Notes Syllabus Question Papers Results and Many more...

www.Binils.com

Available @

GE8151 PROBLEM SOLVING AND PYTHON

PROGRAMMING

UNIT-I

ALGORITHMIC PROBLEM SOLVING

PART-A

1. What is an algorithm?

Algorithm is a step-by-step procedure/description for solving a task or a problem. The steps must be ordered, unambiguous and finite in number. Algorithm is an ordered sequence of finite, well defined unambiguous instructions for completing a task it is an English-like representation of the logic which is used to solve the problem.

2. Write an algorithm to accept two numbers compute the sum and print the result.

Algorithm:

3. Write an algorithm to find the minimum number in a given list of numbers.

Algorithm:

- Step 1: Start
- Step 2: Read the limit of list as 'n'
- Step 3: Read the elements of list A

Step 4: Assign min=A[0]

- Step 5: for i=1 to n repeat step 6 and step 7
- Step 6: Check if A[i]<min
- Step 7: Then assign min=A[i]
- Step 8: Print the value of min
- Step 9: Stop

Notes Syllabus Question Papers Results and Many more...

www.Binils.com

Available @

4. Distinguish between algorithm and program

Algorithm	Program
Algorithm is finite.	Program need not be finite.
It is a step-by-step procedure to solve a problem.	It is an exact code to solve a problem.
It is written using natural language or	It is written using a specific programming
algorithmic language.	language.

5. List the building blocks of algorithm.

The building blocks of an algorithm are

- Statements
- State
- Control flow
 - Sequence
 - Selection or Conditional
 - Repetition or Iteration
- Functions

6. Define statement. List its types.

Each and every line in an algorithm is called statement. A statement is a segment of code that represents a command.

Two types:

- Simple Statement
- Compound Statement

7. How does flow of control work?

Control flow (or flow of control) is the order in which individual statements, instructions or function calls of a program are executed or evaluated. A control flow statement is a statement which execution results in a choice being made as to which of two or more path to follow.

8. Define control flow statement with an eg.

A Control flow statement is a statement which execution results in a choice being made as to which of two or more paths to follow.

Example: Algorithm to find biggest of two numbers

Step 1: Start

Step 2: Read the two numbers A, B

Step 3: Check if(A>B) then //selection control flow statement

Notes Syllabus Question Papers Results and Many more... Available @

www.Binils.com

Step 4: Print A is big

Step 5: Else print B is big

Step 6: Stop

9. What is a function?

A function is a set of related instructions that are used to perform a specified task which repeatedly occurs in the main program. Functions usually "take in" data, process it, and "return" a result.

10. Define a pseudocode?

Pseudo means limitation or false and code refers to the instructions written in any programming language. It is also called Program Design Language (PDL). It is somewhat halfway in between English and a Programming Language.

11. Give the rules of writing Pseudocode.

- > Write one statement per line.
- Keywords must be capitalized
- Steps must be understandable
- > It must be concise
- > Statements must be language independent.

12. Write the pseudocode to calculate the sum and product of two numbers and display it.

BEGIN

READ TWO NUMBERS num1, num2 COMPUTE sum=num1+num2 COMPUTE product=num1*num2 PRINT the value of sum and product

END

13. Give the difference between flowchart and pseudocode (or) Distinguish between pseudocode and flowchart.

Flowchart	Pseudocode
A flowchart is a diagrammatic	Pseudo means imitation or false and
representation of an algorithm.	code refers to the instructions written in
	any programming language.
It follows a standard format.	Unlike a flowchart, it uses a written
	format.
It uses different shapes of boxes to	It can be written in ordinary English, and
represent the processes involved in the	with some keywords.
problem	

Notes

Available @

Syllabus Question Papers Results and Many more...

www.Binils.com

14. Define a flowchart.

A flowchart is a diagrammatic representation of an algorithm. In which the steps are represented in the form of different shapes of boxes and logical flow is indicated by interconnecting arrows. The purpose of drawing the flowchart is to help the programmer in understanding the logic the program.

15. List the symbols used in drawing the flowchart?

16. List the categories of Programming Languages. (or) Point out any 5programming language.

Programming Language are divided into the following categories:

- Interpreted Programming Languages
- Functional Programming Languages
- Compiled Programming Languages
- Procedural Programming Languages
- Scripting Programming Languages
- Markup Programming Languages
- Logic-Based Programming Languages
- Concurrent Programming Languages
- > Object-Oriented Programming Languages

17. Compare machine language, assembly language and high-level language.

Machine Language	Assembly Language	High-Level Language	
The language of 0s and 1s	It is low level programming	High level languages are	
is called as machine	language in which the	English like statements	
language.	sequence of 0s and 1s are	and programs.	

Notes

Available @

Syllabus *Question Papers* Results and Many more

www.Binils.com

	replaced by mnemonic (ni-	
	monic) codes.	
The machine language is	Typical instruction for	Written in these
system independent	addition and subtraction	languages are needed to
because there are	are add and sub.	be translated into
different set of binary		machine language before
instruction for different		to their execution using a
types of computer		system software compiler.
systems.		

18. List out the simple strategies to develop an algorithm (or) Discover the steps of simple strategies for developing algorithms.

Algorithm development process consists of five major steps.

Step 1: Obtain a description of the problem

Step 2: Analyze the problem

- Step 3: Develop a high-level algorithm
- Step 4: Refine the algorithm by adding more details
- Step 5: Review the algorithm

19. Give the difference between recursion and iteration

	Recursion	Iteration/Repetition
VV	Function calls itself again and	Executing the processes until the
again until the base	again until the base condition is	condition fails.
	reached.	
	In recursive function only base	Iterative approach involves four
	condition (terminate condition) is	steps: initialization, condition,
	specified.	execution and updation.
	Recursion keeps your code short	Iterative approach makes your code
	and simple.	longer.
	Recursion is slower than iteration	
	due to overhead of maintaining	Iterative is faster.
	stack.	
	Recursion takes more memory.	Iteration takes less memory.