant ALU bit in the top 

of below figure for the slt operation is not the output of the adder; the ALU 

output for the slt operation is obviously the input value Less.  

 Thus, we need a new 1-bit ALU for the most significant bit that has an extra 

output bit: the adder output. 

 The bottom drawing of below figure shows the design, with this new adder 

output line called Set, and used only for slt. As long as we need a special ALU 

for the most significant bit, we added the overflow detection logic since it is 

also associated with that bit. 

 Alast, the test of less than is a little more complicated than just described 

because of overflow, as we explore in the exercises.  

 The below figure shows the 32-bit ALU. Notice that every time we want the 

ALU to subtract, we set both CarryIn and Binvert to 1.  

 For adds or logical operations, we want both control lines to be 0. We can 

therefore simplify control of the ALU by combining the CarryIn and Binvert to 

a single control line called Bnegate. 



60
 

 

 

 

FIGURE B.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a 

and b or b, and (bottom) a 1-bit ALU for the most significant bit. 
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 The top drawing includes a direct input that is connected to perform the set on 

less than operation; the bottom has a direct output from the adder for the less 

than comparison called Set.  

 The below figure A 32-bit ALU constructed from the 31 copies of the 1-bit 

ALU in the top of bthe above figure and one 1-bit ALU in the bottom of that 

figure.  

 Less inputs are connected to 0 except for the least significant bit, which is 

connected to the Set output of the most significant bit.  

 If the ALU performs a  b and we select the input 3 in the multiplexor in 

Figure B.5.10, then Result = 0 . . . 001 if a < b, and Result = 0 . . . 000 

otherwise. 

 

 To further tailor the ALU to the MIPS instruction set, we must support 

conditional branch  instructions.  

 These instructions branch either if two registers are equal or if they are 

unequal.  

 The easiest way to test equality with  the ALU is to subtract b from a and then 

test to see if the result is 0 since 

(a  b = 0)  a = b 

Thus, if we add hardware to test if the result is 0, we can test for equality. 

 The simplest way is to OR all the outputs together and then send that signal 

through an inverter: 

 

 The below figure shows the revised 32-bit ALU. We can think of the  

combination of the 1-bit Ainvert line, the 1-bit Binvert line, and the 2-bit 

Operation lines as 4- bit control lines for the ALU, telling it to perform add,

subtract, AND, OR, or set on less than. 
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Figure : The final 32-bit ALU. This adds a Zero detector to Figure B.5.11. 

2.2 Addition and Subtraction 

Addition operation:  

 Digits are added bit by bit from right to left, with carries passed to the next 

digit to the left. 

 Adding 6ten to 7ten in binary  

 

Figure: Binary addition, showing carries from right to left. 



63
 

 

 The rightmost bit adds 1 to 0, resulting in the sum of this bit being 1 and the 

carry out from this bit being 0. Hence, the operation for the second digit to the 

right is 0 + 1 + 1.  

 This generates a 0 for this sum bit and a carry out of 1. 

 The third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum 

bit of 1.  

 The fourth bit is 1 + 0 + 0, yielding a 1 sum and no carry. 

 

Overflow: 

 Overflow occurs when the result from an operation cannot be represented with 

the available hardware, in this case a 32-bit word.  

When can overflow occur in addition?  

 When adding operands with different signs, overflow cannot occur. The reason 

is the sum must be no larger than one of the operands.  

 For example, -10 + 4 = -6. Since the operands fit in 32 bits and the sum is no 

larger than an operand, the sum must fit in 32 bits as well.  

 Therefore, no overflow can occur when adding positive and negative operands.

Adding or subtracting two 32-bit numbers can yield a result that needs 33 bits 

to be fully expressed. 

 The lack of a 33rd bit means that when overflow occurs, the sign bit is set with 

the value of the result instead of the proper sign of the result.  

 Since we need just one extra bit, only the sign bit can be wrong.  

 Hence, overflow occurs when adding two positive numbers and the sum is 

negative, or vice versa. This means a carry out occurred into the sign bit. 

 Overflow occurs in subtraction when we subtract a negative number from a 

positive number and get a negative result, or when we subtract a positive 
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number from a negative number and get a positive result. This means a borrow 

occurred from the sign bit. 

 The below figure shows the combination of operations, operands, and results 

that indicate an overflow. 

 

 

computer.  

 Unsigned integers are commonly used for memory addresses where overflows 

are ignored.  

 The computer designer must therefore provide a way to ignore overflow in 

some cases and to recognize it in others.  

 The MIPS solution is to have two kinds of arithmetic instructions to recognize 

the two choices: 

1. Add (add), add immediate (addi), and subtract (sub) cause exceptions 

on overflow. 

2. Add unsigned (addu), add immediate unsigned (addiu), and subtract 

unsigned (subu) do not cause exceptions on overflow.  

 

MIPS detects overflow with an exception, also called an interrupt on many 

computers. An exception or interrupt is essentially an unscheduled procedure 

call. 

 The address of the instruction that overflowed is saved in a register, and the 

computer jumps to a predefined address to invoke the appropriate routine for 

that exception.  

 The interrupted address is saved so that in some situations the program can 

continue after corrective code is executed. 
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For signed addition: 

addu $t0, $t1, $t2    

xor  $t3, $t1, $t2    # Check if signs differ 

slt  $t3, $t3, $zero   # $t3 = 1 if signs differ 

bne  $t3, $zero, No_overflow   

xor $t3, $t0, $t1    # signs =; sign of sum match too? 

# $t3 negative if sum sign different 

slt $t3, $t3, $zero   # $t3 = 1 if sum sign different 

bne $t3, $zero, Overflow  # All th  

 

For unsigned addition :  

 ($t0 = $t1 + $t2),  the test is 

addu $t0, $t1, $t2    # $t0 = sum 

nor $t3, $t1, $zero    # $t3 = NOT $t1 

 1: 232  $t1  1)

sltu $t3, $t3, $t2    # (232  $t1  1) < $t2 

#if 232  1 < $t1 + $t2

bne $t3,$zero,Overflow  # if(232 1 < $t1 + $t2) go to 

overflow 

2.3 Multiplication

 The multiplication of binary number is done in the same way of decimal 

number. 

 

 The first operand is called the multiplicand and the second the multiplier. The 

final result is called the product.  
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 To take the digits of the multiplier one at a time from right to left, multiplying 

the multiplicand by the single digit of the multiplier and shifting the 

intermediate product one digit to the left of the earlier intermediate products.  

 The number of digits in the product is larger than the number in either the 

multiplicand or the multiplier. 

 In fact, if we ignore the sign bits, the length of the multiplication of an n-bit 

multiplicand and an m-bit multiplier is a product that is n + m bits long.  

 That is, n + m bits are required to represent all possible products. Hence, like 

add, multiply must cope with overflow because we frequently want a 32-bit 

product as the result of multiplying two 32-bit numbers. 

 

2.3 .1 First Version of Multiplication 

 The Multiplicand register, ALU, and the Product register are 64 bits and the 

Multiplier with 32 bits.

 The 32-bit multiplicand starts in the right half of the Multiplicand register, and 

is shifted left 1 bit on each step. 

 The Multiplier is shifted in the opposite direction in each step.  

 Control test is to decide when to shift the Multiplicand and Multiplier registers 

and when to write new values into the Product register. 

Steps: 

1. Initialize the register product to 0.If the least significant bit of multiplier is 1, 

then add the multiplicand to the product.  
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2. Then goto step 2,3.,if 0 then goto step 2,3. 

3. Shift the Multiplicand register left 1 bit. 

4. Shift the Multiplier register right 1 bit. 

5. Repeat the three steps for 32 times. 

First Multiplication: 0010*0011

Iteration Step Multiplier Multiplicand Product 

0 Initial 0011 0000  0010 0000  0000 

1 1a:M[0]=1 Prod(r)=Prod 

(r)+ Mcand 

2: Left Shift the Multiplicand 

3: Right Shift the Multiplier

0011 

0011 

0001 

0000  0010 

0000  0100 

0000  0100 

0000  0010 

0000  0010 

0000  0010 

2 1a:M[0]=1 Prod(r)=Prod 

(r)+ Mcand 

0001 

0001 

0000  0100 

0000  1000 

0000  0110 

0000  0110 
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2: Left Shift the Multiplicand 

3: Right Shift the Multiplier

0000 0000  1000 0000  0110 

3 1a:M[0]=0  No Operation 

2: Left Shift the Multiplicand 

3: Right Shift the Multiplier

0000 

0000 

0000 

0000  1000 

0001  0000 

0001  0000 

0000  0110 

0000  0110 

0000  0110 

4 1a:M[0]=0  No Operation 

2: Left Shift the Multiplicand 

3: Right Shift the Multiplier

0000 

0000 

0000 

0001  0000 

0010  0000 

0010  0000 

0000  0110 

0000  0110 

0000  0110 

 

2.3.2 Second Version of Multiplication 

 The Multiplicand register, ALU, and the Multiplier register are 32 bits and the 

Product register with 64 bits. Here the product is shifted right.  

 Control test is to decide when to shift the Product and Multiplier registers and 

when to write new values into the Product register. 

Steps: 

1. Initialize the register product to 0.If the Least significant bit of multiplier is 1, 

then add the multiplicand to the left half of the product and place the result in 

the left half of the product register, then goto step 2,3.,if 0 then goto step 2,3.

2. Shift the Product register right1 bit.

3. Shift the Multiplier register right 1 bit. 

4. Repeat the three steps for 32 times.
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Second Multiplication:0010 * 0011 

Iteration Step Multiplier Multiplicand Product

0 Initial 0011 0010 0000  0000 

1 1a:M[0]=1 Prod(l)=Prod 

(l)+ Mcand 

2:Right Shift the Product

3: Right Shift the Multiplier

0011 

0011 

0001 

0010 

0010 

0010 

0010 0000 

0001  0000

0001  0000 

2 1a:M[0]=1  Prod(l)=Prod 

(l)+ Mcand 

2:Right Shift the Product

3: Right Shift the Multiplier

0001 

0001 

0000 

0010 

0010 

0010 

0011 0000 

0001  1000 

0001  1000 

3 1a:M[0]=0 No Operation 

2:Right Shift the Product

3: Right Shift the Multiplier

0000 

0000 

0000 

0010 

0010 

0010 

0001  1000 

0000  1100 

0000  1100 
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2.3.3 Third Version of Multiplication 

 The Multiplicand register and ALU are 32 bits and the Product register with 64 

bits. Here the product is shifted right.  

 Here Multiplier register has removed and placed in right half of Product 

register.  

 Control test is to decide when to shift the Product registers and when to write 

new values into the Product register. 

Steps: 

1. If the Least significant bit of product is 1, then add the multiplicand to the left 

half of the product and place the result in the left half of the product register, 

then goto step 2.,if 0 then goto step 2. 

2. Shift the Product register right1 bit. 

3. Repeat the three steps for 32 times. 

 

 

 

 

 

4 1a:M[0]= 0 No Operation 

2:Right Shift the Product

3: Right Shift the Multiplier

0000 

0000 

0000 

0010 

0010 

0010 

0000  1100 

0000   0110 

0000   0110 
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Third Multiplication:0010*0011

Iteration Step Multiplicand Product 

0 Initial 0010 0000  0011

1 1a:P[0]=1 Prod(l)=Prod (l)+ Mcand

2:Right Shift the Product 

0010

0010 

0010 0011

0001  0001 

2 1a:P[0]=1 Prod(l)=Prod (l)+ Mcand 

2:Right Shift the Product 

0010 

0010 

0011  0001 

0001  1000 

3 1b:P[0]=0  No Operation

2:Right Shift the Product 

0010 

0010 

0001  1000 

0000  1100 

4 1b:P[0]=0  No Operation

2:Right Shift the Product 

0010 

0010 

0000  1100 

0000  0110 
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2.3.4 Signed Multiplication 

 The easiest way to understand how to deal with signed numbers is to first 

convert the multiplier and multiplicand to positive numbers and then remember 

the original signs.  

 The algorithms should then be run for 31 iterations, leaving the signs out of the 

calculation.  

 The algorithm can be used for  infinite digits, and we are representing them 

with 32 bits.  

 Hence, the shifting steps would need to extend the sign of the product for 

signed numbers.  

 When the algorithm completes, the lower word would have the 32-bit product. 

2.3.5 Faster Multiplication 

Figure: Faster Multiplication hardware. 

 much more in resources that hardware designers 

can now build much faster multiplication hardware.  

 Whether the multiplicand is to be added or not is known at the beginning of the 

multiplication by looking at each of the 32 multiplier bits.  

 Faster multiplications are possible by providing one 32-bit adder for each bit of 

the multiplier. 

 One input is the multiplicand ANDed with a multiplier bit, and the other is the 

output of a prior adder. 
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 Instead of waiting for 32 add times, we wait just the log2 (32) or five 32-bit add 

times. In fact, multiply can go even faster than five add times because of the 

use of carry save adders.

 

2.3.6 Multiply in MIPS 

 MIPS provide a separate pair of 32-bit registers to contain the 64-bit product,

called Hi and Lo. 

  To produce a properly signed or unsigned product, MIPS has two instructions: 

multiply (mult) and multiply unsigned  multu).  

 To fetch the integer 32-bit product, the programmer uses move from lo (mflo).  

 The MIPS assembler generates a pseudo instruction for multiply that specifies 

three general purpose registers, generating mflo and mfhi instructions to place 

the product into registers. 

2.4 Division 

 The reciprocal operation of multiply is divide, an operation that is even less 

frequent and even more quirky. It even offers the opportunity to perform a 

mathematically invalid operation: dividing by 0. 

 The example is dividing 1,001,010ten by 1000ten: 
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the quotient, are accompanied by a second result, called the remainder. Here is 

another way to express the relationship between the components: 

Dividend =Quotient x Divisor + Remainder 

 Check whether the remainder is smaller than the divisor. Infrequently, 

programs use the divide instruction just to get the remainder, ignoring the 

quotient.  

 Binary numbers contain only 0 or 1, so binary division is restricted to these two 

choices, thereby simplifying binary division.  

 of 

the dividend: 

Dividend: 

 It is a number being divided. 

Divisor: 

 It is a number that the dividend is divided by. 

Quotient: 

 It is a primary result of a division; a number that when multiplied by the 

divisor and added to the remainder produces the dividend. 

Remainder: 

 It is a secondary result of a division; a number that when added to the product 

of the quotient and the divisor produces the dividend. 

Division Hardware

2.4 .1 First version of division

 The Divisor register, ALU, and Remainder register are all 64 bits wide, with 

only the Quotient register being 32 bits.  

 The 32-bit divisor starts in the left half of the Divisor register and is shifted 

right 1 bit each iteration.  

 The remainder is initialized with the dividend. Control decides when to shift 

the Divisor and Quotient registers and when to write the new value into the 

Remainder register. 
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Figure: First version of the division hardware. 

 

Division: 0111 by 0010 

Iteration Step Quotient Divisor Remainder 

0 Initial Values 0000 0010  0000 0000  0111 

1 1:Rem=Rem-Div 

2b:Rem<0->Rem(l)+Div,Left 

shift Q,Q0=0 

3:Right Shift Divisor 

0000 

0000 

 

0000 

0010  0000 

0010  0000 

 

0001  0000 

1110  0111 

0000  0111 

 

0000  0111 

2 1:Rem=Rem-Div 

2b:Rem<0->Rem(l)+Div,Left 

shift Q,Q0=0

3:Right Shift Divisor 

0000 

0000 

 

0000 

0001  0000 

0001  0000

 

0000  1000 

1111  0111

0000 0111

 

0000  0111 

3 1:Rem=Rem-Div 

2b:Rem<0->Rem(l)+Div,Left 

shift Q,Q0=0 

3:Right Shift Divisor 

0000 

0000 

 

0000 

0000  1000 

0000  1000 

 

0000  0100 

1111  1111 

0000  0111 

 

0000  0111 

4 1:Rem=Rem-Div 

2b:Rem>=0-> Left shift 

Q,Q0=1 

3:Right Shift Divisor 

0000 

0001 

 

0001 

0000  0100 

0000  0100 

 

0000  0010 

0000  0011 

0000  0011 

 

0000  0011 

5 1:Rem=Rem-Div 0001 0000  0010 0000  0001 
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2b:Rem>=0-> Left shift 

Q,Q0=1 

3:Right Shift Divisor 

0011 

 

0011 

0000  0010 

 

0000  0001 

0000  0001 

 

0000  0001 

 

Division Algorithm 

 We start with the 32-bit Quotient register set to 0.  

 Each iteration of the algorithm needs to move the divisor to the right one digit, 

so we start with the divisor placed in the left half of the 64-bit Divisor register 

and shift it right 1 bit each step to align it with the dividend.  

 The Remainder register is initialized with the dividend. 

 

Figure : A division algorithm. 
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 Step 1: 

 If the remainder is positive, the divisor did go into the dividend, so step 2a 

generates a 1 in the quotient.  

Step 2: 

 A negative remainder after step 1 means that the divisor did not go into the 

dividend, so step 2b generates a 0 in the quotient and adds the divisor to the 

remainder, thereby reversing the subtraction of step 1.  

Step 3: 

 The final shift, in step 3, aligns the divisor properly, relative to the dividend for 

the next iteration. These steps are repeated 33 times. 

2.4.2 Second version of division

2.4.3 Third version of division

 The Divisor register, ALU, and Quotient register are all 32 bits wide, with only 

the Remainder register left at 64 bits.  

 Compared to first version, the ALU and Divisor registers are halved and the 

remainder is shifted left. 

 This version also combines the Quotient register with the right half of the 

Remainder register.  
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FIGURE 3.12 An improved version of the division hardware.
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Division: 0111 by 0010 

Iteration Step Divisor Remainder 

0 Initial Values 

1:Left shift Rem 

0010 0000  0111 

0000  1110 

1 2:Rem(l)=Rem(l)-Div

3b:Rem<0->Rem(l)+Div,

 Left shift the Rem,R0=0

0010 1110  1110 

0000  1110 

0001  1100 

2 2:Rem(l)=Rem(l)-Div

3b:Rem<0->Rem(l)+Div,

 Left shift the Rem,R0=0

0010 1111  1100 

0001  1100 

0011  1000 

3 2:Rem(l)=Rem(l)-Div

3a:Rem>=0-> Left shift the 

Rem,R0=1 

0010 0001  1000 

0011  0001 

 

4 2:Rem(l)=Rem(l)-Div

3a:Rem>=0-> Left shift the 

Rem,R0=1 

0010 0001  0001 

0010  0011 

 

5 Right shift the Rem(l) 0010 0001  0011 

 

 

2.4.4 Signed Division 

The simplest solution is to remember the signs of the divisor and dividend and 

then negate the quotient if the signs disagree. 

 Thus the signed division algorithm negates the quotient if the signs of the

operands are opposite and makes the sign of the non-zero remainder match 

the dividend. 

2.4.5 Faster Division 

 We used many adders to speed up multiply, but we cannot do the same trick for

divide.  

 The reason is that we need to know the sign of the difference before we can

perform the next step of the algorithm, whereas with multiply we could 

calculate the 32 partial products immediately. 
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 There are techniques to produce more than one bit of the quotient per step.

 The SRT division technique tries to guess several quotient bits per step, using a

table lookup based on the upper bits of the dividend and remainder. 

 This technique has subsequent steps to correct wrong guesses. A typical value 

today is 4 bits.  

 The key is guessing the value to subtract. With binary division, there is only a 

single choice.  

 These algorithms use 6 bits from the remainder and 4 bits from the divisor to 

index a table that determines the guess for each step. 

 The accuracy of this fast method depends on having proper values in the look-

up-table.  

 

2.4.6 Divide in MIPS 

 The same sequential hardware can be used for both multiply and divide. 

 The only requirement is a 64-bitregister that can shift left or right and a 32-bit 

ALU that adds or subtracts. 

 Hence, MIPS uses the 32-bit Hi and 32-bit Lo registers for both multiply and 

divide. 

 To handle both signed integers and unsigned integers, MIPS have two 

instructions: divide (div) and divide unsigned (divu).  

 The MIPS assembler allows divide instructions to specify three registers, 

generating the mflo or mfhi instructions to place the desired result into a 

general-purpose register. 

 

2.5 Floating Point: 

 In addition to signed and unsigned integers, programming languages support

numbers with fractions, which are called reals in mathematics. Here are some

examples for real numbers: 

1. 3.14159265. . .ten (pi) 

2. 2.71828. . .ten (e) 
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3. 0.000000001ten or 1.0ten  x 10 9 (seconds in a nanosecond) 

4. 3,155,760,000ten or 3.15576ten x 109 (seconds in a typical century) 

 From the above values notice that in the last two cases

represent a small fraction, but the two numbers are bigger than 32-bit signed 

integer. So the alternative notation for the last two numbers is called scientific 

notation. 

Scientific notation: 

 It is a notation which has a single digit to the left of the decimal point. A 

number in scientific notation that has no leading 0s is called a normalized 

number.  

 For example, 1.0ten x 10 9 is in normalized scientific notation, but 0.1ten x 10 8

and 10.0ten x 10 10 are not. Binary numbers can be represented in normalized

form.  

 To keep a binary number in normalized form, we need a base that we can 

increase or decrease by exactly the number of bits the number must be shifted 

to have one nonzero digit to the left of the decimal point.   

 Computer arithmetic that supports such numbers is called floating point. 

Floating point: 

 Computer arithmetic represents numbers in which the binary point is not fixed 

called Floating point. 

Floating point represents numbers in which the binary point is not fixed.

 A standard scientific notation for real in normalized form has three advantages. 

1. It simplifies exchange of data that includes floating-point numbers. 

2. It simplifies the floating-point arithmetic algorithms to know that 

numbers will always be in this form. 

3. It increases the accuracy of the numbers that can be stored in a word.

 

2.5.1 Floating-Point Representation 

 A designer of a floating-point representation must find a compromise between 

the size of the fraction and the size of the exponent. 
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 Because a fixed word size means we must take a bit from one to add a bit to the 

other.  

 Increasing the size of the fraction enhances the precision of the fraction. 

 Increasing the size of the exponent increases the range of numbers that can be 

represented.  

 Floating-point numbers are usually a multiple of the size of a word. 

 The representation of a MIPS floating-point number is shown below, 

 

  where s is the sign of the floating-point number (1 meaning negative), 

exponent is the value of the 8-bit exponent field and fraction is the 23-bit

number.  

 This representation is called sign and magnitude, since the sign has a separate

bit from the rest of the number.

 In general, floating-point numbers are generally of the form 

( 1)S x F x 2E 

 F involves the value in the fraction field and E involves the value in the 

exponent 

 These sizes of exponent and fraction give MIPS computer arithmetic an

extraordinary range. 

Thus, overflow interrupts can occur in floating-point arithmetic as well as in 

integer arithmetic. 

Overflow (floating-point): 

 Overflow means the exponent is too large to be represented in the exponent 

field. 

 It is a situation in which a positive exponent becomes too large to fit in the 

exponent field. 

Underflow (floating-point): 

 Underflow occurs when the negative exponent is too large to fit in the 

exponent field. 
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 It is a situation in which a negative exponent becomes too large to fit in the 

exponent field. 

 Both underflow and overflow condition will occur in floating-point arithmetic. 

 In C this number is called double, and operations on doubles are called double 

precision floating-point arithmetic; single precision floating point is the name 

of the earlier format. 

Double precision: 

 A floating point value represented in two 32-bit words. 

Single precision:  

 A floating point value represented in a single 32-bit word. 

 

 The representation of a double precision floating-point number takes two MIPS 

words, as shown below, where s is still the sign of the number, exponent is the 

value of the 11-bit exponent field, and fraction is the 52-bit number in the 

fraction. 

 Its advantage is its greater precision because of the larger fraction. 

 

IEEE 754 floating-point Standard:

 This standard has greatly improved both the ease of porting floating-point 

programs and the quality of computer arithmetic.  

 To pack even more bits into the significant, IEEE 754 makes the leading 1 bit 

of normalized binary numbers implicit.  

 Hence, the number is actually 24 bits long in single precision (implied 1 and a 

23-bit fraction), and 53 bits long in double precision (1 + 52). 

 Example for invalid operations, such as 0/0 or subtracting infinity from 

infinity. This symbol is NaN, for Not a Number. 

  

 



84
 

 

Floating-point representation: 

 Floating-point representation of IEEE 754 performs integer comparisons, 

especially for sorting. 

 Sign in the most significant bit allows a quick test of less than, greater than, or 

equal to 0. 

 Placing the exponent before the significand also simplifies sorting of floating

point numbers using integer comparison instructions. 

 Because numbers with bigger exponents look larger than numbers with smaller 

exponents, as long as both exponents have the same sign. 

 Negative exponents create a challenge to simplified sorting.  

 

have a 1 in the most significant bit of the exponent field, a negative exponent 

will look like a big number.

 For example, 1.0two x 2 1 would be represented as 

 

 Remember that the leading 1 is implicit in the significand, so the value 1.0two x 

2+1 would look like the smaller binary number. 

Biased notation: 

 It is a convention way to represent the most negative exponent as 00 . . . 00two

and the most positive as 11 . . . 11two.  

 The bias is the number subtracted from the normal, unsigned representation to 

determine the real value.

 IEEE 754 uses a bias of 127 for single precision, so 1 is represented by the bit 

pattern of the value 1 + 127ten, or 126ten = 0111 1110two, and +1 is represented 

by 1 + 127, or 128ten = 1000 0000two.  

 Biased exponent means that the value represented by a floating-point number is 

really 
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( 1)S x (1 + Fraction) x 2(Exponent  Bias) 

 The exponent bias for double precision is 1023. 

Floating-Point Representation: 

Example:1 

Show the IEEE 754 binary representation of the number 0.75ten in single and double 

precision. 

 

Solution: 

The number 0.75ten is also written as 

3/4ten or 3/22
ten 

It is also represented by the binary fraction 

11two/2
2

ten or 0.11two 

In scientific notation, the value is

0.11two x 20 

and in normalized scientific notation, it is 

1.1two x 2 1 

The general representation for a single precision number is 

( 1)S x (1 + Fraction) x2(Exponent  127) 

When we subtract the bias 127 from the exponent of 1.1two x2 1, the result is 

( 1)1 x(1 + .1000 0000 0000 0000 0000 000two) x 2(126  127)

The single precision binary representation of 0.75ten is then 

 

The double precision representation is

( 1)1 x (1 + .1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 

0000two) x 2(1022 1023) 

 

 



86
 

Converting Binary to Decimal Floating Point: 

Example:2 

What decimal number is represented by this single precision float? 

 

 

Answer: 

The sign bit is 1, the exponent field contains 129, and the fraction field contains 1 x 2 2

= 1/4, or 0.25. Using the basic equation, 

( 1)S x (1 + Fraction) x 2(Exponent  Bias)  

= ( 1)1 x (1 + 0.25) x 2(129 127) 

= 1 x 1.25x 22 

= 1.25 x 4 

= 5.0 

 

2.5.2 Floating-Point Addition

Let s add two numbers in scientific notation and illustrate the problems in floating-

point addition:  

9.999ten x101  

1.610ten x 10 1. 

Assume that we can store only four decimal digits of the significand and two decimal 

digits of the exponent. 

Step 1: 

 To add these numbers properly, we must align the decimal point of the number 

that has the smaller exponent.  

 Hence, we need a form of the smaller number, 1.610ten x 10 1, that matches the 

larger exponent. 

 There are multiple representations of an un-normalized floating-point number 

in scientific notation: 

1.610ten x 10 1 = 0.1610ten x100 = 0.01610ten x 101 
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 These numbers matches the exponent of the larger number, 9.999ten x101.  

 Thus the first step shifts the significand of the smaller number to the right until 

its corrected exponent matches that of the larger number.  

 But we can represent only four decimal digits so, after shifting, the number is 

really: 

0.016ten x 101 

Step 2: 

 Perform the addition of the significands: 

 

 The sum is 10.015ten x 101. 

Step 3:  

This sum is not in normalized scientific notation, so we need to adjust it: 

10.015ten x 101 = 1.0015ten x 102 

shifting to the right, but 

 If one number were positive and the other negative, we need to left shifts to get 

normalized form.  

 Whenever the exponent is increased or decreased, we must check for overflow 

or underflow. 

 that is, we must make sure that the exponent still fits in its field. 

Step 4:  

 Since we assumed that the significand can be only four digits long (excluding

the sign), we must round the number.  

 The number 1.0015ten x102 is rounded to four digits in the significand to

1.002ten x 102.  

 The sum may not be normalized and we would need to perform step 3 again.

 

Decimal Floating-Point Addition: 

Example:3 
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Add two numbers 0.5ten and 0.4375ten in binary using floating-Point Addition

algorithm. 

 

Answer: 

 Check whether the two numbers are in normalized notation, 

 Assuming 4 bits of precision: 

0.5ten = 1/2ten = 1/21
ten

         = 0.1two = 0.1two x 20 = 1.000two x 2 1 

0.4375ten = 7/16ten = 7/24
ten 

         = 0.0111two =  0.0111two x20 = 1.110two x2 2 

Now we follow the algorithm: 

Step 1: 

 The significand of the number with the lesser exponent (  1.11two x 2 2) is 

shifted right until its exponent matches the larger number: 

1.110two x2 2 = 0.111two x 2 1 

Step 2:  

 Add the significands: 

1.000two x 2 1 + ( 0.111two x 2 1) = 0.001two x2 1 

Step 3:

 Normalize the sum, checking for overflow or underflow: 

0.001two x 2 1 = 0.010two x 2 2 = 0.100two x 2 3 

         = 1.000two x 2 4 

 126, there is no overflow or underflow. 

Step 4: 

 Round the sum 

1.000two x 2 4 

 The sum already fits exactly in 4 bits, so there is no change to the bits due to 

rounding. 

 This sum is then 

1.000two x 2 4 = 0.0001000two = 0.0001two 
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        = 1/24ten = 1/16ten = 0.0625ten 

 This sum is what we would expect from adding 0.5ten to 0.4375ten. 

Figure: Block diagram of an arithmetic unit dedicated to floating-point addition.

First, the exponent of one operand is subtracted from the other using the small 

ALU to determine which is larger and by how much.  

 The multiplexers select the larger exponent, the significand of the smaller 

number, and the significand of the larger number. The smaller significand is 

shifted right, and then the significands are added together using the big ALU.  

 The normalization step then shifts the sum left or right and increments or 

decrements the exponent.  

 Rounding then creates the final result, which may require normalizing again to 

produce the final result.
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Floating-Point Addition: 
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2.5.3 Floating-Point Multiplication 

 

Example:4 

Multiply the numbers 0.5ten and 0.4375ten, using floating-Point algorithm.\ 

 

Answer: 

In binary, the task is multiplying 1.000two x 2 1 by  1.110two x 2 2. 
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Step 1: 

 Adding the exponents without bias: 

1 + ( 2) = 3

or, using the biased representation:

( 1 + 127) + ( 2 + 127)  127 = ( 1  2)+(127 + 127  127) 

= 3 + 127 = 124

Step 2: 

 Multiplying the significands:

 

 

 The product is 1.110000two x 2 3, but we need to keep it to 4 bits, so it is 

1.110two x 2 3. 

Step 3: 

 Now we check the product to make sure it is normalized, and then check the 

exponent for overflow or underflow. The product is already normalized and, 

since 127 3 126, there is no overflow or underflow.

Step 4: 

 Rounding the product makes no change: 

1.110two x 2 3 

Step 5:  

 Since the signs of the original operands differ, make the sign of the product 

negative. Hence the product is

1.110two x 2 3 

 Converting to decimal to check our results: 
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1.110two x 2 3 = 0.001110two = 0.00111two 

          = 7/25ten = 7/32ten = 0.21875ten 

 The product of 0.5ten and 0.4375ten is indeed 0.21875ten. 

 

2.5.4 Floating-Point Instructions in MIPS 

 MIPS supports the IEEE 754 single precision and double precision formats 

with these instructions:

1. Floating-point addition, single (add.s) and addition, double (add.d)

2. Floating-point subtraction, single (sub.s) and subtraction, double 

(sub.d) 

3. Floating-point multiplication, single (mul.s) and multiplication, 

double (mul.d) 

4. Floating-point division, single (div.s) and division, double (div.d) 

5. Floating-point comparison, single (c.x.s) and comparison, double 

(c.x.d), where x may be equal (eq), not equal (neq), less than (lt), 

less than or equal (le), greater than (gt), or greater than or equal 

(ge) 

6. Floating-point branch, true (bc1t) and branch, false (bc1f) 

 

 Floating-point comparison sets a bit to true or false, depending on the 

comparison condition, and a floating-point branch then decides whether or not 

to branch, depending on the condition.  

The MIPS designers decided to add separate floating-point registers called $f0, 

$f1, $f2, . . .and used either for single precision or double precision.  

 Hence, they included separate loads and stores for floating-point registers: 

lwc1 and swc1. 

Advantages: 

1. It has separate register, bandwidth is high. 

2. More bits can be stored in the instruction format. 

 

 



94
 

Disadvantages: 

1. Floating-point has separated the registers that increase the number of 

instructions needed to execute a program. 

2. It must have separate set of data transfer instructions to move data between 

floating-point registers and memory. 

 

2.5.5 Accurate Arithmetic

 Floating-point numbers are normally approximations for a 

really represent.  

 The reason is that an infinite variety of real numbers exists between, say, 0 and 

1, but no more than 253 can be represented exactly in double precision floating 

point.  

 The best we can do is get the floating point representation close to the actual 

number. Thus, IEEE 754 offers several modes of rounding to pick the desired 

approximation. 

 If every intermediate result had to be truncated to the exact number of digits, 

there would be no opportunity to round. IEEE 754, therefore, always keeps 2 

extra bits on the right during intermediate additions, called guard and round..

 

Guard: 

 The first of two extra bits kept on the right during intermediate calculations of 

floating-point numbers; used to improve rounding accuracy. 

Round: 

 Method to make the intermediate floating-point result fit the floating-point 

format; the goal is typically to find the nearest number that can be represented 

in the format. 

Sticky bit : 

 A bit used in rounding in addition to guard and round that is set whenever there

are nonzero bits to the right of the round bit. 

Fused multiply add: 
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 A floating-point instruction that performs both a multiply and an add, but 

rounds only once after the add. 

2.6 Sub word Parallelism 

 Parallelism will improve the performance of computer. Many application needs the 

performance high compared to small applications. 

 For example consider the graphical and multimedia applications. 

 Every processor has its own graphic display, support the graphics operations many 

transistors are used.  

 Many graphic system originally used 8 bit to represent each of the three primary 

colors plus 8 bit for a location of a pixel. 

 The primary colors are RGB- Red, Green, Blue and it has to be represented using 8 

bits. 

 In addition graphic display, speakers and microphones for teleconferencing.  Audio 

samples need more than 8 bit of precision, but 16 bits are sufficient. Storing bytes 

and half word in the memory take up less space.  

 Every processor has special support to access these data, but due to the infrequency 

of arithmetic operations on these data sizes in typical integer programs, there were 

little supports beyond data transfer.  

 The rising popularity of multimedia application led to arithmetic instruction that 

support narrow operation that can easily operate in parallel.  

 Many graphics and audio applications will perform the same operation again and 

again. 

 Parallelism is used to perform simultaneous operations on vectors of data used in 

specific applications. 

 Parallelism perform simultaneous arithmetic or logic operation on short vectors 

(smaller word)  of following values:

1. Sixteen 8 bit operands 

2. Eight 16 bit operands 

3. Four 32 bit operands 

4. Two 64 bit operands.  
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 The parallelism must occur within a wide word, in case it extends means that is 

called as sub word parallelism.

 Sub word parallelism is also known as data level parallelism or vector or SIMD 

parallelism. 

 For example, ARM added more than 100 instructions in the NEON multimedia 

instruction extension to support sub word parallelism.  

 These techniques can be used in ARMv7 or ARMv8 processor.  

 It added 256 bytes of new register for  NEON that can be viewed as  

1. 32 registers 8 byte wide  

2. 16 registers 16 byte wide.  

 NEON supports all the sub word data types except 64-bit floating point numbers: 

1. 8-bit, 16-bit, 32-bit, 64-bit signed and unsigned integer  

2. 32-bit floating point number 

Data transfer Arithmetic Logical/ Compare 

VLDR, F32 VADD,F32,VADD{LW}{S8,

U8,S16,U16,S32,U32} 

VAND 64, VAND,128 

VSTR,F32 VSUB,F32,VSUB{LW}{S8,

U8,S16,U16,S32,U32} 

VORR 64, VORR,128 

VLD{1,2,3,4}{

18,16,132}

VMUL,F32,VMULL{S8,U8,

S16,U16,S32,U32}

VEOR 64, VEOR,128

VST{1,2,3}{18

,16,132,} 

VMLA,F32,VMLAL{S8,U8,

S16,U16,S32,U32} 

VBIC 64, VBIC,128

VMOV}{18,16

,132, 32}#imm 

VMLS,F32,VMLSL{S8,U8,S

16,U16,S32,U32} 

VORN 64, VORN ,128 

VMVN}{18,16

,132, 32}#imm 

VMAX,{S8,U8,S16,U16,S32,

U32,F32} 

VCEQ{18,116,132,F32 

VMOV{164,1

28} 

VMIN,{S8,U8,S16,U16,S32,

U32, F32} 

VCGE{S8,U8,S16,U16,S32,

U32, F32} 

VMVN{164,1

28} 

VABS,{ S8,U8, S32, F32} 

VNEG,{S8,U8,S16,U16,S32,

VCGT{S8,U8,S16,U16,S32,

U32, F32} 
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S64,U64,} 

VSHL,{S8,U8,S16,U16,S32,

S64, U64} 

VSHR,{S8,U8,S16,U16,S32,

S64, U64} 

VCLE{S8,U8,S16,U16,S32,

U32, F32} 

VCLT{S8,U8,S16,U16,S32,

U32, F32} 

VTST{ 118,116,1132} 

 

 { } is used to show optional variations of the basic operations. 

 {S16, U8, 8} stands for signed and unsigned 8-bit integers. 

 {S16, U16, 16} stands for signed and unsigned 16-bit integers. 

 {S32, U32, 32} stands for signed and unsigned 32-bit integers. 

 {F32} stands for signed and unsigned 32-bit floating point numbers of which 4 

fit in a 128 bit register. 

 

Types of Division 

1. Restoring-division 

2. Non-Restoring-division 

Restoring-division 

Algorithm 

 Shift A and Q left one binary position. 

Subtract Mt from A, and place the answer back in A. 

If the sign of A is I, set qo to 0 and add M back to A,(I.e restore A);  

otherwise set qo to 1.

 

Non-Restoring-division 

Algorithm 

 If the sign of A is 0, shift A and Q left one binary position and subtract M from A; 

otherwise, shift A and Q left and add M to A. 

 Now, if the sign of A is 0, set q0 to 0, otherwise set q0 to 0. 

 Finally, If the sign of A is 1, add M to A. 
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Initially 0 0 0 0 0 1 0 0 0     

First Cycle  

 

 0 0 0 1 1  

Shift 0 0 0 0 1 0 0 0 _ 

Subtract  1 1 1 0 1  

Set q0 1 1 1 1 0  

Restore          1 1  

 0 0 0 0 1 0 0 0 0  

 

Shift 0 0 0 1 0 0 0 0 _   

Second Cycle 

 

Subtract   1 1 1 0 1  

Set q0 1 1 1 1 1  

Restore         1 1  

 0 0 0 1 0 0 0 0 0 

 

Shift 0 0 1 0 0 0 0 0 _   

Third CycleSubtract 1 1 1 0 1  

Set q0 0 0 0 1 0 0 0 0 1 

Shift 0 0 0 1 0  0 0 1 _ 

 

  

Fourth Cycle 

 Subtract          1 1 1 0 1  

Set q0 1 1 1 1 1  

Restore         1 1  

 0 0 0 1 0 0 0 1 0 

     

 Reminder Quotient   

 

 

 

 

 


