
1

Unit-I

Overview and Instructions

Eight ideas Components of a computer system Technology Performance Power

wall Uniprocessors to multiprocessors; Instructions operations and operands

representing instructions Logical operations control operations Addressing and

addressing modes.

Computer

 A Computer is a machine which accepts input information in the digitized

form, processes the input according to a set of stored instructions and produces

the resulting output information.

Program and Data

 The set of stored instructions written using a computer to solve the task is

called program and input and output information is called data. The internal

storage where programs are stored is called Memory.

Characteristics of computer:

Speed:

 Computers perform various operations at a very high speed.

Accuracy:

Computers are very accurate. Do not make mistakes in calculations.

Reliability:

 Computers give correct and consistent results always even if they are used in

adverse conditions.

 Many times errors are caused by human interventions not by computer.

Computer output is reliable, subject to the condition that the input data and the

instructions (programs) are correct. Incorrect input data and unreliable

programs give us wrong results.

Storage Capacity:

 The computer can store large amount of data and can be retrieved at any time

in fractions of a second.

2

 This data can be stored in permanent storage devices like hard disk, CDs etc.

Versatility:

 Computers can do a variety of jobs based on the instructions given to them.

They are used in each and every field, making the tasks easier.

Hardware:

 Hardware is the physical aspect of computers, telecommunications, and other

device. Hardware implies permanence and invariability

 The components include keyboard, floppy drive, hard disk, monitor, CPU,

printer, wires, transistors, circuits etc.

Software:

 It is a set of programs used to perform certain tasks. Program is set of

instructions to carry out a particular task

Computer Organization

 It refers to the operational units and their interconnections that realize the

architectural specifications.

 It describes the function of and design of the various units of digital computer

that store and process information.

Computer Architecture

 It is concerned with the structure and behavior of the computer. It includes the

information formats, the instruction set and techniques for addressing memory.

1.1 Eight Great Ideas in Computer Architecture:

2. Use Abstraction to Simplify Design

3. Make the common case fast

4. Performance via parallelism

5. Performance via pipelining

6. Performance via prediction

7. Hierarchy of memories

8. Dependability via redundancy

3

1.1.1

 The Number of Transistors in an integrated circuit doubles approximately

every two years. (Gordon Moore, one of the founders of Intel).

 As computer designs can take years, the resources available per chip can easily

double or quadruple between the start and finish of the project.

 Computer architects must anticipate where the technology will be when the

design finishes rather than where it starts.

1.1.2 Use Abstraction to Simplify Design

 In computer architecture, a computer system consists of five abstraction levels:

1. hardware

2. firmware

3. assembler

4. operating system and

5. Processes.

 In computer science, an abstraction level is a generalization of a model

or algorithm. The simplification provided by abstraction layer helps us to reuse

easily.

 Both computer architects and programmers had to invent techniques to make

them more useful, otherwise design time would grow affectedly as resources

grew by Moore's Law.

4

 A major productivity technique for hardware and software is to use

abstractions represent the design at different levels of representation; lower-

level details are hidden to offer a simpler model at higher levels.

1.1.3 Make the common case fast

 Making the common case fast will tend to enhance performance better than

optimizing the rare case.

 It implies that you know what the common case is, which is only possible with

careful experimentation and measurement.

 We use a sports car as the icon for making the common case fast

1.1.4 Performance via parallelism

 Computer architects have offered designs that get more performance by

performing operations in parallel.

 Parallel computing is a form of computation in which many calculations are

carried out simultaneously, operating on the principle that large problems can

often be divided into smaller ones which are then solved concurrently.

5

 Parallelism has been employed for many years, mainly in high performance

computing. We use multiple jet engines of a plane as our icon for parallel

performance.

1.1.5 Performance via pipelining

 Pipelining is a technique used in the design of computers to increase the

instruction throughput (the number of instructions that can be executed in a

unit of time).

 The basic instruction cycle is broken up into a series of pipeline stages.

 Rather than processing each instruction sequentially, each instruction is split up

into a sequence of steps so that different steps can be

executed concurrently and in parallel.

 Pipelining increases instruction throughput by performing multiple operations

at the same time but does not reduce instruction latency (the time to complete a

single instruction from start to finish) as it still must go through all steps.

Our pipeline icon is a sequence of pipes, with each section representing one

stage of the pipeline.

6

1.1.6 Performance via prediction

 To improve the flow and throughput in a instruction pipeline, Branch

predictors play a critical role in achieving high effective performance in many

modern pipelined microprocessor architectures.

 Without branch prediction, the processor would have to wait until the

conditional jump instruction has passed the execute stage before the next

instruction can enter the fetch stage in the pipeline.

 The branch predictor attempts to avoid this waste of time by trying to guess

whether the conditional jump is most likely to be taken or not taken.

1.1.7 Hierarchy of memories

 Programmers want memory to be fast, large, and cheap, as memory speed often

shapes performance, capacity limits the size of problems that can be solved,

and the cost of memory today is often the majority of computer cost.

 Architects have found that they can address these conflicting demands with a

hierarchy of memories, with the fastest, smallest, and most expensive memory

per bit at the top of the hierarchy and the slowest, largest, and cheapest per bit

at the bottom.

 Caches give the programmer the illusion that main memory is nearly as fast as

the top of the hierarchy and nearly as big and cheap as the bottom of the

hierarchy.

7

1.1.8 Dependability via redundancy

 Computers not only need to be fast; they need to be dependable. Since any

physical device can fail, we make systems dependable by including redundant

components that can take over when a failure occurs and to help detect failures.

 We use the tractor-trailer as our icon, since the dual tires on each side of its

rear axles allow the truck to continue driving even when one tire fails

1.2 Components of Computer System:

Computer Hardware:

A computer consists of 5 main parts.

1. Input Unit,

2. Output Unit

3. Memory Unit,

4. Processing Unit,

1.2.1 Input Unit

 Computers accept coded information through input units, which read the data.

8

 Whenever a key is pressed, the corresponding letter or digit is automatically

translated into its corresponding binary code and transmitted over a cable to

either the memory or the processor.

Keyboard:

 Keyboard is a input device which helps in entering information into the

computer. Keyboards are of two sizes 84 keys or 101/102 keys, but now

keyboards with 104 keys or 108 keys are also available for Windows and

Internet.

Mouse:

 Mouse is a pointing device. It is a very famous cursor-control device having a

small palm size box with a round ball at its base which senses the movement of

mouse and sends corresponding signals to CPU when the mouse buttons are

pressed.

Joystick:

 Joystick is also a pointing device which is used to

move cursor position on a monitor screen.

 It is mainly used in Computer Aided Designing(CAD)

and playing computer games.

Light Pen:

 Light pen is a pointing device which is similar to a

pen. It is used to select a displayed menu item or

draw pictures on the monitor screen.

 When the tip of a light pen is moved over the

monitor screen and pen button is pressed, its photocell sensing element detects

the screen location and sends the corresponding signal to the CPU.

Track Ball:

 Track ball is an input device that is mostly used in

notebook or laptop computer, instead of a mouse. It is

used by graphical designers.

Scanner:

 Scanner is used when some information is available on a paper and it is to be

transferred to the hard disc of the computer.

9

 Scanner captures images from the source which are then converted into the

digital form that can be stored on the disc.

Magnetic Ink Card Reader (MICR):

 The bank's code number and cheque number are

printed on the cheques with a special type of ink that

contains particles of magnetic material that are

machine readable. This reading process is called

Magnetic Ink Character Recognition (MICR).

Optical Character Reader(OCR):

 OCR is an input device used to read a printed text. OCR

scans text optically character by character, converts

them into a machine readable code and stores the text

on the system memory.

Bar Code Readers:

 Bar Code Reader is a device used for reading bar

coded data Bar Code Reader scans a bar code

image, converts it into an alphanumeric value

which is then fed to the computer to which bar

code reader is connected.

Optical Mark Reader (OMR):

 OMR is a special type of optical scanner used to recognize the type of mark

made by pen or pencil.

 It is specially used for checking the answer sheets

of examinations having multiple choice questions.

1.2.2 Output Unit

 Its function is to send the processed results to the outside world.

1. Monitors

10

2. Graphic Plotter

3. Printer

Monitors:

 Monitors are also called as Visual Display Unit (VDU).

 It forms images from tiny dots, called pixels that are

arranged in a rectangular form.

 The sharpness of the image depends upon the number of

pixels.

 There are two kinds of viewing screen used for monitors.

1. Cathode-Ray Tube (CRT)

2. Flat- Panel Display

Printers:

 Printer is an output device, which is used to print

information on paper. There are two types of printers:

1. Impact Printers

2. Non-Impact Printers

Non-impact Printers:

 Non-impact printers print the characters without using ribbon. These printers

print a complete page at a time so they are also called as Page Printers. These

printers are of two types

1. Laser Printers

2. Inkjet Printers

Laser Printers:

 They use laser lights to produce the dots needed to form

the characters to be printed on a page.

Inkjet Printers:

 They print characters by spraying small drops of ink onto

paper.

 Some models of Inkjet printers can produce multiple

copies of printing also.

11

1.2.3 Memory Unit

 A memory is just like a human brain. It is used to store data and instructions.

 Computer memory is the storage space in computer where data is to be

processed and instructions required for processing are stored. Memory is

primarily of three types

1. Cache Memory

2. Primary Memory/Main Memory

3. Secondary Memory

Cache Memory:

 Cache memory is a very high speed semiconductor memory which can speed

up CPU. It acts as a buffer between the CPU and main memory.

 It is used to hold data and program which are most frequently used by CPU.

Primary Memory (Main Memory):

 Primary memory holds only those data and

instructions on which computer is currently working.

 It has limited capacity and data is lost when power is

switched off. It is divided into two subcategories RAM and ROM.

Secondary Memory:

 This type of memory is also known as external memory or

non-volatile. It is slower than main memory.

 These are used for storing data/Information permanently. For

example: disk, CD-ROM, DVD etc.

RAM:

 Random Access Memory is the internal memory of the CPU for storing data,

program and program result. It is read/write memory which stores data until the

machine is working.

12

 As soon as the machine is switched off, data is erased.RAM is volatile, i.e.

data stored in it is lost when we switch off the computer or if there is a power

failure.

ROM:

 ROM stands for Read Only Memory. The memory from which we can only

read but cannot write on it. This type of memory is non-volatile.

 The information is stored permanently in such memories during manufacture.

 A ROM, stores such instructions that are required to start a computer. This

operation is referred to as bootstrap.

Motherboard:

 The motherboard serves as a single platform to connect all of the parts of a

computer together.

 A motherboard connects CPU, memory, hard drives, optical drives, video card,

sound card, and other ports and expansion cards directly or via cables.

 It can be considered as the backbone of a computer. Hardware represents the

physical and tangible components of a computer i.e. the components that can

be seen and touched.

Examples of Hardware are:

1. Input devices -- keyboard, mouse etc.

2. Output devices -- printer, monitor etc.

3. Secondary storage devices -- Hard disk, CD, DVD etc.

4. Internal components -- CPU, motherboard, RAM etc.

1.2.4 Central Processing Unit (CPU)

 It performs computing and manipulating functions. It controls other hardware

devices. It has 3 elements: the Arithmetic/Logic Unit (ALU), Control Unit, and

Registers.

Arithmetic and Logic Unit:

 Most computer operations are executed in ALU.

 It can perform arithmetic operations like addition, Subtraction, multiplication,

division and also the logical operations like AND, OR, NOT operations.

13

 Consider an example, Suppose 2 numbers located in memory are to be added.

They are brought into the processor and the actual addition is carried out by the

ALU.

 The sum may then be stored in the memory or retained in the processor for

immediate use.

 When operands are brought into the processor, they are stored in high-speed

storage elements called registers. Each can store 1 word of data.

 Access times of registers are faster than cache unit in memory.

Control Unit:

 The operations of input unit, output unit, ALU are coordinated by the control

unit.

 The control unit sends control signals to other units and senses their states.

 Data transfers between the processor and the memory are also controlled by the

control unit through timing signals.

Registers:

 High-speed storage areas used to temporarily hold small units of program

instructions and data that are being transferred from the primary storage to the

CPU for processing.

Computer Software:

 Software is a set of programs, which is designed to perform a well-defined

function. A program is sequences of instructions written to solve a particular

problem.There are two types of software

1. System Software

2. Application Software

System Software:

 The system software is collection of programs designed to operate, control, and

extend the processing capabilities of the computer itself.

 These software products include programs written in low-level languages

which interact with the hardware at a very basic level.

14

 Some examples of system software are Operating System, Compilers,

Interpreter, and Assemblers etc.

Application Software:

 Application software may consist of a single program, such as a Microsoft's

notepad for writing and editing simple text.

 It may also consist of a collection of programs, often called a software

package, which work together to accomplish a task, such as a spreadsheet

package. Examples of Application software is following:

1. Income Tax Software

2. Railways Reservation Software

3. Microsoft Word

Relationship between Hardware and Software:

1. Hardware and software are mutually dependent on each other. Both of them

must work together to make a computer produce a useful output.

2. Software cannot be utilized without supporting hardware.

3. Hardware without set of programs to operate upon cannot be utilized and is

useless.

4. To get a particular job done on the computer, relevant software should be

loaded into the hardware

5. Hardware is a one-time expense.

15

6. Software development is very expensive and is a continuing expense.

7. Different software applications can be loaded on hardware to run different

jobs.

8. Software acts as an interface between the user and the hardware.

9. If hardware is the 'heart' of a computer system, then software is its 'soul'.

Both are complimentary to each other.

1.3 Technologies for Building Processors and

Memories:

 To improve the performance of computer, Processors and memory are more

important.

 Because the computer designers have to know the latest technology to design a

better computer.

 Technology shapes what computers will be able to do and how quickly they

will evolve.

Year Technology used in computer Relative performance / Unit

cost

1951 0 Vacuum tube 1

1965 Transistor 0 35

1975 Integrated circuit 0 900

1995 Very large scale integrated circuit 2400000

2005 Ultra large scale integrated circuit 6,200,000,000

Figure: Relative performances per unit cost of technologies used in computers

over time

Transistor:

 A transistor is simply an on/off switch controlled by electricity

 Vacuum tube:

 An electronic component, predecessor of the transistor, that consists of a

hollow glass tube about 5 to 10 cm long from which as much air has been

removed as possible and which uses an electron beam to transfer data.

16

Very large scale integrated (VLSI):

 A device that containing hundreds of thousands to millions of transistors.

Chip:

 Chip is the basic element for manufacturing integrated circuits.

 The manufacture of a chip begins with silicon, a substance found in sand.

 Because silicon does not conduct electricity well, it is called a semiconductor.

 With a special chemical process, it is possible to add materials to silicon that

allow tiny areas to transform into one of three devices:

1. Excellent conductors of electricity (using either microscopic copper or

aluminum wire)

2. Excellent insulators from electricity (like plastic sheathing or glass)

3. Areas that can conduct or insulate under special conditions (as a

switch)

Figure: The chip manufacturing process

 A VLSI circuit is just billions of combinations of conductors, insulators, and

switches manufactured in a single, small package.

 The manufacturing process for integrated circuits is critical to the cost of the

chips and hence important to computer designers.

 The process starts with a silicon crystal ingot, which looks like a giant sausage.

17

 Silicon crystal ingot is a rod composed of a silicon crystal that is between 6 and

12 inches in diameter and about 12 to 24 inches long.

 An ingot is finely sliced into wafers no more than 0.1 inches thick.

 Wafer is a slice from a silicon ingot no more than 0.1 inch thick, used to create

chips.

 These wafers then go through a series of processing steps to create the

transistors, conductors, and insulators.

 ayer of transistors and two to

eight levels of metal conductor, separated by layers of insulators.

 Defect is a microscopic flow in a wafer or in patterning steps that can result in

the failure of the die containing that defect.

 Die is the individual rectangular sections that are cut from a wafer, more

informally known as chips.

 Dicing enables us to discard only those dies that were unlucky enough to

contain the flows, rather than the whole wafer. This concept is known as yield

of a process

 Yield process is defined as the percentage of good dies from the total number

of dies on the wafer.

 The cost of an integrated circuit rises quickly as the die size increases.

To reduce the cost we can use smaller sizes transistors and wires. This

improves the yield and the die count per wafer.

Bonding:

Once we have found good dies, they are connected to the input/output pins of a

package, using a process called bonding. These packaged parts are tested a

final time, since mistakes can occur in packaging.

 If there is no mistake it can be shipped to customers.

 The cost of an integrated circuit can be expressed in three simple equations:

18

 The first equation is straightforward to derive.

 The second is an approximation. It does not subtract the area near the border of

the round wafer that cannot accommodate the rectangular dies.

 The final equation is based on empirical observations of yields at integrated

circuit factories, with the exponent related to the number of critical processing

steps.

 Hence, depending on the defect rate and the size of the die and wafer, costs are

generally not linear in die area.

1.4 Performance

 Assessing the performance of computers is not an easy task. Performance

depends on modern software systems and the wide range of performance

improvement techniques in hardware side.

 To choose better computer, performance is an important attribute. For selecting

a computer it is necessary to know how t to measure performance and

limitations of performance measurements.

 Computer user and designer must know what the metrics for measuring

performance are

Response time:

It is also called execution time. The total time required for the computer to

complete a task, including disk accesses, memory accesses, I/O activities,

operating system overhead, and CPU execution time and so on.

Throughput and Response Time:

Throughput:

 It is also called bandwidth. It is another measure of performance. It is defined

as the number of tasks completed per unit time.

Example:1

Do the following changes to a computer system increase throughput, decrease

response time, or both?

19

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors for

separate task.

Answer:

 Decreasing response time almost always improves throughput.

 Hence, in case 1, both response time and throughput are improved.

 In case 2, no one task gets work done faster, so only throughput increases. The

system might force requests to queue up. In this case, increasing the throughput

could also improve response time.

 It will reduce the waiting time in the queue.

 Thus, in many real computer systems, changing either execution time or

throughput often affects the other.

 To maximize performance, we want to minimize response time or execution

time for some task. Thus, we can relate performance and execution time for a

computer X:

 Now consider two computers X and Y, if the performance of X is greater than

the performance of Y, we have

 The execution time on Y is longer than that on X, if X is faster than Y.

 If X is n times faster than Y, then the execution time on Y is n times longer

than it is on X:

20

Relative Performance:

Example:2

If computer A runs a program in 10 seconds and computer B runs the same program in

15 seconds, how much faster is A than B?

Answer:

We know that A is n times faster than B if

Thus the performance ratio is

and A is therefore 1.5 times faster than B.

In the above example, we could also say that computer B is 1.5 times slower than

computer A, since

means that

 Performance and execution time are reciprocals; increasing performance

requires decreasing execution time.

1.4.1 Measuring Performance

 Time is the measure of computer performance: the computer that performs the

same amount of work in the least time is the fastest.

 Program execution time is measured in seconds per program. However, time

can be defined in different ways, depending on what we count.

 The most straightforward definition of time is called wall clock time, response

time, or elapsed time.

 Processor may work on several programs simultaneously so the system try to

optimize throughput rather than minimize the elapsed time for one program.

21

 Hence, we often want to distinguish between the elapsed time and the time that

the processor is working on the program. CPU execution time will recognizes

this distinction.

 CPU execution time also called CPU time. The actual time the CPU spends

computing for a specific task.

Types of CPU time:

CPU time can be classified into two types:

1. User CPU time

2. System CPU time

User CPU time:

 The CPU time spent in a program itself.

System CPU time:

 The CPU time spent in the operating system performing tasks on behalf of the

program. Differentiating between system and user CPU time is difficult to do

accurately.

 To increase the system performance the computer designers must know how

fast the hardware can perform basic functions.

 All computers are constructed using a clock that determines when events take

place in the hardware.

Clock cycle:

 Also called tick, clock tick, clock period, clock, cycle. Clock cycle is the time

for one clock period, usually of the processor clock, which runs at a constant

rate.

Clock period:

 The length of each clock cycle.

1.4.2 CPU Performance and Its Factors

 Users and designers have different metrics to measure the performance. CPU

performance is one of the metric for measuring the performance.

22

 To know the CPU performance we must find the CPU execution time.

 Alternatively, because clock rate and clock cycle time are inverses,

 This formula makes it clear that the hardware designer can improve

performance by reducing the number of clock cycles required for a program or

the length of the clock cycle.

Example:3

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz clock. We

are trying to help a computer designer build a computer, B, which will run this program

in 6 seconds. The designer has determined that a substantial increase in the clock rate is

possible, but this increase will affect the rest of the CPU design, causing computer B to

require 1.2 times as many clock cycles as computer A for this program. What clock rate

should we tell the designer to target?

Solution:

23

 To run the program in 6 seconds, B must have twice the clock rate of A.

1.4.3 Instruction Performance

 The performance equations e did not include any reference to the number of

instructions needed for the program.

 The compiler clearly generated instructions to execute, and the computer had to

execute the instructions to run the program.

 The execution time must depend on the number of instructions in a program, it

equals the number of instructions executed multiplied by the average time per

instruction.

 Therefore, the number of clock cycles required for a program can be written as

Clock cycles per instruction (CPI):

 Average number of clock cycles per instruction for a program or program

fragment.

Using the Performance Equation:

Example:4

Suppose we have two implementations of the same instruction set architecture.

Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, and

computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program.

Which computer is faster for this program and by how much?

Answer:

We know that each computer executes the same number of instructions for the program;

24

First, find the number of processor clock cycles for each computer:

Likewise, for B:

Clearly, computer A is faster. The amount faster is given by the ratio of the execution

times:

We can conclude that computer A is 1.2 times as fast as computer B for this program.

1.4.4 The Classic CPU Performance Equation

 We can now write this basic performance equation in terms of instruction count

(the number of instructions executed by the program), CPI, and clock cycle

time: instruction count.

 The number of instructions executed by the program.

or, since the clock rate is the inverse of clock cycle time:

 These formulas are particularly useful because they separate the three key

factors that affect performance.

 We can use these formulas to compare two different implementations or to

evaluate a design alternative if we know its impact on these three parameters.

Understanding Program Performance:

 The performance of a program depends on the algorithm, the language, the

compiler, the architecture, and the actual hardware.

25

 The following table summarizes how these components affect the factors in

the CPU performance equation.

1.5 Power Wall: Power & Energy in Integrated

circuits

Power is the biggest challenge for IC for two reasons:

1. First, power must be brought in and distributed around the chip which

includes hundreds of pins and multiple interconnection layers just for

power and ground.

2. Second, power is dissipated as heat and must be removed. Server chip

can burn more than 100 watts and cooling the chip .The system is a

major expense in warehouse scale computers.

 The increase in clock rate and power of eight generations of Intel

microprocessors over 25 years.

26

 Both clock rate and power increased rapidly for decades, and then flattened off

recently.

 Power provides a limit to what we can cool and in the PC Era the critical

resource is energy.

 Battery life can trump performance in the personal mobile device.

 The architects of warehouse scale computers try to reduce the costs of

powering and cooling 1,00,000 servers as the cost are high at this scale.

 The time can be measured in two ways one is seconds and another is MIPS.

 Measuring time in seconds is a safer measure for program performance than

the rate like MIPS.

 The energy metric Joule is a better measure than a power rate like watts.

 The dominant technology for integrated circuits is called CMOS

(complementary metal oxide semiconductor).

 For CMOS, the primary source of energy consumption is so-called dynamic

energy that is, energy that is consumed when transistors switch states from 0 to

1 and vice versa.

 The dynamic energy depends on the capacitive loading of each transistor and

the voltage applied:

load x Voltage2

 This equation is the energy of a pulse during the logic transition of 0 1 0 or

1 0 1. The energy of a single transition is then

27

2

 The power required per transistor is just the product of energy of a transition

and the frequency of transitions:
2 x Frequency switched

 Frequency switched is a function of the clock rate.

 The capacitive load per transistor is a function of both the number of transistors

connected to an output (called the fan out) and the technology, which

determines the capacitance of both wires and transistors.

 Even today about 40% of the power consumption is due to leakage.

 If transistors started leaking more then the whole process could become waste.

 To avoid the power problem, designers have already attached large devices to

increase cooling, and they turn off parts of the chip that are not used in a given

clock cycle.

 Many techniques are used to cool chips but it raises their power consumption

.So computer designers slammed into a power wall, they needed a new way

forward.

What is the maximum power a processor ever requires?

If it attempts to draws more Power than a Power supply can provide, by

drawing more current, the voltage will eventually drop which can cause the

device to malfunction.

Modern processors can vary widely in power consumption with high peak

currents. Hence, they provide voltage indexing methods that allow the

processor to slow down and regulate voltage within a wider margin. Obviously,

doing so decreases the performance.

What is the sustained Power consumption?

 This Metric is called Thermal design power (TDP), since it determines the

cooling requirement. Power supply is usually designed to match or exceed

TDP.

28

 Failure to provide adequate cooling will allow the temperature to exceed the

maximum value resulting in device failure.

Modern processors provide two features to manage heat.

1. Reduce clock rate, thereby reducing the power.

2. Thermal overload trip is activated to power down the chip.

Which metric is the right one for comparing processors: energy or power?

 Power is energy per unit time.

1 watt = 1 joule per second.

 Energy is a better metric because it is tied to a specific task and the time

required for that task.

 Power consumption will be a useful measure if the workload is fixed.

1.6 Uniprocessors to Multiprocessors

 Increasing the clock speed of Uniprocessor has reached saturation and cannot

be increased beyond a certain limit because of power consumption and heat

dissipation issues.

As the physical size of chip decreased, while the number of transistors/chip

increased, clock speed increased, which boosted the heat dissipation across the

chip to a dangerous level. Cooling & heat sink requirement issues were there.

There were limitations in the use of silicon surface area.

 There were limitations in reducing the size of individual gates further.

 To gain Performance within a single core, many techniques like pipelining,

super pipelined, superscalar architectures are used .

 Most of the early dual core processors were running at lower clock speeds, the

rational behind is that a dual core processor with each running at 1GHz should

be equivalent to a single core processor running at 2 GHz.

 The Problem is that this does not work in practice when the applications are not

written to take advantage of the multiple processors. Until the software is

29

written this way, unthreaded applications will run faster on a single processor

than on a dual core CPU.

 In Multi-core processors, the benefit is more on throughput than on response

time.

 In the past, programmers could rely on innovations in the hardware,

Architecture and compilers to double performance of their programs every 18

months without having to change a line of code.

 Today, for programmers to get significant improvement in response time, they

need to rewrite their programs to take advantage of multiple processors and

also they have to improve performance of their code as the number of core

increases.

 Ability to write Parallel programs.

 Care must be taken to reduce Communication and Synchronization overhead.

Challenges in Scheduling, load balancing have to be addressed.

1. 7 Instructions

 The words of a computer's language are called instructions, and its vocabulary

is called an instruction set.

 The instruction set will describe the functions of architecture so computer

designer must know about the instruction set.

 The instruction set comes from MIPS technologies and 3 popular instruction

sets are as follows:

1. ARM V7 is similar to MIPS .More than 9 billion chips with ARM

processor were manufactured in 2011,making it the most popular

instruction set in the world.

2. Intel X86 powers both the PC and the cloud of post PC era.

3. ARM V8 extends the addressing size of ARM V7 from 32 to 64 bits.

 The instructions and data of man y types can be stored in memory as numbers;

it is called the stored program concept.

30

1. Operations of the Computer Hardware

2. Operands of the Computer Hardware

3. Representing Instructions in the Computer

4. Logical Operations

1.7.1 Operations of the Computer Hardware

 Every computer must be able to perform arithmetic operations. The MIPS

assembly language notation for performing addition operation is

add a, b, c

 It instructs a computer to add the two variables b and c and to put their sum in

a. Each MIPS arithmetic instruction performs only one operation and must

always have exactly three variables.

 For example, suppose we want to place the sum of variables b, c, d, and e into

variable a. The following sequence of instructions adds the four variables:

add a, b, c // The sum of b and c is placed in a.

add a, a, d // The sum of b, c, and d is now in a.

add a, a, e // The sum of b, c, d, and e is now in a.

 Thus, it takes three instructions to take the sum of four variables.

 Hardware for a variable number of operands is more complicated than

hardware for a fixed number.

 Hardware technology has three design principles that will give detailed

information about fixed and variable number of operands to perform any

operation.

 The three principles of hardware design are:

Design Principle 1: Simplicity favors regularity.

Design Principle 2: Smaller is faster.

Design Principle 3: Make the common case fast.

Design Principle 4: Good design demands good compromises.

31

Design Principle 1: Simplicity favors regularity.

To understand the concept of first design principle, let us consider the following

examples.

Example: 1

Compiling Two C Assignment Statements into MIPS: This segment of a C program

contains the five variables a, b, c, d, and e.

a = b + c;

d = a e;

The translation from C to MIPS assembly language instructions is performed by the

compiler. Show the MIPS code produced by a compiler.

Answer:

A MIPS instruction operates on two source operands and places the result in one

destination operand. Hence, the two simple statements above compile directly into these

two MIPS assembly language instructions:

add a, b, c

sub d, a, e

Example: 2AMPLE

 A somewhat complex statement contains the five variables f, g, h, i, and j:

f = (g + h) (i + j)

What might a C compiler produce?

Answer:

The compiler must break this statement into several assembly instructions since only

one operation is performed per MIPS instruction.

 The first MIPS instruction calculates the sum of g and h. We must place the result

somewhere, so the compiler creates a temporary variable called t0.

add t0,g,h //temporary variable t0 contains g + h

Second operation is subtract, for that we need to calculate the sum of i and j before we

can subtract.

32

Thus, the second instruction places the sum i and j in another temporary variable

created by the compiler, called t1

add t1,i,j // temporary variable t1 contains i + j

Finally, the subtract instruction subtracts the second sum from the first and places the

difference in the variable f, completing the compiled code:

 sub f,t0,t1 // f gets t0 t1, which is (g + h) (i + j)ER

1.7.2 Operands of the Computer Hardware

 Unlike programs in high-level languages, the operands of arithmetic

instructions are restricted; they must be from a limited number of special

locations built directly in hardware called registers.

 Registers are the bricks of computer construction. Registers are primitives used

in hardware design that are also visible to the programmer when the computer

is completed.

 MIPS architecture has 32 bit registers and group of 32 bits are called word .

 The reason for the limit of 32 registers is based on second design principles of

hardware technology:

Design Principle 2: Smaller is faster.

 Registers are the fast place to hold data in a computer.A very large number of

registers may increase the clock cycle time because it takes electronic signals

longer to travel it.

 MIPS convention use two-character names following a dollar sign to represent

a register. We need temporary registers to compile the program into MIPS

instructions.

Example:3

ate program

variables with registers. Take, for instance, the assignment statement from our earlier

example:

f = (g + h) (i + j);

33

The variables f, g, h, i, and j are assigned to the registers $s0, $s1, $s2, $s3, and $s4,

respectively. What is the compiled MIPS code?

Answer:

add $t0,$s1,$s2 //register $t0 contains g + h

add $t1,$s3,$s4 // register $t1 contains i + j

sub $s0,$t0,$t1 //f gets $t0 $t1, which is (g + h) (i + j

1.7.2.1 Memory Operands:

 Programming languages have simple variables that contain single data

elements , but they also have more complex data structures like arrays and

structures.

 These complex data structures can contain more data elements than there are

registers in a computer. Now computer cannot represent and access such large

structures.

 To access the large structures element memory operands are used.

 The processor can keep only a small amount of data in registers, but computer

memory contains millions of data elements.

 Hence, data structures (arrays and structures) are kept in memory. In MIPS

instructions arithmetic operations occur only on registers.

Data transfer instructions:

 Instructions that transfer data between memory and registers are called data

transfer instructions.

 To access a word in memory, the instruction must supply the memory address.

Memory is just a large, single-dimensional array, with the address acting as the

index to that array, starting at 0.

Example:4

 The address of the third data element is 2, and the value of Memory[2] is 10.

34

 The data transfer instruction that copies data from memory to a register is

traditionally called load.

 The format of the load instruction is the name of the operation followed by the

register to be loaded, then a constant and register used to access memory.

 The sum of the constant portion of the instruction and the contents of the

second register forms the memory address.

 In MIPS architecture the actual name for memory address is lw, standing for

load word.

Figure : Memory addresses and contents of memory at those locations.

 The compiler can then place the proper starting address into the data transfer

instructions.

 Many programs use 8-bit bytes .Therefore, the address of a word matches the

address of one of the 4 bytes within the word. Hence, addresses of sequential

words differ by 4.

Alignment restriction:

 In MIPS, words must start at addresses that are multiples of 4. This

requirement is called an alignment restriction. A requirement that data be

aligned in memory on natural boundaries.

Big Endian and Little Endian:

 Computers divide 8 bit bytes into two parts: Address of the left most byte is

called right most is called

35

Store instruction:

 The instruction complementary to load is traditionally called store; it copies

data from a register to memory.

 The format of a store is similar to that of a load: the name of the operation,

followed by the register to be stored then the offset array element, and finally

the base register.

 The MIPS address is specified by the part of the address in the constant and

part of the address in the register. The actual MIPS name for store is sw,

standing for store word.

Example:5

Compiling an Assignment When an Operand is in Memory.

array of 100 words and that the compiler has associated the variables g and h with the

registers $s1 and $s2 as before. Let's also assume that the starting address, or base

address, of the array is in $s3. Compile this C assignment statement:

g = h + A[8];

Answer:

There is a single operation in this assignment statement, one of the operands is in

memory, so we must first transfer A[8] to a register. The address of this array element

is the sum of the base of the array A, found in register $s3, plus the number to select

element 8. The data should be placed in a temporary register for use in the next

instruction.

The first compiled instruction is

 lw $t0,8($s3) // Temporary reg $t0 gets A[8]

The following instruction can operate on the value in $t0 (which equals A[8]) since it is

in a register. The instruction must add h (contained in $s2) to A[8] ($t0) and put the

sum in the register corresponding to g (associated with $s1):

add $s1,$s2,$t0 // g = h + A[8]

 The constant in a data transfer instruction is called the offset, and the register added to

form the address is called the base register.

36

Example:6

Compiling Using Load and Store: Assume variable h is associated with register $s2 and

the base address of the array A is in $s3. What is the MIPS assembly code for the C

assignment statement below?

A[12] = h + A[8];

Answer:

 There is a single operation in the C statement, now two of the operands are in memory,

so we need even more MIPS instructions. The first two instructions are the same as the

prior example, except this time we use the proper offset for byte addressing in the load

word instruction to select A[8], and the add instruction places the sum in $t0:

lw $t0,32($s3) // Temporary reg $t0 gets A[8]

add $t0,$s2,$t0 //Temporary reg $t0 gets h + A[8]

The final instruction stores the sum into A[12], using 48 as the offset and register $s3 as

the base register.

sw $t0,48($s3) // Stores h + A[8] back into A[12]

Spilling registers:

 Many programs have more variables than computers have registers.

Consequently, the compiler tries to keep the most frequently used variables in

registers and places the rest in memory, using loads and stores to move

variables between registers and memory.

The process of putting less commonly used variables (or those needed later)

into memory is called spilling registers.

1.7.2 .2 Constant or Immediate Operands

 Many times a program will use a constant in an operation for example,

incrementing an index to point to the next element of an array.

 The MIPS arithmetic instructions have a constant as an operand.

 A MIPS arithmetic instruction can read two registers, operate on them, and

write the result.

 The add instruction with one constant operand is called add immediate or addi.

To add 4 to register $s3, we just write

addi $s3,$s3,4 // $s3 = $s3 + 4

37

Design Principle 3: Make the common case fast.

 Constant operands occur frequently by including constants inside arithmetic

instructions; they are much faster than if constants were loaded from memory.

1.7.3 Representing Instructions in the Computer

 Instructions are kept in the computer as a series of high and low electronic

signals and may be represented as numbers.

 Each piece of an instruction can be considered as an individual number, and

placing these numbers side by side forms the instruction.

Instruction format:

 A form of representation of an instruction composed of fields of binary

numbers.

Machine language:

 Binary representation used for communication within a computer system.

Registers:

 Registers are referred to by almost all instructions, there must be a convention

to map register names into numbers.

 In MIPS assembly language, registers $s0 to $s7 map onto registers 16 to 23,

and registers $t0 to $t7 map onto registers 8 to 15.

 Hence, $s0 means register 16, $s1 means register 17, $s2 means register 18, . . .

, $t0 means register 8, $t1 means register 9.

Example:1

Translating a MIPS Assembly Instruction into a Machine Instruction. Let us consider

the following MIPS Instruction

add $t0,$s1,$s2

Translate first as a combination of decimal numbers and then of binary numbers.

Answer:

The decimal representation is

38

 Each of these segments of an instruction is called a field.

 The first and last fields (0 and 32) in combination tell the MIPS computer that

this instruction performs addition.

 The second field gives the number of the register that is the first source

operand of the addition operation (17 = $s1), and the third field gives the other

source operand for the addition (18 = $s2).

 The fourth field contains the number of the register that is to receive the sum (8

= $t0).

 The fifth field is unused in this instruction, so it is set to 0. Thus, this

instruction adds register $s1 to register $s2 and places the sum in register $t0.

 This instruction can also be represented as fields of binary numbers as opposed

to decimal:

Hexadecimal:

 Computer can use of binary numbers to read and write data. So we can use

higher base than binary that can be easily converted into binary.

 All computer data sizes are multiples of 4, in that hexadecimal numbers are

popular.

 Since base 16 is a power of 2. So, we can convert by replacing each group of

four binary digits by a single hexadecimal digit, and vice versa.

39

 To avoid confusion between various numbers, we can use subscript values for

example

1. decimal numbers with ten

2. binary numbers with two

3. Hexadecimal numbers with hex.

 If there is no subscript, the default is base 10.

Example:2

Convert the hexadecimal into binary: eca8 6420hex

e C a 8 6 4 2 0

1110 1100 1010 1000 0110 0100 0010 0000

 Answer: 1110 1100 1010 1000 0110 0100 0010 0000two

MIPS Fields:

 A MIPS field has two kinds of format such as:

1. R-type or R-format (for register)

2. I-type or I-format (for immediate)

R-format:

 Here is the meaning of each name of the fields in MIPS instructions:

 op: Basic operation of the instruction, traditionally called the

opcode.opcode denotes the operation and format of an instruction

 rs: The first register source operand.

40

 rt: The second register source operand.

 rd: The register destination operand. It gets the result of the operation.

 shamt: Shift amount.

 funct: Function. This field selects the specific variant of the operation

in the op field and is sometimes called the function code.

Design Principle 4: Good design demands good compromises.

I-format:

 It is used by the immediate and data transfer instructions.

 This constant is used to select elements from arrays or data structures.

1.8 Logical Operations

 The first computers perform their operations on full words. After that it is

capable of performing operation on fields of bits within a word or even on

individual bits.

 Using single bit of information some instructions can be executed in computer

such instructions are called logical operations.

Logical operation is an instruction in which the quality being operated on bit

and the results of the operation can have two values (0 and 1).It include AND,

OR, NAND, XOR and NOR.

41

1.8.1 Logical Shift Operation

 Shift Operation moves all the bits in a word to the left or right, filling the

emptied bits with 0s.

 Based on the direction of shifting it can be classified into two types:

1. Shift left

2. Shift Right.

For example, if register $s0 contained

0000 0000 0000 00000 000 0000 0000 0000 1001two= 9ten

and the instruction to shift left by 4 was executed, the new value would look like this:

0000 0000 0000 0000 0000 0000 0000 1001 0000two= 144ten

 The actual name of the two MIPS shift instructions are called shift left logical

(sll) and shift right logical (srl).

Shift left logical:

 It moves all the bits in a word to the left side and empty position is filled with

0s.

 The following instruction performs the operation above, assuming that the

result should go in register $t2:

sll $t2,$s0,4 //reg $t2 = reg $s0 << 4 bits

 We delayed explaining the shamt field in the R- format.

 It stands for shift amount and is used in shift instructions. Hence, the machine

language version of the instruction above is

The encoding of sll is 0 in both the op and funct fields, rd contains $t2, rt contains

$s0, and shamt contains 4. The rs field is unused, and thus is set to 0.

 Shift left logical provides a bonus benefit. Shifting left by i bits gives the same

result as multiplying by 2i . For example, the above sll shifts by 4, which gives

the same result as multiplying by 24 or 16.

42

 The first bit pattern above represents 9, and 9 ¥ 16 = 144, the value of the

second bit pattern.

1.8.2 Logical AND operation

 A logical AND operation is a bit by bit operation that places a 1 in the result

only if both bits of the operands are 1.

For example, if register $t2 still contains

0000 0000 0000 0000 0000 1101 0000 0000two

and register $t1 contains

0000 0000 0000 0000 0011 1100 0000 0000two

then, after executing the MIPS instruction and

 $t0,$t1,$t2 // reg $t0 = reg $t1 & reg $t2 the value of register $t0 would

be

0000 0000 0000 0000 0000 1100 0000 0000two

1.8.3 Logical OR operation

 A logical OR operation is a bit by bit operation that places a 1 in the result if

either operand bit is a 1.

$t0,$t1,$t2 // reg $t0 = reg $t1 | reg $t2 is this value in register

$t0:

0000 0000 0000 0000 0011 1101 0000 0000two

1.8.4 Logical NOT operation

 A logical NOT operation is a logical bit by bit operation with one operand

and places a 1 in the result if one operand bit is a 0, and 0 in the result if one

operand bit is a 1 .

For example, A NOR 0 = NOT (A OR 0) = NOT (A).

If the register $t1 is unchanged from the preceding example and register

$t3 has the value 0, the result of the MIPS instruction nor $t0,$t1,$t3 # reg $t0 = ~

(reg $t1 | reg $t3) is this value in register $t0:

1111 1111 1111 1111 1100 0011 1111 1111two

43

Figure above shows the relationship between the C and Java operators and the

MIPS instructions. Constants are useful in AND and OR logical operations as well

as in arithmetic operations, so MIPS also provides the instructions and immediate

(andi) and or immediate (ori). Constants are rare for NOR, since its main use is to

invert the bits of a single operand; thus, the hardware has no immediate version.

1.9 Control Operations

 Based on the input data and the values created during computation, different

instructions execute.

Decision making is commonly represented in programming languages to

indicate that based on the condition what operation has to be executed by the

computer.

 Using the if statement, sometimes combined with go to statements and labels.

MIPS assembly language includes two decision-making instructions, similar to

an if statement with a go to.

 The first instruction is

 beq register1, register2, L1

 This instruction means go to the statement labeled L1 if the value in register1

equals the value in register2. The mnemonic beq stands for branch if equal.

44

 The second instruction is

 bne register1, register2, L1

 It means go to the statement labeled L1 if the value in register1 does not equal

the value in register2.

 The mnemonic bne stands for branch if not equal. These two instructions are

traditionally called conditional branches.

1.9.1 Conditional branch

 An instruction that requires the comparison of two values and that allows for a

subsequent transfer of control to a new address in the program based on the

outcome of the comparison.

Compiling if-then-else into Conditional Branches:

Example:1

 In the following code segment, f, g, h, i, and j are variables. If the five variables

f through j correspond to the five registers $s0 through $s4, what is the

compiled MIPS code for this C if statement?

if (i == j) f = g + h; else f = g h;

Answer:

 Above flowchart shows what the MIPS code should do.

 The first expression compares for equality, so we would want beq.

 Second instruction use bne,the code will be more efficient to test opposite

condition.

45

 Here the opposite condition to branch over the code that performs the

subsequent then part of the if

 ` bne $s3,$s4,Else // go to Else if i j

 The next assignment statement performs a single operation, and if all the

operands are allocated to registers, it is just one instruction:

 add $s0,$s1,$s2 // f = g + h (skipped if i j)

 To distinguish between conditional and unconditional branches, the MIPS

name for this type of instruction is jump, abbreviated as j .

 j Exit // go to Exit

 The label Exit that is after this instruction, showing the end of the if-then-else

compiled code:

 Else:sub $s0,$s1,$s2 // f = g h (skipped if i = j)

 Exit:

1.9.2 Loops

Compiling a while Loop in C

Example:2

Here is a traditional loop in C:

 while (save[i] == k)

i += 1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the array save is

in $s6. What is the MIPS assembly code corresponding to this C segment?

Answer:

 The first step is to load save[i] into a temporary register. Before we can load

save[i] into a temporary register, we need to have its address.

 Before we can add i to the base of array save to form the address, we must

multiply the index i by 4 due to the byte addressing problem.

 We need to add the label Loop to it so that we can branch back to that

instruction at the end of the loop:

 Loop: sll $t1,$s3,2 // Temp reg $t1 = 4 * i

 To get the address of save[i], we need to add $t1 and the base of save in $s6:

46

 add $t1,$t1,$s6 // $t1 = address of save[i]

 Now we can use that address to load save[i] into a temporary register:

 lw $t0,0($t1) // Temp reg $t0 = save[i]

 The next instruction performs the loop test, exiting if save[i] k:

 bne $t0,$s5, Exit // go to Exit if save[i] k

 The next instruction adds 1 to i:

 add $s3,$s3,1 // i = i + 1

 The end of the loop branches back to the while test at the top of the loop. We

 j Loop // go to Loop

 Exit:

Basic block:

 A sequence of instructions without branches (except possibly at the end) and

without branch targets or branch labels (except possibly at the beginning)

1.9.3 Comparison Instructions

 MIPS compilers use the slt, slti, beq, bne, and the fixed value of to create all

relative conditions: equal, not equal, less than, less than or equal, greater than,

greater than or equal.

1.9.5 Case/Switch Statement

 Most programming languages have a case or switch statement that allows the

programmer to select one of many alternatives depending on a single value.

 Switch statement can be to implemented in two ways:

 Using chain of if-then-else statements

 Using jump address table

 It is also called jump table. It is a table of addresses of alternative instruction

sequences, called a jump address table, and the program needs only to index

into the table and then jump to the appropriate sequence.

 The jump table is then just an array of words containing addresses that

correspond to labels in the code.

47

 Computers like MIPS include a jump register instruction (jr), meaning an

unconditional jump to the address specified in a register.

 The program loads the appropriate entry from the jump table into a register,and

then it jumps to the proper address using a jump register

1.10 Addressing Modes

The MIPS and ARM Addressing Modes:

 Addressing Mode is one of several addressing rule (regimes) surrounded by their

varied use of operands and/or addresses.

 Multiple forms of addressing are generically called addressing modes. MIPS have

the following addressing modes are the following:

1.10.1 Immediate addressing

 Where the operand is a constant within the instruction itself

1.8.2 Register addressing

 Where the operand is in register

1.8.3 Base or displacement addressing

 Where the operand is at the memory location whose address is the sum of a

register and a constant in the instruction

48

1.8.4 PC-relative addressing

 Where the address is the sum of the PC and a constant in the instruction

1.8.5 Pseudo direct addressing

 Where the jump address is the 26 bits of the instruction concatenated with the

upper bits of the PC

