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UNIT IV 
TRANSPORT LAYER 

Overview of Transport layer  UDP  Reliable byte stream (TCP)  Connection management  Flow control  

Retransmission  TCP Congestion control  Congestion avoidance (DECbit, RED)  QoS  Application 
requirements 
4.1. Overview of Transport layer 

 The transport level of the network architecture supports communication between application  programs running in 

end nodes, is sometimes called the end-to-end protocol. 

 Common properties that a transport protocol can be expected to provide: 

 Guarantees message delivery 

 Delivers messages in the same order they are sent 

 Delivers at most one copy of each message 

 Supports arbitrarily large messages 

 Supports synchronization between the sender and the receiver 

 Allows the receiver to apply flow control to the sender 

 Supports multiple application processes on each host 

 The transport protocol operates has certain limitations in the level of service it can provide.  

 Drop messages 

 Reorder messages 

 Deliver duplicate copies of a given message 

 Limit messages to some finite size 

 Deliver messages after an arbitrarily long delay 

 A network is said to provide a best-effort level of service, demultiplexing service, a reliable byte-stream service, a 

request/reply service, and a service for real-time applications. 

 

 

 

 

 

 

 

 

 

 

Connectionless Versus Connection-Oriented Service 

A transport layer protocol can either be connectionless or connection-oriented. 

Connectionless Service 

 In a connectionless service, the packets are sent from one party to another with no need for connection 

establishment or connection release.  
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The packets are not numbered; they may be delayed or lost or may arrive out of sequence.  

 There is no acknowledgment.  

 UDP, is connectionless. 

ConnectionOriented Service 

In a connection-oriented service, a connection is first established between the sender and the receiver. Data are 

transferred. At the end, the connection is released.  

Reliable Versus Unreliable 

 The transport layer service can be reliable or unreliable.  

 If the application layer program needs reliability, we use a reliable transport layer protocol by implementing flow 

and error control at the transport layer. This means a slower and more complex service.  

 TCP and SCTP are connectionoriented and reliable. These three can respond to the demands of the application 

layer programs. 

4.2. UDP  

 The User Datagram Protocol (UDP) is called a connectionless, unreliable transport protocol.  

 Advantages: 

 UDP is a very simple protocol using a nrinimum of overhead. If a process wants to send a small message and 

does not care much about reliability, it can use UDP.  

 Sending a small message by using UDP takes much less interaction between the sender and receiver than 

using TCP or SCTP. 

Well-Known Ports for UDP 

Table shows some well-known port numbers used by UDP. Some port numbers can be used by both UDP and TCP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example In UNIX, the well-known ports are stored in a file called fetcfservices. Each line in this file gives the name of 

the server and the well-known port number. We can use the grep utility to extract the line corresponding to the desired 

application. The following shows the port for FTP. Note that FTP can use port 21 with either UDP or TCP. 
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User Datagram format 

 UDP packets, called user datagrams, have a fixed-size header of 8 bytes.  

 

 

 

 

 

 

 

 

 Figure 4.2 shows the format of a user datagram.  

 The fields are as follows: 

 Source port number.  

- This is the port number used by the process running on the source host.  

- It is 16 bits long, which means that the port number can range from 0 to 65,535.  

- If the source host is the client (a client sending a request), the port number, in most cases, is an ephemeral port 

number requested by the process and chosen by the UDP software running on the source host.  

- If the source host is the server (a server sending a response), the port number, in most cases, is a well-known 

port number. 

 Destination port number. 

-  This is the port number used by the process running on the destination host.  

- It is also 16 bits long. If the destination host is the server (a client sending a request), the port number, in most 

cases, is a well-known port number.  

- If the destination host is the client (a server sending a response), the port number, in most cases, is an 

ephemeral port number.  

- In this case, the server copies the ephemeral port number it has received in the request packet. 

 Length.   

- This is a 16-bit field that defines the total length of the user datagram, header plus data.  

- The 16 bits can define a total length of 0 to 65,535 bytes. The length of a UDP datagram that is encapsulated 

in an IP datagram. 

UDP length = IP length - IP header's length 
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 Checksum 

- This field is used to detect errors over the entire user datagram (header plus data).  

- The checksum includes three sections: a pseudoheader, the UDP header, and the data coming from the 

application layer.  

- The pseudoheader is the part of the header of the IP packet in which the user datagram is to be encapsulated 

with some fields filled with 0s (see Figure 4.3). 

 If the IP header is corrupted, it may be delivered to the wrong host.  

 The protocol field is added to ensure that the packet belongs to UDP, and not to other transport-layer 

protocols.  

 The value of the protocol field for UDP is 17. If this value is changed during transmission, the checksum 

calculation at the receiver will detect it and UDP drops the packet. It is not delivered to the wrong protocol. 

 The similarities between the pseudoheader fields and the last 12 bytes of the IP header. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example  

Figure 4.4 shows the checksum calculation for a very small user datagram with only 7 bytes of data. Because the 

number of bytes of data is odd, padding is added for checksum calculation.  
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The pseudoheader as well as the padding will be dropped when the user datagram is delivered to IP. 

Optional Use of the Checksum 

The calculation of the checksum and its inclusion in a user datagram are optional. If the checksum is not calculated, the 

field is filled with 1s.  

UDP Operation 

Connectionless Services 

 UDP provides a connectionless service. This means that each user datagram sent by UDP is an independent 

datagram. There is no relationship between the different user datagrams even if they are coming from the same 

source process and going to the same destination program.  

 The user datagrams are not numbered. 

 There is no connection establishment and no connection termination, as is the case for TCP. This means that each 

user datagram can travel on a different path.  

Flow and Error Control 

 UDP is a very simple, unreliable transport protocol.  

 There is no flow control and hence no window mechanism. The receiver may overflow with incoming messages.  

 There is no error control mechanism in UDP except for the checksum. This means that the sender does not know if 

a message has been lost or duplicated. When the receiver detects an error through the checksum, the user datagram 

is silently discarded. 

Encapsulation and Decapsulation 

 To send a message from one process to another, the UDP protocol encapsulates and decapsulates messages in an 

IP datagram. 

Queuing 

 At the client site, when a process starts, it requests a port number from the operating system. Some 

implementations create both an incoming and an outgoing queue associated with each process.  

 

 

 

 

 

 

 

 

 

 

 

 The queues opened by the client are, in most cases, identified by ephemeral port numbers. The queues function as 

long as the process is running.  

 When the process terminates, the queues are destroyed. 
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 The client process can send messages to the outgoing queue by using the source port number specified in the 

request.  

 UDP removes the messages one by one and, after adding the UDP header, delivers them to IP. An outgoing queue 

can overflow. If this happens, the operating system can ask the client process to wait before sending any more 

messages. 

 When a message arrives for a client, UDP checks to see if an incoming queue has been created for the port number 

specified in the destination port number field of the user datagram. If there is such a queue, UDP sends the 

received user datagram to the end of the queue. If there is no such queue, UDP discards the user datagram and asks 

the ICMP protocol to send a port unreachable message to the server.  

 All the incoming messages for one particular client program, whether coming from the same or a different server, 

are sent to the same queue. An incoming queue can overflow. If this happens, UDP drops the user datagram and 

asks for a port unreachable message to be sent to the server.  

 At the server site, the mechanism of creating queues is different.  

 A server asks for incoming and outgoing queues, using its well-known port, when it starts running. The queues 

remain open as long as the server is running. 

 When a message arrives for a server, UDP checks to see if an incoming queue has been created for the port 

number specified in the destination port number field of the user datagram.  

 If there a queue, UDP sends the received user datagram to the end of the queue. If there is no such queue, UDP 

discards the user datagram and asks the ICMP protocol to send a port unreachable message to the client.  

 All the incoming messages for one particular server, whether coming from the same or a different client, are sent 

to the same queue. An incoming queue can overflow. If this happens, UDP drops the user datagram and asks for a 

port unreachable message to be sent to the client. 

 Whe a server wants to respond to a client, it sends messages to the outgoing queue, using the source port number 

specified in the request. UDP removes the messages one by one and, after adding the UDP header, delivers them 

to IP.  

 An outgoing queue can overflow. If this happens, the operating system asks the server to wait before sending any 

more messages. 

Use of UDP 

The following lists some uses of the UDP protocol: 

 UDP is suitable for a process that requires simple request-response communication with little concern for flow and 

error control. It is not usually used for a process such as FrP that needs to send bulk data. 

 UDP is suitable for a process with internal flow and error control mechanisms. For example, the Trivial File 

Transfer Protocol (TFTP) process includes flow and error control. It can easily use UDP. 

 UDP is a suitable transport protocol for multicasting. Multicasting capability is embedded in the UDP software but 

not in the TCP software. 

 UDP is used for management processes such as SNMP. 

 UDP is used for some route updating protocols such as Routing Information Protocol (RIP) 

4.3. Reliable byte stream (TCP)  

 TCP is a connection oriented protocol; it creates a virtual connection between two TCPs to send data.  
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 TCP uses flow and error control mechanisms at the transport level that is reliable transport protocol.  

TCP Services 

Process-to-Process Communication 

TCP provides process-to-process communication using port numbers. Table lists some well-known port numbers used 

by TCP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stream Delivery Service 

 TCP, is a stream-oriented protocol.  

 TCP allows the sending process to deliver data as a stream of bytes and allows the receiving process to obtain data 

as a stream of bytes. TCP creates an environment in which the two processes seem to be connected by an 

imaginary "tube" that carries their data across the Internet. This imaginary environment is depicted in Figure 4.6.  

 The sending process produces (writes to) the stream of bytes, and the receiving process consumes (reads from) 

them.  

 

 

 

 

 

 

 

 

 Sending and Receiving Buffers Because the sending and the receiving processes may not write or read data at the 

same speed, TCP needs buffers for storage.  

 There are two buffers, the sending buffer and the receiving buffer, one for each direction.  
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 Figure 4.6. shows two buffers of 20 bytes each normally the buffers are hundreds or thousands of bytes, depending 

on the implementation.  

 Figure 4.6 shows the movement of the data in one direction. At the sending site, the buffer has three types of 

chambers.  

 The white section contains empty chambers that can be filled by the sending process (producer). The gray area 

holds bytes that have been sent but not yet acknowledged. TCP keeps these bytes in the buffer until it receives an 

acknowledgment.  

 The colored area contains bytes to be sent by the sending TCP.     

 

 

 

 

 

 

 

 

 

 

 

 

     

 Also note that after the bytes in the gray chambers are acknowledged, the chambers are recycled and available for 

use by the sending process. 

 The circular buffer is divided into two areas (shown as white and colored). The white area contains empty 

chambers to be filled by bytes received from the network. The colored sections contain received bytes that can be 

read by the receiving process. When a byte is read by the  receiving process, the chamber is recycled and added to 

the pool of empty chambers. 

 TCP groups a number of bytes together into a packet called a segment. TCP adds a header to each segment (for 

control purposes) and delivers the segment to the IP layer for transmission. The segments are encapsulated in IP 

datagrams and transmitted. This entire operation is transparent to the receiving process.  

 Figure 4.4 shows how segments are created from the bytes in the buffers. In Figure 4.8, for simplicity, show one 

segment carrying 3 bytes and the other carrying 5 bytes.  

 At the sending side, three pointers are maintained into the send buffer, each with an obvious meaning: 

LastByteAcked, LastByteSent, and LastByteWritten.  

LastByteAcked LastByteSent 

   since the receiver cannot have acknowledged a byte that has not yet been sent, and 

LastByteSent LastByte  

       since TCP cannot send a byte that the application process has not yet written. 
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 set of pointers (sequence numbers) are maintained on the receiving side: LastByteRead, NextByteExpected, and 

LastByteRcvd. Theinequalities are a little less intuitive, however, because of the problem of out-of-order delivery. 

The first relationship  

LastByteRead < NextByteExpected 

is true because a byte cannot be read by the application until it is received and all preceding bytes have also been  

received.  

 NextByteExpected points to the byte immediately after the latest byte to meet this criterion. Second, 

NextByteExpected LastByteRcvd+1 

since, if data has arrived in order, NextByteExpected points to the byte after LastByteRcvd, whereas if data has 

arrived out of order, then NextByteExpected points to the start of the first gap in the data.  

Full-Duplex Communication 

 TCP offers full-duplex service, in which data can flow in both directions at the same time. Each TCP then has a 

sending and receiving buffer, and segments move in both directions. 

Connection-Oriented Service 

 TCP is a connection-oriented protocol. When a process at site A wants to send and receive data from another 

process at site B, the following occurs: 

1. The two TCPs establish a connection between them. 

2. Data are exchanged in both directions. 

3. The connection is terminated. 

Reliable Service 

 TCP is a reliable transport protocol. It uses an acknowledgment mechanism to check the safe and sound arrival of 

data.  

TCP Features 

Numbering System 

 Two fields called the sequence number and the acknowledgment number. These two fields refer to the byte 

number and not the segment number. 
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 Byte Number TCP numbers all data bytes that are transmitted in a connection.  

 Numbering is independent in each direction. When TCP receives bytes of data from a process, it stores them in the 

sending buffer and numbers them. The numbering does not necessarily start from 0. 

 TCP generates a random number between 0 and 232-1 for the number of the first byte. For example, if the random 

number happens to be 1057 and the total data to be sent are 6000 bytes, the bytes are numbered from 1057 to 

7056.  

 The bytes of data being transferred in each connection are numbered by TCP.   The numbering starts with a 

randomly generated number. 

 The sequence number for each segment is the number of the first byte carried in that segment. 

Example 

Suppose a TCP connection is transferring a file of 5000 bytes. The first byte is numbered 10,00l. What are the 

sequence numbers for each segment if data are sent in five segments, each carrying 1000 bytes? 

Solution 

The following shows the sequence number for each segment: 

 

 

 

 When carrying only control information, need a sequence number to allow an acknowledgment from the receiver. 

These segments are used for connection establishment, termination, or abortion. 

 Each of these segments consumes one sequence number as though it carried 1 byte, but there are no actual data. If 

the randomly generated sequence number is x, the first data byte is numbered x + 1.  

 Acknowledgment Number - communication in TCP is full duplex; when a connection is established, both parties 

can send and receive data at the same time. Each party numbers the bytes, usually with a different starting byte 

number. The sequence number in each direction shows the number of the first byte carried by the segment. Each 

party also uses an acknowledgment number to confirm the bytes it has received.  

 The acknowledgment number is cumulative, which means that the party takes the number of the last byte that it 

has received, safe and sound, adds I to it, and announces this sum as the acknowledgment number. The term 

cumulative here means that if a party uses 5643 as an acknowledgment number, it has received all bytes from the 

beginning up to 5642.  

Flow Control 

TCP provides flow control. The receiver of the data controls the amount of data that are to be sent by the sender. 

This is done to prevent the receiver from being overwhelmed with data. The numbering system allows TCP to use a 

byte-oriented flow control. 

Error Control 

To provide reliable service, TCP implements an error control mechanism. Error control considers a segment as the 

unit of data for error detection (loss or corrupted segments), error control is byte-oriented. 

Congestion Control 

TCP takes into account congestion in the network. The amount of data sent by a sender is not only controlled by 

the receiver (flow control), but is also determined by the level of congestion in the network. 
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Segment 

A packet in TCP is called a segment. 

Format 

The format of a segment is shown in Figure 4.9. 

 The segment consists of a 20- to 60-byte header, followed by data from the application program. The header is 20 

bytes if there are no options and up to 60 bytes if it contains options.  

 Source port address. This is a 16-bit field that defines the port number of the application program in the host that 

is sending the segment. This serves the same purpose as the source port address in the UDP header. 

 Destination port address. This is a 16-bit field that defines the port number of the application program in the host 

that is receiving the segment. This serves the same purpose as the destination port address in the UDP header. 

 Sequence number. This 32-bit field defines the number assigned to the first byte of data contained in this segment. 

As we said before, TCP is a stream transport protocol. To ensure connectivity, each byte to be transmitted is 

numbered. The sequence number tells the destination which byte in this sequence comprises the first byte in the 

segment. 

 

 

 During connection establishment, each party uses a random number generator to create an initial sequence number 

(ISN), which is usually different in each direction. 

 Acknowledgment number. This 32-bit field defines the byte number that the receiver of the segment is expecting to 

receive from the other party. If the receiver of the segment has successfully received byte number x from the other 

party, it defines x + I as the acknowledgment number. Acknowledgment and data can be piggybacked together. 

 Header length. This 4-bit field indicates the number of 4-byte words in the TCP header. The length of the header 

can be between 20 and 60 bytes. Therefore, the value of this field can be between 5 (5 x 4 =20) and 15 (15 x 4 

=60). 

 Reserved. This is a 6-bit field reserved for future use. 
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 Control. This field defines 6 different control bits or flags as shown in Figure 4.10. One or more of these bits can 

be set at a time. 

 Window size. This field defines the size of the window, in bytes, that the other party must maintain. Note that the 

length of this field is 16 bits, which means that the maximum size of the window is 65,535 bytes. This value is 

normally referred to as the receiving window (rwnd) and is determined by the receiver. The sender must obey the 

dictation of the receiver in this case. 

 Checksum. This 16-bit field contains the checksum. The calculation of the checksum for TCP follows the same 

procedure as the one described for UDP. However, the inclusion of the checksum in the UDP datagram is optional, 

whereas the inclusion of the checksum for TCP is mandatory. The same pseudoheader, serving the same purpose, 

is added to the segment. For the TCP pseudoheader, the value for the protocol field is 6. 

 

 

 

 

 

 

 

 

 Urgent pointer. This l6-bit field, which is valid only if the urgent flag is set, is used when the segment contains 

urgent data. It defines the number that must be added to the sequence number to obtain the number of the last 

urgent byte in the data section of the segment.  

 options. There can be up to 40 bytes of optional information in the TCP header. 

4.3.1. Connection management  

 TCP is connection-oriented. A connection-oriented transport protocol establishes a virtual path between the source 

and destination. All the segments belonging to a message are then sent over this virtual path.  

 TCP operates at a higher level. TCP uses the services of IP to deliver individual segments to the receiver, but it 

controls the connection itself.  

 If a segment is lost or corrupted, it is retransmitted. Unlike TCP, IP is unaware of this retransmission. If a segment 

arrives out of order, TCP holds it until the missing segments arrive; IP is unaware of this reordering. 

 Connection-oriented transmission requires three phases:  

1. Connection establishment phase 

2. Data transfer phase 
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3. Connection termination phase 

1. Connection Establishment phase 

 TCP transmits data in full-duplex mode. When two TCPs in two machines are connected, they are able to send 

segments to each other simultaneously. This implies that each party must initialize communication and get 

approval from the other party before any data are transferred. 

 Three-Way Handshaking The connection establishment in TCP is called three way handshaking.  

In our example, an application program, called the client, wants to make a connection with another application 

program, called the server, using TCP as the transport layer protocol. 

 The process starts with the server. The server program tells its TCP that it is ready to accept a connection. This is 

called a request for a passive open.  

 The client program issues a request for an active open. A client that wishes to connect to an open server tells its 

TCP that it needs to be connected to that particular server. TCP can now start the three-way handshaking process 

as shown in Figure 4.11. 

 Fig. show the sequence number, the acknowledgment 

number, the control flags (only those that are set), and 

the window size, if not empty. The three steps in this 

phase are as follows.   

1. The client sends the first segment, a SYN 

segment, in which only the SYN flag is set. 

This segment is for synchronization of 

sequence numbers. It consumes one sequence 

number. When the data transfer starts, the 

sequence number is incremented by 1. The 

SYN segment carries no real data, but we can think of it as containing 1 imaginary byte. A SYN segment 

cannot carry data, but it consumes one sequence number. 

2. The server sends the second segment, a SYN +ACK segment, with 2 flag bits set: SYN and ACK. This 

segment has a dual purpose. It is a SYN segment for communication in the other direction and serves as 

the acknowledgment for the SYN segment. It consumes one sequence number. A SYN +ACK segment 

cannot carry data, but does consume one sequence number. 

3. The client sends the third segment. This is just an ACK segment. It acknowledges the receipt of the 

second segment with the ACK flag and acknowledgment number field.  

2. Data Transfer phase 

 After connection is established, bidirectional data transfer can take place. The client and server can both send data 

and acknowledgments.  

 The acknowledgment is piggybacked with the data. Figure 4.12 shows an example.  

 In this example, after connection is established (not shown in the figure), the client sends 2000 bytes of data in two 

segments. The server then sends 2000 bytes in one segment. The client sends one more segment. The first three 

segments carry both data and acknowledgment, but the last segment carries only an acknowledgment because 

there are no more data to be sent.  
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 The data segments sent by the client have the PSH (push) flag set so that the server TCP knows to deliver data to 

the server process as soon as they are received. 

 The sending TCP can select the segment size. The receiving TCP also buffers the data when they arrive and 

delivers them to the application program when the application program is ready or when it is convenient for the 

receiving TCP. This type of flexibility increases the efficiency of TCP.  

 Delayed transmission and delayed delivery of data may not be acceptable by the application program.TCP can 

handle such a situation. The application program at the sending site can request a push operation. This means that 

the sending TCP must not wait for the window to be filled. It must create a segment and send it immediately. The 

sending TCP must also set the push bit (PSH) to let the receiving TCP know that the segment includes data that 

must be delivered to the receiving application program as soon as possible and not to wait for more data to come.  

Urgent Data  

 An application program needs to send urgent bytes. This means that the sending application program wants a piece 

of data to be read out of order by the receiving application program.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 As an example, suppose that the sending application program is sending data to be processed by the receiving 

application program.  

 When the result of processing comes back, the sending application program finds that everything is wrong. It 

wants to abort the process, but it has already sent a huge amount of data. If it issues an abort command (control C), 

these two characters will be stored at the end of the receiving TCP buffer. It will be delivered to the receiving 

application program after all the data have been processed. The solution is to send a segment with the URG bit set.  

 The sending application program tells the sending TCP that the piece of data is urgent. The sending TCP creates a 

segment and inserts the urgent data at the beginning of the segment.  
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 The rest of the segment can contain normal data from the buffer. The urgent pointer field in the header defines the 

end of the urgent data and the start of normal data. 

 When the receiving TCP receives a segment with the URG bit set, it extracts the urgent data from the segment, 

using the value of the urgent pointer, and delivers them, out of order, to the receiving application program. 

Connection Termination 

 This is also called as three-way handshaking and four-way handshaking with a half-close option. 

 Three-way handshaking for connection termination as shown in Figure 4.13. 

1. In a normal situation, the client TCP, after receiving a close command from the client process, sends the first 

segment, a FIN segment in which the FIN flag is set. Note that a FIN segment can include the last chunk of data 

sent by the client, or it can be just a control segment as shown in Figure 4.12. If it is only a control segment, it 

consumes only one sequence number. The FIN segment consumes one sequence number ifit does not carry data. 

2. The server TCP, after receiving the FIN segment, informs its process of the situation and sends the second 

segment, a FIN +ACK segment, to confirm the receipt of the FIN segment from the client and at the same time to 

announce the closing of the connection in the other direction. This segment can also contain the last chunk of data 

from the server. If it does not carry data, it consumes only one sequence number. The FIN +ACK segment 

consumes one sequence number if it does not carry data. 

 

3. The client TCP sends the last segment, an ACK segment, to confirm the receipt of the FIN segment from the TCP 

server. This segment contains the acknowledgment number, which is 1 plus the sequence number received in the 

FIN segment from the server. This segment cannot carry data and consumes no sequence numbers.  

Half-Close  

 One end can stop sending data while still receiving data. This is called a half-close.  
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 A good example is sorting. When the client sends data to the server to be sorted, the server needs to receive all the 

data before sorting can start. This means the client, after sending all the data, can close the connection in the 

outbound direction.  

 The server, after receiving the data, still needs time for sorting; its outbound direction must remain open. 

 Figure 4.14 shows an example of a half-close. The client half-closes the connection by sending a FIN segment. 

The server accepts the half-close by sending the ACK segment. The data transfer from the client to the server 

stops. The server, however, can still send data. When the server has sent all the processed data, it sends a FIN 

segment, which is acknowledged by an ACK from the client. 

 After half-closing of the connection, data can travel from the server to the client and acknowledgments can travel 

from the client to the server. The client cannot send any more data to the server. Note the sequence numbers we 

have used. The second segment (ACK) consumes no sequence number. Although the client has received sequence 

number y - 1 and is expecting y, the server sequence number is still y - 1.  

 When the connection finally closes, the sequence number of the last ACK segment is still  because no sequence 

numbers are consumed during data transfer in that direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

State-Transition Diagram 

 Figure 4.15. shows state transition diagram of TCP 

 This diagram shows only the states involved in opening a connection (everything above ESTABLISHED) and in 

closing a connection (everything below ESTABLISHED). 
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 Everything that goes on while a connection is open that is, the operation of the sliding window algorithm is 

hidden in the ESTABLISHED state. 

 Each circle denotes a state that one end of a TCP connection can find itself in. All connections start in the 

CLOSED state.  

 The connection progresses, the connection moves from state to state according to the arcs. Each arc is labeled with 

a tag of the form event/action.  

 if a connection is in the LISTEN state and a SYN segment arrives (i.e., a segment with the SYN flag set), the 

connection makes a transition to the SYN RCVD state and takes the action of replying with an ACK+SYN 

segment.  

 Two kinds of events trigger a state transition: (1) a segment arrives from the peer (e.g., the event on the arc from 

LISTEN to SYN RCVD), or (2) the local application process invokes an operation on TCP (e.g., the active open 

event on the arc from CLOSED to SYN SENT). 

 -transition diagram effectively defines the semantics of both its peer-to-peer interface and its service 

interface 

 The syntax of these two interfaces is given by the segment format and by some application programming interface 

respectively. 

 When opening a connection, the server first invokes a passive open operation on TCP, which causes TCP to move 

to the LISTEN state. At some later time, the client does an active open, which causes its end of the connection to 

send a SYN segment to the server and to move to the SYN SENT state.  

 When the SYN segment arrives at the server, it moves to the SYN RCVD state and responds with a SYN+ACK 

segment. The arrival of this segment causes the client to move to the ESTABLISHED state and to send an ACK 

back to the server.  

 When this ACK arrives, the server finally moves to the ESTABLISHED state.   

 There are three things to notice about the connection establishment half of the state-transition diagram. 

  is lost, corresponding to the third leg of the three-way handshake, then 

the connection still functions correctly. This is because the client side is already in the ESTABLISHED state, 

so the local application process can start sending data to the other end. Each of these data segments will have 

the ACK flag set, and the correct value in the Acknowledgment field, so the server will move to the 

ESTABLISHED state when the first data segment arrives. This is actually an important point about TCP

every segment reports what sequence number the sender is expecting to see next, even if this repeats the same 

sequence number contained in one or more previous segments. 

 The second thing to notice about the state-transition diagram is that there is a funny transition out of the 

LISTEN state whenever the local process invokes a send operation on TCP. That is, it is possible for a passive 

participant to identify both ends of the connection (i.e., itself and the remote participant that it is willing to 

have connect to it), and then for it to change its mind about waiting for the other side and instead actively 

establish the connection. To the best of our knowledge, this is a feature of TCP that no application process 

actually takes advantage of.  

 The final thing to notice about the diagram is the arcs that are not shown. Specifically, most of the states that 

involve sending a segment to the other side also schedule a timeout that eventually causes the segment to be 
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present if the expected response does not happen. These retransmissions are not depicted in the state-transition 

diagram. If after several tries the expected response does not arrive, TCP gives up and returns to the CLOSED 

state. 

 If only one side closes the connection, then this means it has no more data to send, but it is still available to receive 

data from the other side.  

 Any one side there are three combinations of transitions that get a connection from the ESTABLISHED state to 

the CLOSED state: 

i. This side closes first: ESTABLISHED FIN WAIT 1 FIN WAIT 2 TIME WAIT CLOSED. 

ii. The other side closes first: ESTABLISHED CLOSE WAIT LAST ACK CLOSED. 

iii. Both sides close at the same time: ESTABLISHED FIN WAIT 1 CLOSING TIME WAIT CLOSED. 

 The CLOSED state; it follows the arc from FIN WAIT 1 to TIME WAIT. 

 Connection Teardown 

 A connection in the TIME WAIT state cannot move to the CLOSED state until it has waited for two times the 

maximum amount of time an IP datagram might live in the Internet (i.e., 120 seconds).  

 The local side of the connection has sent an ACK in response 

know that the ACK was successfully delivered.  
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 Retransmit its FIN segment, and this second FIN segment might be delayed in the network. If the connection 

were allowed to move directly to the CLOSED state, then another pair of application processes might come 

along and open the same connection (i.e., use the same pair of port numbers), and the delayed FIN segment 

from the earlier incarnation of the connection would immediately initiate the termination of the later  

incarnation of that connection. 

4.3.2. Remote Procedure Call 

 RPC is a powerful technique for constructing distributed, client/server based applications, also called message 

transaction: A client sends a request message to a 

server, and the server responds with a reply 

message, with the client blocking (suspending 

execution) to wait for the reply.  

 Figure 4.3.2 (a) illustrates the basic interaction 

between the client and server in such a message 

transaction. 

Advantages of RPC 

 UDP does not guarantee any reliability 

 TCP incurs high overhead (e.g., setting up and 

tearing down the connection) simply to delivery a pair of request/reply messages 

Components of  RPC 

 Two major components: 

1. A protocol that manages the messages sent between the client and the server processes and that deals with the 

potentially undesirable properties of the underlying network  

2. Programming language and compiler 

support to package the arguments into a 

request message on the client machine and 

then to translate this message back into the 

arguments on the server machine, and 

likewise with the return value (this piece of 

the RPC mechanism is usually called a stub 

compiler) 

Process of RPC 

Figure 4.3.2(b) schematically depicts what 

happens when a client invokes a remote 

procedure.  

 First, the client calls a local stub for the 

procedure, passing it the arguments required by the procedure. This stub hides the fact that the procedure is remote 

by translating the arguments into a request message and then invoking an RPC protocol to send the request 

message to the server machine.  
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 At the server, the RPC protocol delivers the request message to the server stub (sometimes called a skeleton), 

which translates it into the arguments to the procedure and then calls the local procedure. After the server 

procedure completes, it returns the answer to the server stub, which packages this return value in a reply message 

that it hands off to the RPC protocol for transmission back to the client.  

 The RPC protocol on the client passes this message up to the client stub, which translates it into a return value that 

it returns to the client program. 

RPC Protocol (stack) 

 fragments and reassembles large messages (by BLAST) 

  synchronizes request and reply messages (by CHAN) 

 dispatches request to the correct process/procedure (by SELECT) 

Bulk Transfer (BLAST) 

 Fragmentation & reassembly as in ATM-AAL and IP 

 Unlike AAL and IP, tries to recover from lost fragments 

- So as not to retransmit the whole large packet (for higher efficiency) 

- Strategy: selective retransmission via negative acknowledgment 

 But does not go so far to guarantee 100% reliable delivery 

- Does not wait for any of the fragment to be acked before sending the 

next (hence the name Blast) 

 Sender 

- temporarily keeps a fragment for potential retransmission 

o after sending all fragments, set timer DONE 

o if receive Selective Retransmission Request (SRR), send missing 

fragments and reset DONE 

o if timer DONE expires, free fragments; -Give up if there is lost 

fragments 

- SRR acts as negative acknowledgment 

- Interprets lost negative-  - Thus, does not guarantee reliable fragment 

delivery 

 Receiver 

- in the presence of fragment loss, sends limited number of retransmission requests  

o When the first fragment arrives, set timer LAST_FRAG _ LAST_FRAG is reset whenever receiving a 

new fragment 

o When all fragments are present, reassemble and pass up  

o Four exceptional conditions: 

if the last fragment arrives, but message not complete 

send SRR and set timer RETRY 

    if timer LAST_FRAG expires 

send SRR and set timer RETRY 

   if timer RETRY expires for first or second time 



CN  PJCE 

213 
 

send SRR and set timer RETRY 

         if timer RETRY expires a third time 

give up and free partial message 

 BLAST Header Format 

 MID (message ID): must protect against wrap around 

 TYPE = DATA or SRR 

 NumFrags: indicates total number of fragments in the message 

 FragMask distinguishes among fragments 

o if Type=DATA, identifies fragments carried in this packet 

o if Type=SRR, identifies missing fragments 

 Summary of BLAST 

 For fragmentation and reassembly, but tries to recover lost fragments (to improve efficiency) 

 No sliding-window flow control (unlike sliding window for reliable transmission) 

o  for flow and congestion control 

 No guarantee on reliable message delivery, instead efficiencyoriented fragment retransmission 

o Reliability is guaranteed by the protocol next layer up, i.e., CHAN 

CHAN Request/Reply  

 Guarantees message delivery 

 Synchronizes client with server 

 Implements a logical request/reply channel between client and server (thus the name CHAN) 

 At most one message is active on a given channel at any time 

 Supports at-most-once semantics 

 Lost message (request, reply, or ACK) 

 set RETRANSMIT timer 

 use message id (MID) field to distinguish 

 Machines crash and reboot 

o  use boot id (BID) field to distinguish 

 

 

 

 

 

 

 

 

 

 Slow (long running) server 
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 Want to support multiple outstanding calls 

 use channel id (CID) field to distinguish 

Dispatcher (SELECT) 

 Dispatch to appropriate procedure  

 Synchronous counterpart to UDP 

 Implement concurrency (open multiple CHANs) 

 Address Space for Procedures 

 flat: unique id for each possible procedure 

 hierarchical: program + procedure number 

4.3.3. RTP 

 Real-time traffic: digitized voice, video, etc. 

 Experiments with real-time traffic since 1981 

 Advantages 

 UDP: best effort, no guarantee on delay and delay jitter 

 TCP: long delay and large delay jitter due to retransmission 

 RPC: designed for interactive exchange of (mostly short) messages 

 Requirements for real-time traffic transport 

 To be generic and to support different applications(e.g., w/ diff. encoding schemes) 

 To identify timing relationship among received data; 

 To synchronize related media streams (e.g., audio & video data streams) 

5. To detect and report packet loss (even though no need for 100% reliability) 

 Features of RTP: Real-time Transport Protocol 

 Runs over UDP 

 Application-Level Framing : leave application specific d

 

 Profile: specifies how to interpret the RTP header information 

 Format: specifies how to interpret the data following the RTP header 

1. Data packets: specified by RTP 

o Timestamp: for timing and synchronization 

 At application-  

 Sequence number: for detecting lost or misordered packets 

2. Periodic control packets: specified by RTCP (Real-time Transport Control Protocol) 

 loss rate (fraction of packets received since last report) 

 delay jitter 

4.3.4. Flow control  

 Both buffers are of some finite size, denoted MaxSendBuffer and MaxRcvBuffer 

 A sliding window protocol, the size of the window setsthe amount of data that can be sent without waiting for 

acknowledgment from the receiver. Thus, the receiver throttles the sender by advertising a window that is no 

larger than the amount of data that it can buffer. 
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 Observe that TCP on the receive side must keep to avoid overflowing its buffer.  

LastByteRcvd LastByteRead MaxRcvBuffer 

 It therefore advertises a window size of  

AdvertisedWindow = MaxRcvBuffer ((NextByteExpected 1) LastByteRead) 

- which represents the amount of free space remaining in its buffer.  

- LastByteRcvd moves to the right (is incremented), meaning that the advertised window potentially shrinks.   

- TCP on the send side must then adhere to the advertised windowit gets from the receiver. This means that at 

any given time, it must ensure that 

LastByteSent LastByteAcked AdvertisedWindow 

 The sender computes an effective window that limits how much data it can send: 

EffectiveWindow = AdvertisedWindow (LastByteSent LastByteAcked) 

- EffectiveWindow must be greater than 0 before the source can send more data. It is possible, therefore, that a 

segment arrives acknowledging x bytes, thereby allowing the sender to increment LastByteAcked by x, but 

because the receiving process was not reading any data, the advertised window is now x bytes smaller than the 

time before.  

 The send side must also make sure that the local application process does not overflow the send buffer that is, 

  LastByteWritten LastByteAcked MaxSendBuffer 

If the sending process tries to write y bytes to TCP, but (LastByteWritten LastByteAcked)+y > MaxSendBuffer

then TCP blocks the sending process and does not allow it to generate more data. 

 Figure 4.16 shows Send window in TCP 

 Figure 4.17 shows Receive Sliding Window 
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Silly Window Syndrome 

 The silly window syndrome is only a problem when either the sender transmits a small segment or the receiver 

opens the window a small amount. If neither of these happens, then the small container is never introduced into the 

. 

 For example, the application might do a push after sending a single byte. It is possible, however, to keep the 

receiver from introducing a small container (i.e., a small open window). The rule is that after advertising a zero 

windowthe receiver must wait for space equal to an MSS before it advertises an open window. 

 Figure 4.18 helps visualize what happens.  
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 If you think of a TCP s  in one direction 

and empty containers (ACKs) going in the reverse direction, then MSS-sized segments correspond to large 

containers and 1-byte segments correspond to very small containers.  

 As long as the sender is sending MSS-sized segments and the receiver ACKs at least one MSS of data at a 

time, everything is good (Figure 4.18(a)).  

 But, what if the receiver  MSS of 

data? If the sender aggressively fills a smaller-than-MSS empty container as soon as it arrives, then the 

receiver will ACK that smaller number of bytes, and hence the small container introduced into the system 

remains in the system indefinitely. That is, it is immediately filled and emptied at each end and is never 

coalesced with adjacent containers to create larger containers, as in Figure 4.18(b).  

 

 if there is data to send but the window is open less than MSS, then we may want to wait some amount of time 

before sending the available data, but the question is how long? If we wait too long, then we hurt interactive 

 long enough, then we risk sending a bunch of tiny packets and falling 

into the silly window syndrome.  

 The answer is to introduce a timer and to transmit when the timer expires. 

 While we could use a clock-based timer for example, one that fires every 100 ms Nagle introduced an 

elegant self-clocking solution.  

 The sender will eventually receive an ACK. This ACK can be treated like a timer firing, triggering the 

transmission of more data.  

  rule for deciding when to transmit: 

When the application produces data to send  

if both the available data and the window MSS 

send a full segment 

else 

if there is unACKed data in flight 

buffer the new data until an ACK arrives 

else 

send all the new data now 

 Some segments will contain a single byte, while others will contain as many bytes as the user was able to type in 

one round-trip time.  

 The  setting the TCP NODELAY option. 

- Setting this option means that data is transmitted as soon as possible. 

i. Retransmission  

 TCP guarantees the reliable delivery of data, it retransmits each segment if an ACK is not received in a certain 

period of time.  

 TCP sets this timeout as a function of the RTT it expects between the two ends of the connection. Unfortunately, 

given the range of possible RTTs between any pair of hosts in the Internet, as well as the variation in RTT between 

the same two hosts over time, choosing an appropriate timeout value is not that easy.  
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 Original Algorithm 

 For computing a timeout value between a pair of hosts.  

 The idea is to keep a running average of the RTT and then to compute the timeout as a function of this RTT. 

Specifically, every time TCP sends a data segment, it records the time.  

 When an ACK for that segment arrives, TCP reads the time again, and then takes the difference between these 

two times as a SampleRTT.  

 TCP then computes an EstimatedRTT as a weighted average between the previous estimate and this new 

sample. 

EstimatedRTT = ×EstimatedRTT+(1 )×SampleRTT 

- The parameter  is selected to smooth the EstimatedRTT.  

- A small  tracks changes in the RTT but is perhaps too heavily influenced by temporary fluctuations. 

 EstimatedRTT to compute the timeout in a rather conservative way: 

TimeOut = 2×EstimatedRTT 

Karn/Partridge Algorithm 

 Whenever a segment is retransmitted and then an ACK arrives at the sender, it is impossible to determine if this 

ACK should be associated with the first or the second transmission of the segment for the purpose of measuring 

the sample RTT.  

 As illustrated in Figure 4.19, if you assume that the ACK is for the original transmission but it was really for the 

second, then the SampleRTT is too large (a); if you assume that the ACK is for the second transmission but it was 

actually for the first, then the SampleRTT is too small (b). 

 The solution, which was proposed in 1987, is surprisingly simple. 

 Whenever TCP retransmits a segment, it stops taking samples of the RTT; it only measures SampleRTT for 

segments that have been sent only once. 

 Each time TCP retransmits, it sets the next timeout to be twice the last timeout, rather than basing it on the last 

EstimatedRTT.  

 Karn and Partridge proposed that TCP use exponential backoff, similar to what the Ethernet does.  

 The motivation for using exponential backoff is simple: Congestion is the most likely cause of lost segments, 

meaning that the TCP source should not react too aggressively to a timeout.  
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Jacobson/Karels Algorithm 

 The Karn/Partridge algorithm was introduced at a time when the Internetwas suffering from high levels of network 

congestion.  

 Their approach was designed to fix some of the causes of that congestion, but, although it was an improvement, 

the congestion was not eliminated.  

 The main problem with the original computation is that it does not take the variance of the sample RTTs into 

account. Intuitively, if the variation among samples is small, then the EstimatedRTT can be better trusted and there 

is no reason for multiplying this estimate by 2 to compute the timeout.  

 On the other hand, a large variance in the samples suggests that the timeout value should not be too tightly coupled 

to the EstimatedRTT. 

 In the new approach, the sender measures a new SampleRTT as before. 

 It then folds this new sample into the timeout calculation as follows: 

Difference = SampleRTT EstimatedRTT 

EstimatedRTT = EstimatedRTT+( ×Difference) 

Deviation = Deviation+ (|Difference Deviation) 

- where  is a fraction between 0 and 1. That is, we calculate both the mean RTT and the variation in that mean. 

 TCP then computes the timeout value as a function of both Estimated-RTT and Deviation as follows: 

×EstimatedRTT+ ×Deviation 

-  is set to 4.  

- when the variance is small, TimeOut is close to EstimatedRTT; a large variance causes the Deviation termto 

dominate the calculation. 

Implementation 

 There are two items of note regarding the implementation of timeouts in TCP.  

i. The first is that it is possible to implement the calculation for EstimatedRTT and Deviation without using 

floating-point arithmetic.  

o The whole calculation is scaled by 2n, with  selected to be 1/2n. This allows us to do integer 

arithmetic, implementing multiplication and division using shifts, thereby achieving higher 

performance.  

o The resulting calculation is given by the following code fragment, where n = 3 (i.e., _ = 1/8).  

{ 

SampleRTT -= (EstimatedRTT >> 3); 

EstimatedRTT += SampleRTT; 

if (SampleRTT < 0) 

SampleRTT = -SampleRTT; 

SampleRTT -= (Deviation >> 3); 

Deviation += SampleRTT; 

TimeOut = (EstimatedRTT >> 3) + (Deviation >> 1); 

} 
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ii. The second point of note is that the Jacobson/Karels algorithm is only as good as the clock used to read 

the current time.  

4.3.5. Error Control 

 TCP is a reliable transport layer protocol. This means that an application program that delivers a stream of data to 

TCP relies on TCP to deliver the entire stream to the application program on the other end in order, without error, 

and without any part lost or duplicated. 

 TCP provides reliability using error control. Error control includes mechanisms for detecting corrupted segments, 

lost segments, out-of-order segments, and duplicated segments. Error control also includes a mechanism for 

correcting errors after they are detected.  

 Error detection and correction in TCP is achieved through the use of three simple tools:  

ii. Checksum  

- Each segment includes a checksum field which is used to check for a corrupted segment.  

- If the segment is corrupted, it is discarded by the destination TCP and is considered as lost.  

- TCP uses a 16-bit checksum that is mandatory in every segment.  

iii. Acknowledgment  

- TCP uses acknowledgments to confirm the receipt of data segments.  

- Control segments that carry no data but consume a sequence number are also acknowledged.  

- ACK segments are never acknowledged.   

- ACK segments do not consume sequence numbers and are not acknowledged. 

iv. Retransmission  

- The heart of the error control mechanism is the retransmission of segments.  

- When a segment is corrupted, lost, or delayed, it is retransmitted.  

- In modern implementations, a segment is retransmitted on two occasions:  

o when a retransmission timer expires  

o when the sender receives three duplicate ACKs. 

- RTI is the time needed for a segment to reach a destination and for an acknowledgment to be received.  

- It uses a back-off strategy 

- Retransmission After RTO   

o When the timer matures, the earliest outstanding segment is retransmitted even though lack of a received 

ACK can be due to a delayed segment, a delayed ACK, or a lost acknowledgment.  

o No time-out timer is set for a segment that carries only an acknowledgment, which means that no such 

segment is resent.  

o The value of RTO is dynamic in TCP and is updated based on the round-trip time (RTT) of segments.  

o An RTI is the time needed for a segment to reach a destination and for an acknowledgment to be 

received. It uses a back-off strategy. 

- Retransmission After Three Duplicate ACK Segments  

o The previous rule about retransmission of a segment is sufficient if the value of RTO is not very large.  
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o Sometimes, one segment is lost and the receiver receives so many out-of-order segments that they cannot 

be saved (limited buffer size). To alleviate this situation, the three-duplicate-ACKs rule and retransmit the 

missing segment immediately.  

o This feature is referred to as fast retransmission 

 

- Out-of--Order Segments  

o When a segment is delayed, lost, or discarded, the segments following that segment arrive out of order.  

o TCP was designed to discard all out-of-order segments, resulting in the retransmission of the missing 

segment and the following segments.  

4.3.5.1. Some Scenarios 

Normal Operation 

The first scenario 

shows bidirectional 

data transfer between 

two systems, as in 

Figure 4.30. The client 

TCP sends one 

segment; the server 

TCP sends   three. The 

figure shows which 

rule applies to each 

acknowledgment. 

There are data to be 

sent, so the segment displays the next byte expected. When the client receives the first segment from the server, it does 

not have any more data to send; it sends only an ACK segment.  

However, the acknowledgment needs to be delayed for 500 ms to see if any more segments arrive. When the 

timer matures, it triggers an acknowledgment. This is so because the client has no knowledge if other segments are 

coming; it cannot delay the acknowledgment forever. When the next segment arrives, another acknowledgment timer is 

set. However, before it matures, the third segment arrives. The arrival of the third segment triggers another 

acknowledgment. 

Lost Segment  

In this scenario, we show what happens when a segment is lost or corrupted. A lost segment and a corrupted segment 

are treated the same way by the receiver. A lost segment is discarded somewhere in the network; a corrupted segment 

is discarded by the receiver itself. Both are considered lost. Figure 4.31 shows a situation in which a segment is lost 

and discarded by some router in the network, perhaps due to congestion. 

Here data transfer is unidirectional: one site is sending, the other is receiving. In our scenario, the sender sends 

segments 1 and 2, which are acknowledged immediately by an ACK. Segment 3, however, is lost. The receiver 

receives segment 4, which is out of order. The receiver stores the data in the segment in its buffer but leaves a gap to 

indicate that there is no continuity in the data. The receiver immediately sends an acknowledgment to the sender, 
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displaying the next byte it expects. Note that the receiver stores bytes 801 to 900, but never delivers these bytes to the 

application until the gap is filled. 

The receiver TCP delivers only ordered data to the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fast Retransmission  

 Our scenario is the same as the second except that the RTO has a higher value  

 When the receiver receives the fourth, fifth, and sixth segments, it triggers an acknowledgment. The sender 

receives four acknowledgments with the same value (three duplicates). Although the timer for segment 3 has not 

matured yet, the fast transmission requires that segment 3, the segment that is expected by all these 

acknowledgments, be resent immediately. 

 only one segment is retransmitted although four segments are not acknowledged. When the sender receives the 
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retransmitted ACK, it knows that the four segments are safe and sound because acknowledgment is cumulative. 

4.3.6. TCP Congestion control  

DATA TRAFFIC 

 The main focus of congestion control and quality of service is data traffic.  

 In congestion control we try to avoid traffic congestion. In quality of service, we try to create an appropriate 

environment for the traffic. So, before talking about congestion control and quality of service,  

Traffic Descriptor 

Traffic descriptors are qualitative values that represent a data flow. Figure 4.33 shows a traffic flow with some of these 

values. 

Average Data Rate The average data rate is the number of 

bits sent during a period of time, divided by the number of 

seconds in that period.  

Average data rate =amount of data/time 

The average data rate is a very useful characteristic of 

traffic because it indicates the average bandwidth needed 

by the traffic. 

Peak Data Rate The peak data rate defines the maximum data rate of the traffic. In Figure 4.33 it is the maximum y 

axis value. The peak data rate is a very important measurement because it indicates the peak bandwidth that the 

network needs for traffic to pass through without changing its data flow. 

Maximum Burst Size Although the peak data rate is a critical value for the network, it can usually be ignored if the 

duration of the peak value is very short. For example, if data are flowing steadily at the rate of 1 Mbps with a sudden 

peak data rate of 2 Mbps for just 1 ms, the network probably can handle the situation. However, if the peak data rate 

lasts 60 ms, there may  

be a problem for the network. The maximum burst size normally refers to the maximum length of time the traffic is 

generated at the peak rate. 

Effective Bandwidth The effective bandwidth is the bandwidth that the network needs to allocate for the flow of traffic. 

The effective bandwidth is a function of three values: average data rate, peak data rate, and maximum burst size. The 

calculation of this value is very complex.      

Traffic Profiles 

For our purposes, a data flow can have one of the following traffic profiles: constant bit rate, variable bit rate, or bursty 

as shown in Figure 4.34. 

Constant Bit Rate A constant-bit-rate (CBR), or a fixed-rate, traffic model has a data rate that does not change. In this 

type of flow, the average data rate and the peak data rate are the same. 

The maximum burst size is not applicable. This type of traffic is very easy for a network to handle since it is 

predictable. The network knows in advance how much bandwidth to allocate for this type of flow. 

Variable Bit Rate In the variable-bit-rate (VBR) category, the rate of the data flow changes in time, with the changes 

smooth instead of sudden and sharp. In this type of flow, the average data  

Bursty In the bursty data category, the data rate changes suddenly in a very short time. It may jump from zero, for 

example, to 1 Mbps in a few microseconds and vice versa. It may also remain at this value for a while.  
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The average bit rate and the peak bit rate are very different values in this type of flow.  

The maximum burst size is significant.  

Bursty traffic is one of the main causes of congestion in a network. 

CONGESTION 

 An important issue in a packet-switched network is congestion.  

 Congestion in a network may occur if the load on the network-the number of packets sent to the network is greater 

than the capacity of the network-the number of packets a network can handle. 

 Congestion control refers to the mechanisms and techniques to control the congestion and keep the load below the 

capacity. 

 Congestion happens in any system that involves waiting. For example, congestion happens on a freeway because 

any abnormality in the flow, such as an accident during rush hour, creates blockage. 

 Congestion in a network or internetwork occurs because routers and switches have queues-buffers that hold the 

packets before and after processing. 

 A router, for example, has an input queue and an output queue for each interface. When a packet arrives at 

theincoming interface, it undergoes three steps before departing, as shown in Figure 4.35. 

 

 

 

 

 

 

 

 

 



CN  PJCE 

225 
 

1. The packet is put at the end of the input queue while waiting to be checked.  

2. The processing module of the router removes the packet from the input queue once it reaches the front of the 

queue and uses its routing table and the destination address to find the route. 

3. The packet is put in the appropriate output queue and waits its turn to be sent. 

Network Performance 

Congestion control involves two factors that measure the performance of a network: delay and throughput. Figure 4.36 

shows these two performance measures as function of load. 

 

 

 

 

 

 

 

 

 

 

Delay Versus Load 

 when the load is much less than the capacity of the network, the delay is at a minimum.  

 When the load reaches the network capacity, the delay increases sharply because we now need to add the waiting 

time in the queues (for all routers in the path) to the total delay.  

 The delay becomes infinite when the load is greater than the capacity. If this is not obvious, consider the size of 

the queues when almost no packet reaches the destination, or reaches the destination with infinite delay; the 

queues become longer and longer.  

 When a packet is delayed, the source, not receiving the acknowledgment, retransmits the packet, which makes the 

delay, and the congestion, worse. 

Throughput Versus Load 

 Define throughput in a network as the number of packets passing through the network in a unit of time. Notice that 

when the load is below the capacity of the network, the throughput increases proportionally with the load.  

 When the load exceeds the capacity, the queues become full and the routers have to discard some packets. 

Discarding packet does not reduce the 

number of packets in the network because 

the sources retransmit the packets, using 

time-out mechanisms, when the packets do 

not reach the destinations. 

CONGESTION CONTROL 

 Congestion control refers to techniques and 

mechanisms that can either prevent 

congestion, before it happens, or remove 
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congestion, after it has happened.  

 Divide congestion control mechanisms into two broad categories: open-loop congestion control (prevention) and 

closed-loop congestion control (removal) as shown in Figure 4.37. 

Open-Loop Congestion Control 

In open-loop congestion control, policies are applied to prevent congestion before it happens. In these mechanisms, 

congestion control is handled by either the source or the destination.  

i. Retransmission Policy 

 If the sender feels that a sent packet is lost or corrupted, the packet needs to be retransmitted.  

 Retransmission in general may increase congestion in the network.  

 The retransmission policy and the retransmission timers must be designed to optimize efficiency and at the same 

time prevent congestion.  

 For example, the retransmission policy used by TCP (explained later) is designed to prevent or alleviate 

congestion. 

ii. Window Policy 

 The type of window at the sender may also affect congestion.  

 The Selective Repeat window is better than the Go-Back-N window for congestion control.    

 In the Go-Back-N window, when the timer for a packet times out, several packets may be resent, although some 

may have arrived safe and sound at the receiver.  

 The Selective Repeat window, on the other hand, tries to send the specific packets that have been lost or corrupted. 

iii. Acknowledgment Policy 

 The acknowledgment policy imposed by the receiver may also affect congestion.  

 If the receiver does not acknowledge every packet it receives, it may slow down the sender and help prevent 

congestion.  

 A receiver may send an acknowledgment only if it has a packet to be sent or a special timer expires.  

 A receiver may decide to acknowledge only N packets at a time.  

 The acknowledgments are also part of the load in a network. Sending fewer acknowledgments means imposing 

fewer loads on the network. 

iv. Discarding Policy 

 A good discarding policy by the routers may prevent congestion and at the same time may not harm the integrity 

of the transmission.  

 For example, in audio transmission, if the policy is to discard less sensitive packets when congestion is likely to 

happen, the quality of sound is still preserved and congestion is prevented or alleviated. 

v. Admission Policy 

 An admission policy, which is a quality-of-service mechanism, can also prevent congestion in virtual-circuit 

networks.  

 Switches in a flow first check the resource requirement of a flow before admitting it to the network.  

 A router can deny establishing a virtual circuit connection if there is congestion in the network or if there is a 

possibility of future congestion. 
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Closed-Loop Congestion Control 

Closed-loop congestion control mechanisms try to alleviate congestion after it happens. 

i. Backpressure 

 The technique of backpressure refers to a congestion control mechanism in which a congested node stops 

receiving data from the immediate upstream node or nodes. This may cause the upstream node or nodes to become 

congested, and they, in turn, reject data from their upstream nodes or nodes. And so on.  

 Backpressure is a node-to-node congestion control that starts with a node and propagates, in the opposite direction 

of data flow, to the source.  

 The backpressure technique can be applied only to virtual circuit networks, in which each node knows the 

upstream node from which a flow of data is corning. Figure 4.38 shows the idea of backpressure. 

  Node III in the figure has more input data than it can handle. It drops some packets in its input buffer and informs 

node II to slow down. Node II, in turn, may be congested because it is slowing down the output flow of data.  

 If node II is congested, it informs node I to slow down, which in turn may create congestion. If so, node I inform 

the source of data to slow down. This, in time, alleviates the congestion.  

 

 

 

 

 

 The pressure on node III is moved backward to the source to remove the congestion.  

ii. Choke Packet 

 A choke packet is a packet sent by a node to the source to inform it of congestion. 

 Note the difference between the backpressure and choke packet methods. In backpressure, the warning is from one 

node to its upstream node, although the warning may eventually reach the source station. In the choke packet 

method, the warning is from the router, which has encountered congestion, to the source station directly.  

 The intermediate nodes through which the packet has traveled are not warned.  

 An example of this type of control in ICMP.  

 When a router in the Internet is overhead with IP datagrams, it may discard some of them; but it informs the 

source host, using a source quench ICMP message. The warning message goes directly to the source station; the 

intermediate routers, and does not take any action. Figure 4.39 shows the idea of a choke packet. 

 

 

iii. Implicit Signaling 

 In implicit signaling, there is no communication between the congested node or nodes and the source.  
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 The source guesses that there is a congestion somewhere in the network from other symptoms. For example, when 

a source sends several packets and there is no acknowledgment for a while, one assumption is that the network is 

congested.  

 The delay in receiving an acknowledgment is interpreted as congestion in the network; the source should slow 

down.  

iv. Explicit Signaling 

 The node that experiences congestion can explicitly send a signal to the source or destination. 

 The explicit signaling method, however, is different from the choke packet method. In the choke packet method, a 

separate packet is used for this purpose; in the explicit signaling method, the signal is included in the packets that 

carry data.  

 Example Frame Relay congestion control, can occur in either the forward or the backward direction. 

 Backward Signaling A bit can be set in a packet moving in the direction opposite to the congestion. This bit can 

warn the source that there is congestion and that it needs to slow down to avoid the discarding of packets. 

 Forward Signaling A bit can be set in a packet moving in the direction of the congestion. This bit can warn the 

destination that there is congestion. The receiver in this case can use policies, such as slowing down the 

acknowledgments, to alleviate the congestion. 

TWO EXAMPLES 

1. Congestion Control in TCP 

It show how TCP uses congestion control to avoid congestion or alleviate congestion in the network. 

Congestion Window 

 The sender window size is determined by the available buffer space in the receiver (rwnd).  

 If the network cannot deliver the data as fast as they are created by the sender, it must tell the sender to slow down.  

 The sender's window size is determined not only by the receiver but also by congestion in the network. 

 The sender has two pieces of information: the receiver-advertised window size and the congestion window size. 

The actual size of the window is the minimum of these two. 

Actual window size= minimum (rwnd, cwnd) 

Congestion Policy 

 TCP's general policy for handling congestion is based on three phases: slow start, congestion avoidance, and 

congestion detection.  

 In the slow-start phase, the sender starts with a very slow rate of transmission, but increases the rate rapidly to 

reach a threshold.  

 When the threshold is reached, the data rate is reduced to avoid congestion. Finally if congestion is detected, the 

sender goes back to the slow-start or congestion avoidance phase based on how the congestion is detected.  

 Figure 4.40, summarize the congestion policy of TCP and the relationships between the three phases. 

Slow Start:  

 Exponential Increase One of the algorithms used in TCP congestion control is called slow start. This algorithm is 

based on the idea that the size of the congestion window (cwnd) starts with one maximum segment size (MSS).  

 The MSS is determined during connection establishment by using an option of the same name. The size of the 

window increases one MSS each time an acknowledgment is received.  
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 As the name implies, the window starts slowly, but grows exponentially. To show the idea, let us look at Figure 

4.41.  

 Assumed that rwnd is much higher than cwnd, so that the sender window size always equals cwnd. We have 

assumed that each segment is acknowledged individually. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The sender starts with cwnd =1 MSS. This means that the sender can send only one segment. After receipt of the 

acknowledgment for segment 1, the size of the congestion window is increased by 1, which means that cwnd is 

now 2. Now two more segments can be sent. When each acknowledgment is received, the size of the window is 

increased by 1 MSS. When all seven segments are acknowledged, cwnd = 8. 

 If we look at the size of cwnd in terms of rounds (acknowledgment of the wholewindow of segments), we find that 

the rate is exponential as shown below: 

 

 

 

 

 We need to mention that if there is delayed ACKs, the increase in the size of the window is less than power of 2. 

 Slow start cannot continue indefinitely. There must be a threshold to stop this phase. The sender keeps track of a 

variable named ssthresh (slow-start threshold).  

 When the size of window in bytes reaches this threshold, slow start stops and the next phase starts. In most 

implementations the value of ssthresh is 65,535 bytes. 

 In the slow-start algorithm, the size of the congestion window increases exponentially until it reaches a threshold. 

 Slow start algorithm is as follows 

If   cwnd <= ssthresh then  

 Each time an Ack is received:  

 cwnd = cwnd + MSS  

else   /*  cwnd >  ssthresh  */ 
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  Each time an Ack is received : 

 cwnd = cwnd + MSS. MSS / cwnd  

endif 

Congestion Avoidance  

 Additive Increase If we start with the slow-start algorithm, the size of the congestion window increases 

exponentially.  

 To avoid congestion before it happens, one must slow down this exponential growth. TCP defines another 

algorithm called congestion avoidance, which undergoes an additive increase instead of an exponential one.  

 When the size of the congestion window reaches the slow-start threshold, the slow-start phase stops and the 

additive phase begins. In this algorithm, each time the whole window of segments is acknowledged (one round), 

the size of the congestion window is increased by 1.  

 To show the idea, we apply this algorithm to the same scenario as slow start, although we will see that the 

congestion avoidance algorithm usually starts when the size of the window is much greater than 1.  

 Figure 4.35 shows the idea. 

 In this case, after the sender has received acknowledgments for a complete window size of segments, the size of 

the window is increased by one segment. 

 If we look at the size of cwnd in terms of rounds, we find that the rate is additive as shown below: 
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 In the congestion avoidance algorithm, the size of the congestion window increases additively until congestion is 

detected. 

Congestion Detection 

 Multiplicative Decrease If congestion occurs, the congestion window size must be decreased. The only way the 

sender can guess that congestion has occurred is by the need to retransmit a segment.  

 Retransmission can occur in one of two cases: when a timer times out or when three ACKs are received. In both 

cases, the size of the threshold is dropped to one-half, a multiplicative decrease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TCP implementations have two reactions: 

1.  If a time-out occurs, there is a stronger possibility of congestion; a segment has probably been dropped in the 

network, and there is no news about the sent segments.In this case TCP reacts strongly: 

a) It sets the value of the threshold to one-half of the current window size. 

b) It sets cwnd to the size of one segment. 

c) It starts the slow-start phase again. 

2. If three ACKs are received, there is a weaker possibility of congestion; a segment may have been dropped, but 

some segments after that may have arrived safely since three ACKs are received. This is called fast transmission 

and fast recovery. In this case, TCP has a weaker reaction: 

a) It sets the value of the threshold to one-half of the current window size. 

b) It sets cwnd to the value of the threshold (some implementations add three segment sizes to the threshold). 

c) It starts the congestion avoidance phase. 

 An implementations reacts to congestion detection in one of the following ways: 

o If detection is by time-out, a new slow-start phase starts. 

o If detection is by three ACKs, a new congestion avoidance phase starts. 
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 We give an example in Figure 4.42. We assume that the maximum window size is 32 segments. The threshold is 

set to 16 segments (one-half of the maximum window size).  

 In the slow-start phase the window size starts from 1 and grows exponentially until it reaches the threshold. After 

it reaches the threshold, the congestion avoidance (additive increase) procedure allows the window size to 

increase linearly until a timeout occurs or the maximum window size is reached.  

 In Figure 4.37, the time-out occurs when the window size is 20. At this moment, the multiplicative decrease 

procedure takes over and reduces the threshold to one-half of the previous window size.  

 The previous window size was 20 when the time-out happened so the new threshold is now 10. 

 TCP moves to slow start again 

and starts with a window size of 

1, and TCP moves to additive 

increase when the new threshold 

is reached.  

 When the window size is 12, a 

three-ACKs event happens. The 

multiplicative decrease procedure 

takes over again. The threshold is 

set to 6 and TCP goes to the 

additive increase phase this time. 

It remains in this phase until another time-out or another three ACKs happen. 

2. Congestion Control in Frame Relay 

 Congestion in a Frame Relay network decreases throughput and increases delay. A high throughput and low delay 

are the main goals of the Frame Relay protocol.  

 Frame Relay does not have flow control. In addition, Frame Relay allows the user to transmit bursty data. This 

means that a Frame Relay network has really congested with traffic, thus requiring congestion control. 

Congestion Avoidance 

 For congestion avoidance, the Frame Relay protocol uses 2 bits in the frame to explicitly warn the source and the 

destination of the presence of congestion. 

BECN The backward explicit congestion notification (BECN)  

 Bit warns the sender of congestion in the network. There are two methods: The switch can use response frames 
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from the receiver (full-duplex mode), or else the switch can use a predefined connection (DLCI =1023) to send 

special frames for this specific purpose.  

 The sender can respond to this warning by simply reducing the data rate. Figure 4.44 shows the use of BECN. 

FECN The forward explicit congestion notification (FECN)  

 Bit is used to warn the receiver of congestion in the network. It might appear that the receiver cannot do anything 

to relieve the congestion.  

 The Frame Relay protocol assumes that the sender and receiver are communicating with each other and are using 

some type of flow control at a higher level.  

 For example, if there is an acknowledgment mechanism at this higher level, the receiver can delay the 

acknowledgment, thus forcing the sender to slow down. Figure 4.45 shows the use of FECN. 

 When two endpoints are communicating using a Frame Relay network, four situations may occur with regard to 

congestion. Figure 4.46 shows these four situations and the values of FECN and BECN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.7. Congestion avoidance (DECbit, RED)  

4.3.7.1. DECbit 

 The idea here is to more evenly split the responsibility for congestion control between the routers and the end 

nodes.  

 Each router monitors the load it is experiencing and explicitly notifies the end nodes when congestion is about to 

occur.  

 This notification is implemented by setting a binary congestion bit in the packets that flow through the router, 

hence the name DECbit.  
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 The destination host then copies this congestion bit into the ACK it sends back to the source. Finally, the source 

adjusts its sending rate so as to avoid congestion.  

 The following discussion describes the algorithm in more detail, starting with what happens in the router. 

 A single congestion bit is added to the packet header.  

 A router sets this bit in a packet if its average queue length is greater than or equal to 1 at the time the packet 

arrives.   

 This average queue length is measured over a time interval that spans the last busy+idle cycle, plus the current 

busy cycle. (The router is busy when it is transmitting and idle when it is not.)  

 Figure 4.47 shows the queue length at a router as a function of time.  

 The router calculates the area under the curve and divides this value by the time interval to compute the 

average queue length.  

 Using a queue length of 1 as the trigger 

for setting the congestion bit is a trade-off 

between significant queuing (and hence 

higher throughput) and increased idle time 

(and hence lower delay). In other words, a 

queue length of 1 seems to optimize the 

power function. 

 The source maintains a congestion 

window, just as in TCP, and watches to 

 

worth of packets resulted in the bit being set.  

 If less than 50% of the packets had the bit set, then the source increases its congestion window by one packet. 

 congestion bit set, then the source decreases its 

congestion window to 0.875 times the previous value.  

 The value 50% was chosen as the threshold based on analysis that showed it to correspond to the peak of the 

power  additive increase/multiplicative 

decrease makes the mechanism stable. 

4.3.7.2. Random Early Detection (RED) 

 Each router is programmed to monitor its own queue length and, when it detects that congestion is imminent, to 

notify the source to adjust its congestion window.  

 RED, invented by Sally Floyd and Van Jacobson in the early 1990s, differs from the DECbit scheme in two major 

ways. 

 The first is that rather than explicitly sending a congestion notification message to the source, RED is most 

commonly implemented such that it implicitly notifies the source of congestion by dropping one of its packets.  

o The source is, therefore, effectively notified by the subsequent timeout or 

part of the RED acronym suggests, the gateway drops the packet earlier than it would have to, so as to 

notify thes source that it should decrease its congestion window sooner than it would normally have.  
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o In other words, the router drops a few packets before it has exhausted its buffer space completely, so as to 

cause the source to slow down, with the hope that this will mean it does not have to drop lots of packets 

later on.  

 The second difference between RED and DECbit is in the details ofhow RED decides when to drop a packet 

and what packet it decides to drop.  

- To understand the basic idea, consider a simple FIFO queue.  

- Rather than wait for the queue to become completely full and then be forced to drop each arriving packet  we 

could decide to drop each arriving packet with some drop probability whenever the queue length exceeds 

some drop level. This idea is called early random drop.  

 The RED algorithm defines the details of how to monitor the queue length and when to drop a packet. 

 Implementations are close to the algorithm that follows. 

 First, RED computes an average queue length using a weighted running average similar to the one used in the 

original TCP timeout computation. That is, AvgLen is computed as 

AvgLen = (1 Weight)×AvgLen+Weight×SampleLen 

- where 0 < Weight < 1 and SampleLen is the length 

of the queue  

 The queue length is measured every time a 

new packet arrives at the gateway. 

 In hardware, it might be calculated at some 

fixed sampling interval. The reason for using 

an average queue length rather than an 

instantaneous one is that it more accurately 

captures the notion of congestion. 

 If a queue is spending most of its time empty, 

that the router is congested and to tell the hosts to slow down.  

 Thus, the weighted running average calculation tries to detect long-lived congestion, as indicated in the 

right-hand portion of Figure 4.48, by filtering out short-term changes in the queue length.  

 Second, RED has two queue length thresholds that trigger certain activity: MinThreshold and MaxThreshold. 

When a packet arrives at the gateway, RED compares the current AvgLen with these two thresholds, 

according to the following rules: 

if AvgLen < MinThreshold 

!queue the packet 

if MinThreshold < AvgLen < MaxThreshold 

!calculate probability P 

!drop the arriving packet with probability P 

if MaxThreshold  AvgLen 

!drop the arriving packet 
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 If the average queue length is smaller than the lower threshold, no action is taken, and if the average 

queue length is larger than the upper threshold, then the packet is always dropped. 

 If the average queue length is between the two thresholds, then the newly arriving packet is dropped with 

some probability P.  

 This situation is depicted in Figure 4.49.  

 The approximate relationship between P and AvgLen is shown in Figure 4.50. 

 

 

 

 

 

 

 

 

 

 The probability of drop increases slowly when AvgLen is between the two thresholds, reaching MaxP at 

the upper threshold, at which point it jumps to unity.  

 The rationale behind this is that, if AvgLen reaches the upper threshold, then the gentle approach 

(dropping a few packets) is not working and drastic measures are called for: dropping all arriving packets.  

 Although Figure 6.50 shows the probability of drop as a function only of AvgLen, the situation is actually 

a little more complicated.  

- P is a function of both AvgLen and how long it has been since the last packet was dropped. Specifically, it is 

computed as follows: 

TempP = 

MaxP×(AvgLen MinThreshold)/(MaxThreshold MinThreshold) 

P = TempP/(1 count×TempP) 

- TempP is the variable that is plotted on the y-axis in Figure 4.50,  

- countkeeps track of how many newly arriving packets have been queued (not dropped) 

- AvgLen has been between the two thresholds.  

- P increases slowly as count increases, thereby making a drop increasingly likely as the time since the last drop 

increases.  

 As an example, suppose that we set MaxP to 0.02 and count is initialized to zero. If the average queue length were 

halfway between the two thresholds, then TempP, and the initial value of P, would be half ofMaxP, or 0.01. An 

arriving packet, of course, has a 99 in 100 chance of getting into the queue at this point. With each successive 

packet that is not dropped, P slowly increases, and by the time 50 packets have arrived without a drop, P would 

have doubled to 0.02. In the unlikely event that 99 packets arrived without loss, P reaches 1, guaranteeing that the 

next packet is dropped.  

 If RED drops a small percentage of packets when AvgLen exceeds MinThreshold, this will cause a few TCP 

connections to reduce their window sizes, which in turn will reduce the rate at which packets arrive at the router.  
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 All going well, AvgLen will then decrease and congestion is avoided.  

 The queue length can be kept short, while throughput remains high since few packets are dropped. 

 One of the goals of RED is to prevent tail drop behavior if possible. 

 Consider the setting of the two thresholds, MinThreshold and Max-Threshold. If the traffic is fairly bursty, then 

MinThreshold should be sufficiently large to allowthe link utilization to be maintained at an acceptably high level. 

Also, the difference between the two thresholds should be larger than the typical increase in the calculated average 

queue length in one RTT.  

 Setting MaxThreshold to twice MinThreshold seems to be a reasonable rule of thumb given the traffic mix on 

. 

4.4. QoS  

Flow Characteristics 

Four types of characteristics are attributed to a flow: reliability, delay, jitter, and bandwidth, as shown in Figure 4.51. 

Reliability 

 Reliability is a characteristic that a flow needs. Lack of reliability means losing a packet or acknowledgment, 

which entails retransmission.  

 For example, it is more important that electronic mail, file transfer, and Internet access have reliable transmissions 

than telephony or audio conferencing. 

 

 

 

 

 

Delay 

 Source-to-destination delay is another flow characteristic. Again applications can tolerate delay in different 

degrees.  

 Applications: Telephony, audio conferencing, video conferencing, and remote log-in need minimum delay, while 

delay in file transfer or e-mail is less important. 

Jitter 

 Jitter is the variation in delay for packets belonging to the same flow. For example, if four packets depart at times 

0, 1, 2, 3 and arrive at 20, 21, 22, 23, all have the same delay, 20 units of time. On the other hand, if the above four 

packets arrive at 21, 23, 21, and 28, they will have different delays: 21,22, 19, and 24. 

 For applications such as audio and video, the first case is completely acceptable; the second case is not. For these 

applications, it does not matter if the packets arrive with a short or long delay as long as the delay is the same for 

all packets. For this application, the second case is not acceptable. 

 High jitter means the difference between delays is large; low jitter means the variation is small.  

Bandwidth 

 Different applications need different bandwidths.  

 In video conferencing we need to send millions of bits per second to refresh a color screen while the total number 

of bits in an e-mail may not reach even a million. 
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Flow Classes 

 Based on the flow characteristics, we can classify flows into groups, with each group having similar levels of 

characteristics. This categorization is not formal or universal; some protocols such as ATM have defined classes. 

TECHNIQUES TO IMPROVE QOS 

four common methods to improve the QOS:  

1. Scheduling 

2. Traffic shaping 

3. Admission control 

4. Resource reservation. 

Scheduling 

 Packets from different flows arrive at a switch or router for processing.  

 A good scheduling technique treats the different flows in a fair and appropriate manner. Several scheduling 

techniques are designed to improve the quality of service.  

1. FIFO queuing 

2. Priority queuing 

3. Weighted fair queuing. 

FIFO Queuing 

 In first-in, first-out (FIFO) queuing, packets wait in a buffer (queue) until the node (router or switch) is ready to 

process them.  

 If the average arrival rate is higher than the average processing rate, the queue will fill up and new packets will be 

discarded.  

 A FIFO queue is familiar to those who have had to wait for a bus at a bus stop.  

 Figure 4.52 shows a conceptual view of a FIFO queue. 

 

 

 

 

 

Priority Queuing 

 In priority queuing, packets are first assigned to a priority class. Each priority class has its own queue. The packets 

in the highest-priority queue are processed first. Packets in the lowest-priority queue are processed last.  

 Figure 4.53 shows priority queuing with two priority levels 
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 A priority queue can provide better QoS than the FIFO queue because higher priority traffic, such as multimedia, 

can reach the destination with less delay.  

 If there is a continuous flow in a high-priority queue, the packets in the lower-priority queues will never have a 

chance to be processed. This is a condition called starvation. 

Weighted Fair Queuing 

 In this technique, the packets are still assigned to different classes and admitted to different queues.  

 The queues are weighted based on the priority of the queues; higher priority means a higher weight.  

 The system processes packets in each queue in a round-robin fashion with the number of packets selected from 

each queue based on the corresponding weight.  

 For example, if the weights are 3, 2, and 1, three packets are processed from the first queue, two from the second 

queue, and one from the third queue. If the system does not impose priority on the classes, all weights can be 

equal. 

 In this way, we have fair queuing with priority. Figure 4.54 shows the technique with three classes. 

Traffic Shaping 

 Traffic shaping is a mechanism to control the amount and the rate of the traffic sent to the network. Two 

techniques can shape traffic: leaky bucket and token bucket. 

Leaky Bucket 

 If a bucket has a small hole at the bottom, the water 

leaks from the bucket at a constant rate  as long as 

there is water in the bucket. The rate at which the water 

leaks does not depend on the rate at which the water is 

input to the bucket unless the bucket is empty.  
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 The input rate can vary, but the output rate remains constant. Similarly, in networking, a technique called leaky 

bucket can smooth out bursty traffic.  

 Bursty chunks are stored in the bucket and sent out at an average rate. Figure 4.55shows a leaky bucket and its 

effects. 

Fixed-rate data 

 In the figure, we assume that the network has committed a bandwidth of 3 Mbps for a host. The use of the leaky 

bucket shapes the input traffic to make it conform to this commitment. 

 In Figure 4.56 the host sends a burst of data at a rate of 12 Mbps for 2 s, for a total of 24 Mbits of data. The host is 

silent for 5 s and then sends data at a rate of 2 Mbps for 3 s, for a total of 6 Mbits of data. In all, the host has sent 

30 Mbits of data in 10s.  

 

 

 

 

 

 

 

 

 

 The leaky bucket smooths the traffic by sending out data at a rate of 3 Mbps during the same 10 s.  

 Without the leaky bucket, the beginning burst may have hurt the network by consuming more bandwidth than is 

set aside for this host.  

 A simple leaky bucket implementation is shown in Figure 4.47. A FIFO queue holds the packets. If the traffic 

consists of fixed-size packets (e.g., cells in ATM networks), the process removes a fixed number of packets from 

the queue at each tick of the clock.  

 If the traffic consists of variable-length packets, the fixed output rate must be based on the number of bytes or bits. 

 The following is an algorithm for variable-length packets: 

1. Initialize a counter to n at the tick of the clock. 

2. If n is greater than the size of the 

packet, send the packet and 

decrement the counter by the packet 

size. Repeat this step until n is 

smaller than the packet size. 

3. Reset the counter and go to step 1. 

 A leaky bucket algorithm shapes bursty 

traffic into fixed-rate traffic by averaging 

the data rate. It may drop the packets if the 

bucket is full. 
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Token Bucket 

 The leaky bucket is very restrictive. It does not credit an idle host. For example, if a host is not sending for a while, 

its bucket becomes empty.  

 If the host has bursty data, the leaky bucket allows only an average rate. The time when the host was idle is not 

taken into account. On the other hand, the token bucket algorithm allows idle hosts to accumulate credit for the 

future in the form of tokens. For each tick of the clock, the system sends n tokens to the bucket.  

 The system removes one token for every cell (or byte) of data sent. For example, if n is 100 and the host is idle for 

100 ticks, the bucket collects 10,000 tokens. Now the host can consume all these tokens in one tick with 10,000 

cells, or the host takes 1000 ticks with 10 cells per tick. In other words, the host can send bursty data as long as the 

bucket is not empty. Figure 4.57 shows the idea. 

 The token bucket can easily be implemented with a counter. The token is initialized to zero. Each time a token is 

added, the counter is incremented by 1.  

 Each time a unit of data is sent, the counter is decremented by 1. When the counter is zero, the host cannot send 

data. 

 The token bucket allows bursty traffic at a regulated maximum rate. 

Combining Token Bucket and Leaky Bucket 

 The leaky bucket is applied after the token bucket; the rate of the leaky bucket needs to be higher than the rate of 

tokens dropped in the bucket. 

Resource Reservation 

 A flow of data needs resources such as a buffer, bandwidth, CPU time, and so on. The quality of service is 

improved if these resources are reserved beforehand.  

 One QoS model called Integrated Services, which depends heavily on resource reservation to improve the quality 

of service. 

Admission Control 

 Admission control refers to the mechanism used by a router, or a switch, to accept or reject a flow based on 

predefined parameters called flow specifications.  

 Before a router accepts a flow for processing, it checks the flow specifications to see if its capacity (in terms of 

bandwidth, buffer size, CPU speed, etc.) and its previous commitments to other flows can handle the new flow. 

4.5. Application requirements 

 There are two types of applications  

i. Real-time applications  

ii. Non-real-time applications. (elastic applications) 

 These applications can work without guarantees of timely delivery of data.  

Real-Time Audio Example 

 As a concrete example of a real-time application, consider an audio application similar to the one illustrated in 

Figure 4.58.  

 

 



CN  PJCE 

242 
 

 

 

 

 Data is generated by collecting samples from a microphone and digitizing them using an analog-to-digital (A->D) 

converter.  

 The digital samples are placed in packets, which are transmitted across the network and received at the other end.  

 At the receiving host, the data must be played back at some appropriate rate.  

 For example, if the voice sampleswere collected at a rate of one per 125 

rate.  

 Each sample as having a particular playback time: the point in time at which it is needed in the receiving host.  

 In the voice example, g sample.  

 If data arrives after its appropriate playback time, either because it was delayed in the network or because it was 

dropped and subsequently retransmitted, it is essentially useless. It is the complete worthlessness of late data that 

characterizes real-time applications.  

 In elastic applications, it might be nice if data turns up on time, but we can still use it when it does not. 

 One way to make our voice application work would be to make sure that all samples take exactly the same amount 

of time to traverse the  they will appear at the 

receiver at the same rate, ready to be played back. 

 Packets encounter queues in switches or routers, and the lengths of these queues vary with time, meaning that the 

delays tend to vary with time and, as a consequence, are potentially different for each packet in the audio stream.  

 The way to deal with this at the receiver end is to buffer up some amount of data in reserve, thereby always 

providing a store of packets waiting to be played back at the right time.  

 If a packet is delayed a short time, it goes in the buffer until its playback time arrives. If it gets delayed a long 

s buffer before being played back. Thus, we 

have effectively added a constant offset to the playback time of all packets as a form of insurance. This offset the 

playback point.  

 The only time we run into trouble is if packets get delayed in the network for such a long time that they arrive after 

their playback time, causing the playback 

buffer to be drained. 

 The operation of a playback buffer is 

illustrated in Figure 4.59 

- The left hand diagonal line shows 

packets being generated at a steady 

rate.  

- The wavy line shows when the 

packets arrive, some variable amount 

of time after theywere sent, 

depending on what they encountered 
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in the network. 

- The right-hand diagonal line shows the packets being played back at a steady rate, after sitting in the playback 

buffer for some period of time.  

- The playback line is far enough to the right in time, the variation in network delay is never noticed by the 

application. 

- If we move the playback line a little to the left, then some packets will begin to arrive too late to be useful. 

 if the time between when you speak and when your listener hears you is more than 300 ms. 

 If data arrives early, we buffer it untilits correct playback time.  

 If it arrives late, we have no use for it and must discard it. 

 Figure 4.60 shows the one-way delay measured over a certain path across the Internet over the course of one 

particular day.  

- While the exact numbers would vary depending on the path and the date, the key factor here is the variability 

of the delay, which is consistently found on almost any path at any time.  

- As denoted by the cumulative percentages given across the top of the graph, 97% of the packets in this case 

had a latency of 100 ms or less. This means that if our example audio application were to set the playback  

point at 100 ms, then, on average, 3 out of every 100 packets would arrive too late to be of any use. 

 

 

 

 

 

 

 

 

 

 

 Taxonomy of Real-Time Applications 

 The following taxonomy owes much to the work of Clark, Braden, Shenker, and Zhang, whose papers on this 

subject  

 The taxonomy of applications is summarized in Figure 4.61. 

 The first characteristic by which we can categorize applications is their 

might occur because a packet arrived too late to be played back as well as arising from the usual causes in the 

network.  

- On the one hand, one lost audio sample can be interpolated from the surrounding samples with relatively little 

effect on the perceived audio quality. It is only as more and more samples are lost that quality declines to the 

point that the speech becomes incomprehensible. 

- On the other hand, a robot control program is likely to be an example of a real-time application that cannot 

tolerate loss losing the packet that contains the command instructing the robot arm to stop is unacceptable. 
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- Thus, we can categorize real-time applications as tolerant or intolerant depending on whether they can 

tolerate occasional loss.  

 A second way to characterize real-time applications is by their adaptability. 

- For example, an audio application might be able to adapt to the amount of delay that packets experience as 

they traverse the network.  

- If we notice that packets are almost always arriving within 300 ms of being sent, then we can set our playback 

point accordingly, buffering any packets that arrive in less than 300 ms.  

- Suppose that we subsequently observe that all packets are arriving within 100 ms of being sent.  

- If we moved up our playback point to 100 ms, then the users of the application would probably perceive an 

improvement.  

- The process of shifting the playback point would actually require us to play out samples at an increased rate 

for some period of time.  

- With a voice application, this can be done in a way that is barely perceptible, simply by shortening the 

silences between words. Thus, playback point adjustment is fairly easy in this case, and it has been effectively 

implemented for several voice applications such as the audio teleconferencing program known as vat.  

 

 

 

 

 

 

 

 

 

 Observe that if we set our playback point on the assumption that all packets will arrive within 100 ms and then 

find that some packets are arriving slightly late, we will have to drop them, whereas we would not have had to 

drop them if we had left the playback point at 300 ms.  

 We call applications that can adjust their playback point delay-adaptive applications.  

 Another class of adaptive applications is rate adap-tive.  

 For example, many video coding algorithms can trade off bit rate versus quality. Thus, if we find that the network 

can support a certain bandwidth, we can set our coding parameters accordingly.  

 If more bandwidth becomes available later, we can change parameters to increase the quality. 

Approaches to QoS Support 

 Thesecan be divided into two broad categories: 

1. Fine-grained approaches, which provide QoS to individual applications or flows.  

- Find Integrated Services, a QoS architecture developed in the IETF and often associated with the Resource 

 

2. Coarse-grained approaches, which provide QoS to large classes of data or aggregated traffic 

- Differentiated Services, which is probably the most widely deployed QoS mechanism at the time of writing.  


