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UNIT 2 
8086 SYSTEM BUS STRUCTURE 

 
8086 signals  Basic configurations  System bus timing System design using 8086  IO 
programming  Introduction to Multiprogramming  System Bus Structure  Multiprocessor 
configurations  Coprocessor, Closely coupled and loosely Coupled configurations  
Introduction to advanced processors. 
 
2.1 8086 SIGNALS 

Fig 2.1: 8086 pin diagram        8088 pin diagram 

Pin(s) Symbol In/Out 
3-State 

Description 

1 GND  Ground 
2-16 AD14-AD0 I/O-3 Outputs address during the first part of the bus cycle 

and inputs or outputs data during the remaining part 
of the bus cycle. 

17 NMI I Nonmaskable interrupt request - Positive-going edge 
triggered. 

18 INTR I Maskable interrupt request  level triggered 
19 CLK I Clock - 33% duty cycle, maximum rate depends on 

CPU model
5 MHz for 8086
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8 MHz for 8086-2 
10 MHz for 8086-1 

20 GND  Ground 
21 RESET I Terminates activity, clears PSW, IP, DS, SS, ES, and 

the instruction queue, and sets CS to FFFF. 
Processing begins at FFFF0 when signal is dropped. 
Signal must be 1 for atleast 4 clock cycles. 

22 READY I Acknowledgment from memory or I/O interface that 
CPU can complete the current bus cycle. 

23  I Used in conjunction with the WAIT instruction in 
multiprocessing environments. A WAIT instruction 
will cause the CPU to idle, except for processing 
interrupts, until a 0 is applied to this pin 

24-31 - - Definition depends on mode 
32  0-3 Indicates a memory or I/O read is to be performed. 
33  I CPU is in minimum mode when strapped to +5 V and 

in maximum mode when grounded. 
34  0-3 If 0 during first part of bus cycle this pin indicates that 

at least one byte of the current transfer is to be made 
on pins AD15-AD8; if 1 the transfer is made on AD7-
AD0. Status S7 is output during the latter part of bus 
cycle, but, presently, S7 has not been assigned a 
meaning. 

35-38 A19/S6 -
A16/S3 

0-3 During the first part of the bus cycle the upper 4 bits 
of the address are output and during the remainder of 
the bus cycle status is output. S3 and S4 indicate the 
segment register being used as follows: 
S4       S3          Register 
0          0                ES 
0          1                SS 
1          0                CS or none 
1          1                DS 
S5 gives the current setting of IF. 
S6 is always 0 

39 AD15 I/O-3 Same as AD14-AD0 
40 VCC  Supply voltage +5 V ± 10% 

 
2.2 BASIC CONFIGURATIONS 

In order to adapt to as many situations as possible both the 8086 and 8088 have been 
given two modes of operation 

1. Minimum mode and 
2. Maximum mode. 
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The minimum mode is used for a small system with a single processor, a system in 
which the 8086/8088 generates all the necessary bus control signals directly (thereby 
minimizing the required bus control logic).The maximum mode is for medium-size to large 
systems, which often include two or more processors. In the maximum mode, the 8086/8088 
encodes the basic bus control signals into 3 status bits, and uses the remaining control pins to 
provide the additional information that is needed to support a multiprocessor configuration.  

Pin 33 (MN/ ) determines the configuration option. When it is strapped to ground 
the processor is to be used in a maximum mode configuration and when it is strapped to + 5 V it 
is to be operated in its minimum mode. Both processors multiplex the address and data signals 
and both have 20 address pins with address and status signals being multiplexed on the 4 most 
significant address pins. However, because the 8088 can only transfer 8 bits of data at a time, 
only eight of its pins are used for data, as opposed to 16 for the 8086. Except for pins 28 and 34 
the two processors have the same control pin .definitions. Pin 28 differs only in the minimum 
mode. For the 8088 this minimum mode signal is inverted from that of the 8086, so that the 
8088 is compatible with the Intel 8085 microcomputer chip. 

 On the 8086, pin 34  designates whether or not at least 1 byte of a transfer is to be 
made on AD15 through AD8. A 0 on this pin indicates that the more significant data lines are to 
be used; otherwise, only AD7 through ADO are used. Together the  and A0 signals 
indicate to the interfaces connected to the bus how the data are to appear on the bus. The four 
possible combinations are defined as follows: 

where 0 is low and 1 is high. 
Because, on the 8088, only AD7-AD0 can transfer data, this pin is not needed to 

indicate the upper or lower half of the data bus and is free to provide status information.  
Pins 1 and 20 are grounded.  
Pins 2 through 16 and 39 (AD15-AD0) hold the address needed for the transfer during the first 
part of the bus cycle, and are free to transfer the data during the remaining part of the cycle. 
Pins 17 and 18 (NMI and INTR) are for interrupt requests. 
Pin 19 (CLK) is for supplying the clock signal that synchronizes the activity within the CPU. 

Pin 21 (RESET) is for inputting a system reset signal. Most systems include a line that 
goes to all system components and a pulse is automatically sent over this line when the system 

Operation  A0 Data pins used 

Write/read a word at an even address 0 0 AD15-AD0 

Write/read a byte at an even address 1 0 AD7-AD0 

Write/read a word at an odd address 0 1 AD15-AD8 

Write/read a byte at an odd address 0 1 
AD15-AD8 (First bus cycle: puts the 
least significant data byte on AD15-
AD8) 

 
1 0 

AD7-AD0 (Next bus cycle: puts the 
most significant data byte on AD7-
AD0) 
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is turned on, or the reset pulse can be manually generated by a switch that allows the operator to 
reinitialize the system. A 1 on the reset line causes the components to go to their "turn on" state. 
For the processor this state is having the PSW, IP, DS, SS, ES, and instruction queue cleared 
and CS set to FFFF. With (IP) = 0000 and (CS) = FFFF the processor will begin executing at 
FFFF0. Normally, this location would be in a read-only section of memory and would contain a 
JMP instruction to a program for initializing the system and loading the application software or 
operating system. Such a program is referred to as a bootstrap loader. 

Pin 22 (READY) is for inputting an acknowledge from a memory or I/O interface that 
input data will be put on the data bus or output data will be accepted from the data bus within 
the next clock cycle. In either case, the CPU and its bus control logic can complete the current 
bus cycle after the next clock cycle. Pin 23 ( ) is used in conjunction with the WAIT 
instruction and is employed primarily in multiprocessing situations. Pins 24 through 31 are 
mode dependent. Pin 32 ( ) indicates that an input operation is to be performed and, in 
minimum mode, is used along with pin 28, which distinguishes a memory transfer from an I/O 
transfer, and pin 29, which indicates an output operation, to determine the type of transfer. 

During the first part of a bus cycle pins 35-38 (AD19/S6-AD16/S3) output the 4 high-
order bits of the address, and during the remaining part of the cycle they output status 
information. Status bits S3 and S4 indicate the segment register that is being used to generate 
the address and bit S5 reflects the contents of the IF flag. S6 is always held at 0 and indicates 
that an 8086/8088 is controlling the system bus. 

Pin 40 (VCC) receives the supply voltage, which must be + 5 V ± 10%. Systems based 
on an 8086 or 8088 are ordinarily designed so that only a TTL compatible + 5-V supply voltage 
and ground are needed, thus simplifying the design of the power supply. 

 
2.3  MINIMUM MODE 
2.3.1  Minimum Mode signals 

A processor is in minimum mode when its pin is strapped to + 5 V. The 
definitions for pins 24 through 31 for the minimum mode are given below: 

Pin  Symbol In/Out 
3-state 

Description 

24  O-3 
Indicates recognition of an interrupt request. Consists of two 
negative going pulses in two consecutive bus cycles. 

25 ALE O 
Outputs a pulse at the beginning of the bus cycle and is to 
indicate an address is available on the address pins. 

26  O-3 
Output during the latter portion of the bus cycle and is to inform 
the transceivers that the CPU is ready to send or receive data. 

27  O-3 
Indicates to the set of transceivers whether they are to transmit 
(1) or receive (0) data. 

28  O-3 
Distinguishes a memory transfer from an I/O transfer. For a 
memory transfer it is . 

29 O-3
When 0, it indicates a write operation is being performed. It is 
used in conjunction with pins 28 ( ) and 32 ( ) to specify 
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the type of transfer 

30 HLDA O 
Outputs a bus grant to a requesting master. Pins with tristate 
gates are put in high impedance state while HLDA=1. 

31 HOLD I 
Receives bus requests from bus masters. The8086/8088 will not 
gain control of the bus until this signal is dropped. 

 
2.3.2  Minimum mode system configuration 

A typical minimum mode configuration is shown in Fig 2.2 

Fig 2.2: Minimum mode system
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2.3.3  Address latch (8282): 
The address must be latched since it is available only during the first part of the bus 

cycle. To signal that the address is ready to be latched a 1 is put on pin 25, the address latch 
enable (ALE) pin. Typically, the latching is accomplished using Intel 8282s, as shown in Fig 
2.3. 

Because 8282 is an 8-bit latch, two of them are needed for a 16-bit address and three 
are needed if a full 20-bit address is used. In an 8086 system,  would also have to be 
latched. A signal on the STB pin latches the bits applied to the input data lines DI7-DI0. 
Therefore, STB is connected to the 8086's ALE pin and DI7-DI0 are attached to eight of the 
address lines. An active low signal on the  enables the latch's outputs DO7-DO0, and a 1 at 
this pin forces the outputs into their high-impedance state.  

 
DI  Data input line ; DO  Data output line 

Fig 2.3: Application of 8282 latches. 
2.3.4 Transceiver (8286): 

The transceiver (driver/receiver) 8286 contains 16 tristate elements, eight receivers, 
and eight drivers. Therefore, only one 8286 is needed to service all of the data lines for an 8088, 
but two are required in an 8086 system. 
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A0 to A7  local bus: B0 to B7  system bus 

(a) 8088 connections 

 
(b) Internal logic 

Fig 2.4: Application and internal logic of an 8286 
The 8286 is symmetric with respect to its two sets of data pins, either the pins A7-A0 

can be the inputs and B7-B0 the outputs, or vice versa. The output enable ( ) pin determines 
whether or not data are allowed to pass through the 8286 and the transmit (T) pin controls the 
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direction of the data flow. When  = 1, data are not transmitted through the 8286 in either 
direction. If it is 0, then T = 1 causes A7-A0 to be the inputs and T = 0 results in B7-B0 being 
the inputs. In an 8086/8088-based system the  pin would be connected to the  pin, which 
is active low whenever the processor is performing an I/O operation. The A7-A0 pins are 
connected to the appropriate address/data lines and the T pin is tied to the processor's  pin. 
Thus, when the processor is outputting the data flow is from A7-A0 to B7-B0, and when it is 
inputting the flow is in the other direction. The processor floats the  and   pins in 
response to a bus request on the HOLD pin.  
2.3.5  Clock Generator (8284): 

 
Fig 2.5: Typical 8284 A clock connection 

In addition to supplying a train of pulses at a constant frequency it synchronizes ready 
(RDY) signals, which indicate an interface is ready to complete a transfer, and reset ( ) 
signals, which initialize the system, with the clock pulses. Although these two signals may be 
sent at any time, the 8284A will not reflect them in its READY and RESET outputs until the 
trailing edge of the clock pulse in which they are received. 

 The frequency source applied to the 8284A may be from a pulse generator that is 
connected to the EFI pin or an oscillator that is connected across Xl and X2. If the input to is 
1, then the EFI input determines the frequency; otherwise, it is the oscillator input. In either 
case the clock output CLK is one-third of the input frequency. 

In a minimum system the control lines do not need to be passed through transceivers, 
but can be used directly. The ,  and  lines specify the type of transfer according to 
the following table:
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0 0 1 I/O read 

0 1 0 I/O write 

1 0 1 Memory read 

1 1 0 Memory write 

where 0 is low and 1 is high. 
The interrupt acknowledge ( ) signal consists of two negative pulses output during 

two consecutive bus cycles. The first pulse informs the interface that its request has been 
recognized, and upon receipt of the second pulse, the interface is to send the interrupt type to 
the processor over the data bus. 

 
2.4 MAXIMUM MODE 
2.4.1 Maximum mode  signals:   
A processor is in maximum mode when its pin is grounded. The maximum mode 
definitions of pins 24 through 31 are given below: 

Pin Symbol In/Out 3-state Description 

24,25 QS1, QS0 O Reflects the status of the instruction queue. This 
status indicates the activity in the queue during the 
previous clock cycle 

26, 
27,28 

 O-3 Indicates the type of transfer to take place during 
the current bus cycle: 

 
0       0       0   Interrupt acknowledge  
0       0       1   Read I/O port 
0       1       0   Write I/O port  
0       1       1   Halt 
1       0       0   Instruction fetch 
1       0       1   Read memory 
1       1       0   Write memory 
1       1       1   Inactive - passive 
(1 represents high and 0 represents low.)The status 
becomes active prior to the beginning of a bus 
cycle and returns to inactive during the later part 
of the cycle. 

29  O-3 Indicates the bus is not to be relinquished to other 
potential bus masters. It is initiated by a LOCK 
instruction prefix and is maintained until the end 
of the next instruction. It is also active during and 
between the two  pulses. 

30 / I/O For inputting bus requests and outputting bus 
grants
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31 /  I/O Same as / except that a request on

/ has higher priority. 

2.4.2 Maximum mode System Configuration: 
A  typical maximum mode configuration is shown in Fig. 2.6. It is clear from Fig. 

2.6that the main difference between minimum and maximum mode configurations is the need 
for additional circuitry to translate the control signals.  

 
Fig 2.6: Typical maximum mode configuration 

This circuitry is for converting the status bits  into the I/O and memory 
transfer signals needed to direct data transfers, and for controlling the 8282 latches and 8286 
transceivers. It is normally implemented with an Intel 8288 bus controller. Also included in the 
system is an interrupt priority management device; however, its presence is optional. 

The status bits specify the type of transfer that is to be carried out and when 

used with an 8288 bus controller they obviate the need for the  (or , , , 

ALE, , and signals that are output over pins 24 through 29 when the processor is 
operating in minimum mode. 
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Except for the case =0 indicates a transfer between an I/O interface 

and the CPU and  =1 implies a memory transfer. The  bit specifies whether an input or 
output is to be performed. From the status the 8288 is able to originate the address latch enable 
signal to the 8282s, the enable and direction signals to the 8286 transceivers, and the interrupt 
acknowledge signal to the interrupt controller. 

The QS0 and QS1 pins are to allow the system external to the processor to interrogate 
the status of the processor instruction queue so that it can determine which instruction it is 
currently executing, and the  pin indicates that an instruction with a LOCK prefix is being 
executed and the bus is not to be used by another potential master. These pins are needed only 
in multiprocessor systems and, along with the LOCK prefix. 

The HOLD and HLDA pins become the / and / pins. Both bus requests 
and bus grants can be given through each of these pins. They are exactly the samethat if 
requests are seen on both pins at the same time, then the one on /  is given higher 
priority. A request consists of a negative pulse arriving before the start of the current bus cycle. 
The grant is a negative pulse that is issued at the beginning of the current bus cycle provided 
that: 

1. The previous bus transfer was not the low byte of a word to or from an odd address 
if the CPU is an 8086. For an 8088, regardless of the address alignment, the grant 
signal will not be sent until the second byte of a word reference is accessed. 
2. The first pulse of an interrupt acknowledgment did not occur during the previous 
bus cycle. 
3. An instruction with a LOCK prefix is not being executed.  

If condition 1 or 2 is not met, then the grant will not be given until the next bus cycle, and if 
condition 3 is not met, the grant will wait until the locked instruction is completed. In response 
to the grant the three-state pins are put in their high impedance state and the next bus cycle will 
be given to the requesting master. The processor will be effectively disconnected from the 
system bus until the master sends a second pulse to the processor through the / pin. 
 
2.4.3 Address latch (8282): 

The address must be latched since it is available only during the first part of the bus 
cycle. To signal that the address is ready to be latched a 1 is put on pin 25, the address latch 
enable (ALE) pin. Typically, the latching is accomplished using Intel 8282s, as shown in Fig 
2.7. 

Because 8282 is an 8-bit latch, two of them are needed for a 16-bit address and three 
are needed if a full 20-bit address is used. In an 8086 system,  would also have to be 
latched. A signal on the STB pin latches the bits applied to the input data lines DI7-DI0. 
Therefore, STB is connected to the 8086's ALE pin and DI7-DI0 are attached to eight of the 
address lines. An active low signal on the  enables the latch's outputs DO7-DO0, and a 1 at 
this pin forces the outputs into their high-impedance state.  
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DI  Data input line ; DO  Data output line 

Fig 2.7: Application of 8282 latches. 
 

2.4.4 Transceiver (8286): 
The transceiver (driver/receiver) 8286 contains 16 tristate elements, eight receivers, 

and eight drivers. Therefore, only one 8286 is needed to service all of the data lines for an 8088, 
but two are required in an 8086 system.  

The 8286 is symmetric with respect to its two sets of data pins, either the pins A7-A0 
can be the inputs and B7-B0 the outputs, or vice versa. The output enable ( ) pin determines 
whether or not data are allowed to pass through the 8286 and the transmit (T) pin controls the 
direction of the data flow. When  = 1, data are not transmitted through the 8286 in either 
direction. If it is 0, then T = 1 causes A7-A0 to be the inputs and T = 0 results in B7-B0 being 
the inputs. In an 8086/8088-based system the  pin would be connected to the  pin, which 
is active low whenever the processor is performing an I/O operation. The A7-A0 pins are 
connected to the appropriate address/data lines and the T pin is tied to the processor's  pin. 
Thus, when the processor is outputting the data flow is from A7-A0 to B7-B0, and when it is 
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inputting the flow is in the other direction. The processor floats the  and   pins in 
response to a bus request on the HOLD pin.  

 
A0 to A7  local bus: B0 to B7  system bus 

(a) 8088 connections 

 
(b) Internal logic

Fig 2.8: Application and internal logic of an 8286
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2.4.5 Clock Generator (8284): 

 
Fig 2.9: Typical 8284 A clock connection 

In addition to supplying a train of pulses at a constant frequency it synchronizes ready 
(RDY) signals, which indicate an interface is ready to complete a transfer, and reset ( ) 
signals, which initialize the system, with the clock pulses. Although these two signals may be 
sent at any time, the 8284A will not reflect them in its READY and RESET outputs until the 
trailing edge of the clock pulse in which they are received. 

 The frequency source applied to the 8284A may be from a pulse generator that is 
connected to the EFI pin or an oscillator that is connected across Xl and X2. If the input to is 
1, then the EFI input determines the frequency; otherwise, it is the oscillator input. In either 
case the clock output CLK is one-third of the input frequency. 

In a minimum system the control lines do not need to be passed through transceivers, 
but can be used directly. The ,  and  lines specify the type of transfer according to 
the following table: 

    

0 0 1 I/O read 

0 1 0 I/O write 

1 0 1 Memory read 

1 1 0 Memory write 

where 0 is low and 1 is high. 
The interrupt acknowledge ( ) signal consists of two negative pulses output during 

two consecutive bus cycles. The first pulse informs the interface that its request has been 
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recognized, and upon receipt of the second pulse, the interface is to send the interrupt type to 
the processor over the data bus. 
2.4.6 Bus Controller (8288): 

 
 

 

Fig 2.10: Connections to an 8288 bus controller 
The pins are for receiving the corresponding status bits from the processor. 

The ALE, ,and DEN pins provide the same outputs that are sent by the processor when it 

is in minimum mode (except that DEN is inverted from ). The CLK input permits the bus 
controller activity to be synchronized with that of the processor. The , IOB and CEN pins 

are for multiprocessor systems. In a single-processor system  and IOB are normally 

grounded and a 1 is applied to CEN. The meaning of the  output depends on the 
mode, which is determined by the signal applied to IOB. When IOB is grounded it assumes its 
master cascade enable (MCE) meaning and can be used to control cascaded 8259.  In the event 
that +5 V is connected to IOB, the peripheral data enable ( ) meaning, which is used in 
multiple-bus configurations, is assumed. The remaining pins have the following definitions: 

-Issues the two interrupt acknowledgment pulses to a priority interrupt controller or an 
interrupting device when =0
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 (I/O Read Command)-Instructs an I/O interface to put the data contained in the addressed 
port on the data bus. 

 (I/O Write Command)- Instructs an I/O interface to accept the data on the data bus and 
put the data into the addressed port.  

 (Memory Read Command)-Instructs the memory to put the contents of the addressed 
location on the data bus. 

(Memory Write Command)-Instructs the memory to accept the data on the data bus and 
put the data into the addressed memory location.These signals are active low and are output 
during the middle portion of a bus cycle. Clearly, only one of them will be issued during any 
given bus cycle. 

 (Advanced I/O write command) and  (advanced memory write 

command) pins serve the same purposes as the   and  pins except that they are 
activated one clock pulse sooner. This gives slow interfaces an extra clock cycle to prepare to 
input the data. As with the other 8086 supporting devices, the 8288 requires a +5-V supply 
voltage and has TIL-compatible inputs and outputs.  

 
2.5 SYSTEM BUS TIMING 

The length of a bus cycle in an 8086 system is four clock cycles, denoted T1 through 
T4, plus an indeterminate number of wait state clock cycles, denoted TW. If the bus is to be 
inactive after the completion of a bus cycle, then the gap between successive cycles is filled 
with idle state clock cycles represented by T1. Wait states are inserted between T3 and T4 when 
a memory or I/O interface is not able to respond quickly enough during a transfer. A typical 
succession of bus cycles is given in Fig. 2.11. 

Fig 2.11: Typical sequence of bus cycles 
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2.5.1 Minimum Mode bus timing diagrams 
a) Memory/ IO Read for minimum mode 

 
 

Fig 2.12(a) 8086 minimum mode bus timing diagrams  
In minimum mode MN/  is placed at 5 V level. The following activities take place 

during different clock cycles. 
T1: 

 ALE is pulsed high. 

  is made high/low depending on 8/16 bit read at odd/even address boundary. 

 M/  is made high to indicate memory operation. It remain high during the entire bus 
cycle. 

 DT/  is low and remains low throghout the cycle, to indicate the direction of data 
transfer as memory to the processor. 

 Address is put in the address bus. The falling edge of ALE is used to latch the address 
from the address bus.  

T2: 
 Bus is turned around. 

 goes low as read-control signal. 

 DEN goes high to enable the 8286 transceiver. 

  goes high if it was made low in T1. 

 Status is put on the A16-A19 lines. The activity starts in T2 and continues till T4. 
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T3: 
 DEN goes low. 

 Data is put on lines AD0  AD15 
T4: 

 M/  goes low. 

  goes low. 
 
The I/O read bus cycle will have only one signal that is different, i.e. M/  will go low in 
T1and will become high in T4. 
b) Memory/ IO Write for minimum mode 

 
Fig 2.12 (b) : 8086 minimum mode bus timing diagrams 

The following activities take place during different clock cycles. 
T1: 

 ALE is pulsed high. 

  is made high/low depending on 8/16 bit read at odd/even address boundary. 

 M/  is made high to indicate memory operation. It remain high during the entire bus 
cycle. 

 DT/  is low and remains low throghout the cycle, to indicate the direction of data 
transfer as memory to the processor. 

 Address is put in the address bus. The falling edge of ALE is used to latch the address 
from the address bus.  

DEN goes high to enable the 8286 transceivers.
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T2: 
 goes low as write control signal. 

  goes high if it was made low in T1.  

 Bus is turned around. 

 Status is put on the A16-A19 lines. The activity starts in T2 and continues till T4. 
T3: 

 Data is put on lines AD0  AD15 
T4: 

 M/  goes low. 

  goes low.  

 DT/  goes low. 

 DEN goes low. 
 
The I/O read bus cycle will have only one signal that is different, i.e. M/  will go low in 
T1and will become high in T4. 
c) Interrupt Acknowledgement 

Fig 2.13: Interrupt acknowledgement 
  The timing diagram for an interrupt acknowledge is shown in Fig 2.13. If an interrupt 
request has been recognized during the previous bus cycle and an instruction has just been 
completed, then a negative pulse will be applied to  during the current bus cycle and the 
next bus cycle. Each of these pulses will extend fromT2 to T4. Upon receiving the second pulse, 
the interface accepting the acknowledgment will put the interrupt type on AD7-AD0, which are 
floated the rest of the time during the two bus cycles. The type will be available from T2 to T4· 
d) DMA 

Figure 2.14 shows the timing of a bus request and bus grant in a minimum mode 
system.  
  The HOLD pin is tested at the leading edge of each clock pulse. If a HOLD signal is 
received by the processor before T4 or during a T1 state, then the CPU activates HLDA and the 
succeeding bus cycles will be given to the requesting master until that master drops its request.
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Fig 2.14: Bus request and bus grant timing on a minimum mode system 
The lowered request is detected at the rising edge of the next clock cycle and the 

HLDA signal is dropped at the trailing edge of that clock cycle. While HLDA is 1, all of the 
processor's three-state outputs are put in their high-impedance state. Instructions already in the 
instruction queue will continue to be executed until one of them requires the use of the bus.  
2.5.2 Maximum mode timing diagrams 

The timing diagrams for input and output transfers on a maximum modesystem are 
given in Fig. 2.15. 
a) Memory/ IO Read for maximum mode 

 
Fig 2.15 (a) : Timing diagrams for a maximum mode system. 

 
T1: 

 , ,  are set by 8086 in the beginning of clock cycle. It is decoded by the 8288 
bus controller.

ALE is pulsed high.
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  is made high/low depending on 8/16 bit read at odd/even address boundary. 

 M/  is made high to indicate memory operation. It remain high during the entire bus 
cycle. 

 DT/  is low.  

 Address is put in the address bus.  

 ALE is pulsed low. The falling edge of ALE is used to latch the address from the 
address/data bus.  

T2: 
  goes high if it was made low in T1. 

 DEN goes high to enable the 8286 transceiver. 

 goes low as memory read-control signal. 
T3: 

 Data is put on lines AD0  AD15 

 Status lines , ,  become inactive. 
T4: 

  goes high.  

 DEN goes low  

 DT/  goes high 
b) Memory/ IO Read for maximum mode 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2.15 (b) : Timing diagrams for a maximum mode system. 

T1: 
, , are set by 8086 in the beginning of clock cycle. It is decoded by the 8288 

bus controller.
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 ALE is pulsed high. 

  is made high/low depending on 8/16 bit read at odd/even address boundary. 

 M/  is made high to indicate memory operation. It remain high during the entire bus 
cycle. 

 DT/  is low and remains low throghout the cycle, to indicate the direction of data 
transfer as memory to the processor. 

 Address is put in the address bus. The falling edge of ALE is used to latch the address 
from the address bus.  

 DEN goes high to enable the 8286 transceivers. 
T2: 

  goes high if it was made low in T1. 

 DEN goes high to enable the 8286 transceiver. 
T3: 

  goes low as memory write control signal. 

 Data is put on lines AD0  AD15 

 Status lines , ,  become inactive. 
T4: 

  goes high 

 DEN goes low. 
The write operation can also be performed by the signals  (for memory write) 

and  (for I/O write). The signal  is activated one clock cycle earlier than 

 
c) Interrupt Acknowledgement 
 

 
Fig 2.16: Interrupt acknowledgement 

  
The timing diagram for an interrupt acknowledge is shown in Fig 2.16.  If an interrupt 

request has been recognized during the previous bus cycle and an instruction has just been 
completed, then a negative pulse will be applied to duringthe current bus cycle and the 
next bus cycle. Each of these pulses will extend fromT2 to T4. Upon receiving the second pulse, 
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the interface accepting the acknowledgment will put the interrupt type on AD7-AD0, which are 
floated the rest of the time during the two bus cycles. The type will be available from T2 to T4· 

 
d)DMA 

Bus requests and grants are handled differently, however, and the timing on 
an / pin is shown in Fig. 2.17.  

 
Fig 2.17: Timing for maximum mode bus requests and grants 

A request/grant/release is accomplished by a sequence of three pulses. The / pins 
are examined at the rising edge of each clock pulse and if a request is detected (and the 
necessary conditions discussed previously are met), the processor will apply a grant pulse to the 

/  immediately following the next T4 or T1 state. When the requesting master receives this 
pulse it seizes control of the bus. This master may control the bus for only one bus cycle or for 
several bus cycles. When it is ready to relinquish the bus it will send the processor the release 
pulse over the same line that it made its request. /  and / are the same except that 

/ has higher priority. 
 
2.6 SYSTEM DESIGN USING MICROPROCESSOR 

The steps that are involved in the design of microprocessor based system are as 
follows: 
1. Feasibility Study 

The feasibility study is the analysis of various aspects such as costing of the product, 
the technology to be used, time required for the development of the system, maintenance cost, 
flexibility of the system to adopt modifications and so on. Thus feasibility study gives the 
overall background for the system development. 

There are two basic approaches to design a system.  
1. Microprocessor based 
2. Logic based 
When the system is not complex normally logic based approach is selected. Here 

ASIC (Application specific integrated circuits) or LSI and MSI chips are used to design the 
system. For complex systems microprocessor based approach is preferable. This approach is 
expensive and it involves software development. 
Logic approach is preferred when 

 System functions are minimal. 

 High speed operations are required. 

Less number of inputs and outputs.

Application specific design is required.
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 Memory requirements are less. 

 Less flexibility is required to adopt modifications and expansion. 
Microprocessor based approach is preferred when: 

 System functions are more. 

 Large number of inputs and outputs 

 Large memory is required. 

 More flexibility is required to adopt modifications and expansion. 

 Multiple decision paths are required. 
 

 

Fig 2.18 : System development cycle 
 

When microprocessor is selected we have to select best suitable microprocessor by 
analyzing its technical characteristics such as speed, word length, addressing capacity, 
addressing modes supported, number of general purpose registers and instruction set support. 
There is one more choice whether to use microprocessor or microcontroller. Microcontrollers 



PONJESLY COLLEGE OF ENGINEERING 

90

are preferred foe embedded systems since they have built-in memory, I/O ports, timer/counters 
and bit manipulation instructions along with powerful instruction set. 
2. System specification: 
 System specification includes the description of the expected behavior (functionality) 
of the system. It specifies number of inputs and outputs of the system and functionalities should 
be provided by the system. System designer usually divides the system into sub-system perform 
a unique subtask for the system. 
3. Initial Design: 

Initial design process involves selection of microprocessor and development of block 
diagram of the hardware, defining basic software routines, estimation of memory requirement 
and timing considerations, etc. It also involves construction of prototype and its testing with the 
help of various development tools such as simulators, in-circuit emulators, logic analyzers etc. 
4. Hardware Design: 

After the prototype has been debugged and tested correctly, the actual hardware is 
built with microprocessor and peripheral chips. 
5. Software Development: 

The first step in developing the software is to take the system specifications and write 
a flowchart to accomplish the desired tasks that will implement the specifications. The source 
code for different modules (sub-tasks) is then written from the developed flowcharts. The 
complete source code is then assembled. The assembler will check for syntax error and print 
error messages to help in the correction of errors. Assembler converts source code into object 
code. Linker takes the object code generated by the assembler as an input and creates final 
absolute code that will be executed on the target system. 

The emulation phase takes this absolute code and loads it into the development 
-stepping. 

6. Integration: 
Once the implementation and testing of hardware and software subsystems is 

completed, the system performance is checked under real/simulated conditions. For smooth 
integration of hardware and software and their subsystems, it is necessary to develop hardware 
and software in co-ordination. 
7. System Development: 

The following basic steps are carried out in the microprocessor development cycle: 
1. The product specifications are finalized in the first stage. This mainly includes the 

functions which are to be performed by the product and the time required to perform 
them. The processor should be selected at this page. 

2. At this stage, the basic system design is initiated. This includes the complete circuit 
diagram for hardware and detailed flow-charts for the software. 

3. From this stage hardware and software development are carried out simultaneously. 
Hardware development mainly includes circuit construction, circuit verification, 
prototype hardware construction and prototype hardware verification. Software 
development includes code preparation, code compilation and code verification. 
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4. At the end of the hardware and software development cycles, hardware and software 
are integrated. This integration includes loading the software into appropriate memory 
chips. 
Sometimes step-by-step integration methods are adopted. That is, the total system is 
divided into subsystems. For a completed hardware with the appropriate completed 
software, integration step is carried out. 

5. At last, whole system prototype is tested. 
If the errors are detected (hardware and/or software), during the integration or testing 

procedure, certain hardware and/ or software development steps may have to be corrected and 
repeated. 

Such correction and repetition is easie4r in step-by-step integration method since the 
modules (subsystems) which are to be tested are smaller and locating possible errors become 
easier. 

Since the software is developed by concentrating the existing hardware, there is a 
strong interaction and dependence between hardware and software. As the hardware is 
developed by making the required changes are made in the software, i.e. software is developed. 
Thus, the hardware and software are developed concurrently. This reduces the overall time 
required for the development cost.  
8. System documentation: 

Sys
The system must be accurately documented from conception to completion, and although 
documentation costs may appear to be high, down time will be greatly reduced during trouble 
shooting, modification or expansion of the system. An accurately documented system should 
contain the following information. 

 A block diagram of the complete system 

 A written description of the components used. 

 A written description of all functions included. 

 Flowcharts and listing of program with proper comments. 

 Wiring diagrams and connectors pin descriptions. 

 Power supply details  

 Memory configuration charts (memory maps) 

 Description of processor and connected peripherals 

 Description of timing considerations 

 Testing procedures used. 
 

2.7  I/O PROGRAMMING 
I/O programming describes the ways in which information can be moved between 

peripheral or mass storage devices and the CPU or memory. 
Figure 2.19 shows the basic architecture of a single-bus computer system. In single bus 

system all peripheral and mass storage devices are connected to the system bus through 
interfaces. Each interface contains a set of registers, called I/O ports, through which the CPU 
and memory communicate with the interface's external device. Some of the ports are for 
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buffering data to and from the CPU and memory, some are for  holding status information about 
the device and interface so that it can be examined by the CPU, and some are for retaining the 
commands sent from the CPU to control the actions taken by the interface and device. All 
communication with the external world and mass storage is channeled through the VO ports in 
the interface. Therefore, the CPU must have a means of transferring information to and from 
these ports as well as memory. Some computers encompass both the memory and port 
addresses in a single address space and allow all instructions that are capable of accessing 
memory to access the I/O ports. Others, such as the 8086-based systems, permit the 
establishment of two address spaces, an I/O space and a memory space.  

The latter is done by including control lines in the control bus that indicate whether the 
address on the address bus is in the I/O space or the memory space. In order to send the correct 
signals over the control lines, a system that has separate I/O and memory address spaces must 
have different instructions for communicating with the I/O ports. 

 
 

Fig 2.19: Single-bus system 
An output from the CPU to a control or buffer port is made by putting the address on 

the address bus and the proper signals on the control bus, and then putting the data on the data 
bus. An input from an, input port is accomplished by putting the address and control signals on 
their respective buses and waiting for the interface to respond by placing the contents of the 
addressed port on the data bus. It should be emphasized that the addresses are associated with 
the ports, not the interfaces.  
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If an interface has four ports, it must be designed to accept four addresses. (However, 
it is permissible to design an interface so that two or more registers share the same port, 
provided that the design is such that the interface can properly direct its internal traffic.) 

The three principal types of I/O are: 
1. Programmed I/O 
2. Interrupt I/O 
3. Block transfers. 
 

2.7.1 FUNDAMENTAL I/O CONSIDERATIONS 
The transfer of data to or from a port can be done in two ways.  

1.To execute an instruction that causes a single byte or word to be transferred  
2.To execute a sequence of instructions that causes a special system component 
associated with the interface to transfer a sequence of bytes or words to or from 
a pre designated block of memory locations.  

It is referred to as a block transfer or a direct memory access (DMA) and the special 
component is called a DMA controller. Byte or word transfers are between the port and the 
CPU, but block transfers are made directly with memory.  

On the 8086, all programmed communication with the I/O ports is done by the IN and 
OUT instructions defined in fig 2.20.. 

 
 

Fig. 2.20 IN and OUT instructions 
 

Both instructions may transfer either a byte or a word and both have a long form and a 
short form. The first operand in the IN instruction, the destination operand, must be either AL 
(for a byte transfer) or AX (for a word transfer). As with memory, a word transfer is made from 
two consecutive addresses with the low-order byte in AX being moved from the port with the 
lower address. 
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If the second operand in the IN instruction evaluates to a constant, then the constant is 
used as the address of the port whose contents are being input. In this case the instruction is 2 
bytes long with the port address occupying the second byte. If the second operand is DX, then 
there is only one byte in the instruction and the contents of DX are used as the port address. 

Figure 2.21 shows a possible sequence of events when I/O is handled by the operating 
system. Ina user's program, whenever I/O is needed the user calls the monitor through a type of 
software interrupt, or trap, which passes the control to the monitor along with a function code, 
indicating the I/O operation to be performed, and the necessary parameters required to carry out 
that operation. 
 
 
 
 
 

 
 
 
 

Fig 2.21:I/O handling by the operating system 
By examining the function code, the monitor, which handles other services in addition 

to I/O, knows the request is for an I/O operation and, consequently, dispatches the task to the 
I/O supervisor. The I/O supervisor further determines which device is involved in the I/O 
operation so that the corresponding I/O driver, which is typically an interrupt-driven or DMA 
routine, can be initiated. The I/O handler uses a buffer in the system area for temporarily storing 
input and output data. The I/O supervisor moves the data to be output (or the input data) from 
the user's area to the buffer area (or vice versa). Upon completion of the I/O operation, control 
is transferred back to the user's program through the I/O supervisor and the monitor. 
2.7.2 PROGRAMMED I/O 
  In programmed I/O, the data transfer is controlled by the user program being executed.  
Depending on the type of device, data transfer may be synchronous or asynchronous. 
Synchronous data transfer is used when the I/O device matches in speed withg the 
microprocessor. The microprocessor issues the read/write instruction addressing the device 
whenever data transfer is required. The actual data transfer takes place in one clock cycle. 
 When the I/O device speed and the microprocessor speed do not match, i.e. when the 
I/O device is slower than the microprocessor speed do not match. In this mode the 
microprocessor checks the status of the device. If the device is not ready, the microprocessor 
checks the status of the device till it becomes ready. The data transfer instruction is isued by the 
microprocessor. 

Programmed I/O consists of continually examining the status of an interface and 
performing an I/O operation with the interface when its status indicates that it has data to be 
input or its data-out buffer register is ready to receive data from the CPU.  A typical 
programmed input operation is flowcharted in fig 2.22.
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The flowchart assumes that a sequence of bytes or words is to be input and as each 
byte or word is brought into the CPU it is modified and transferred to a memory buffer. After 
all of the data have been brought in and put in the buffer, the buffer is processed.  
Suppose that a line of characters is to be input from a terminal to an 82-byte array beginning at 
BUFFER until a carriage return is encountered or more than 80 characters are input. If a 
carriage return is not found in the first 81 characters then the message "BUFFER 
OVERFLOW" is to be output to the terminal; otherwise, a line feed is to be automatically 
appended to the carriage return. Because the ASCII code is a 7-bit code, the eighth bit, bit 7, is 
often used as a parity bit during the transmission from the terminal. Let us assume that bit 7 is 
set according to even parity and if an odd parity byte is detected, a branch is to be made to 
ERROR. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig 2.22: Programmed input 
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Fig 2.23: Interface for the programmed I/O example 
.In priority polling sequence, the addresses of their status registers have been equated 

to STAT1, STAT2, and STAT3 and the procedures PROC1, PROC2, and PROC3 are called 
upon to perform the input. The program sequence gives the devices apriority. The device 
corresponding to STATl has the highest priority and the other two devices must wait until this 
device is idle. The device corresponding to STAT3 cannot be serviced until neither of the other 
two devices is ready. 
 In round robin polling the devices could be serviced in turn. Such an arrangement 
essentially gives all three devices the same priority.  
 
2.7.3 INTERRUPT I/O 

An interrupt is an event that causes the CPU to initiate a fixed sequence, known as an 
interrupt sequence. Before an 8086 interrupt sequence can begin, the currently executing 
instruction must be completed unless the current instruction is a HLT or WAIT instruction. 
(The WAIT instruction is primarily used to wait for the completion of a coprocessor 
instruction.) 

For the 8086, once the interrupt request has been recognized, the interrupt sequence 
consists of:  

1. Establishing a type N. 
2. Pushing the current contents of the PSW, CS, and IP onto the stack (in that order).
3. Clearing the IF and TF flags. 
4. Putting the contents of memory location 4*N into IP and the contents of 4*N +2 
into CS. 
Thus, an interrupt causes the normal program sequence to be suspended and a branch 

to be made to the location indicated by the double word beginning at four times the type (i.e., 
the interrupt pointer). Control can be returned to the point at which the interrupt occurred by 
placing an IRET instruction at the end of the interrupt routine.
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There are two classes of interrupts. 
1.Internal and  
2.External interrupts  
External interrupt is caused by a signal being sent to the CPU through one of its pins,  

for 8086 it is either the NMI pin or the INTR pin.  

 
Fig 2.24: Sequence of events during a maskable interrupt and subsequent return
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An interrupt initiated by a signal on the NMI pin is called a nonmaskable interrupt and 
will cause a type 2 interrupt regardless of the setting of the IF flag. Nonmaskable interrupt 
signals are normally caused by circuits for detecting catastrophic events such as imminent 
power failure, or by external events or clock pulses that must be processed immediately. An 
interrupt on the INTR pin is masked by the IF flag so that if this flag is 0, the interrupt is not 
recognized until IF returns to 1.  

When IF = 1 and a maskable external interrupt occurs, the CPU will return an 
acknowledgment signal to the device interface through its  pin and initiate the interrupt 
sequence. The acknowledgment signal will cause the interface that sent the interrupt signal to 
send to the CPU (over the data bus) the byte which specifies the type, and hence the address of 
the interrupt pointer. The pointer, in turn, supplies the beginning address of the interrupt 
routine.  

There are several ways of combining priority with interrupt I/O, some involving only' 
software, some only hardware, and some a combination of the two. Let us consider the 
following means of giving priority to an interrupt system: 

1. Polling. 
2. Daisy chaining. 
3. Interrupt priority management hardware. 

Polling:  
Although there are numerous external interrupt types available for use by the 

interfaces in an 8086 system and it is seldom necessary to assign two interfaces the same type, a 
set of interfaces may be given the same type so that polling can be used to assign them 
priorities. By-putting a program sequence  at the beginning of the interrupt routine, the priority 
of the interfaces could be established by the order in which they are polled by the sequence. 
Daisy Chaining: 

(a) Daisy chain
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(b) Logic 

Fig 2.25: Daisy chain arrangement. 
Daisy chaining is a simple hardware means of attaining a priority scheme. It consists of 

associating a logic circuit with each interface and passing the interrupt acknowledge signal 
through these circuits as shown in Fig 2.25 (a) and the details of a daisy chain logic circuit are 
shown in Fig. 2.25 (b) 
Interrupt Priority Management Hardware 

The management circuit would contain the logic needed to assign priorities to the 
incoming requests. For example, the highest priority could be given to IR0, the next highest 
priority to IRl, and so on. When an interrupt request is recognized by the priority logic as 
having the highest priority, then the three LSBs of the type register are set to the number of the 
request line, a bit is set in the in-service register, and an interrupt is sent to the CPU.  

If IF= 1, then the CPU returns an acknowledge signal and the management circuit 
sends the CPU the type. All requests having lower priority are blocked until the bit in the in-
service register is cleared, an action which is normally done by the interrupt routine.  

Therefore, when IF is re enabled by an STI instruction, higher-priority requests may 
interrupt the currently executing interrupt routine, but lower-priority requests will be blocked by 
the priority logic until the bit that was set in the in-service register is cleared.  

This gives the interrupt routine control over when lower-priority requests will be 
recognized. In order for the program to be able to clear bits in the in-service register, this 
register must be programmable, i.e., it must have an I/O port address so that it can be accessed 
using the IN and OUT instructions. 

 In addition to the built -in priority, a 1-byte mask register is included to allow masking 
of the individual requests. Bit n in this register would be for masking IRn. It is assumed that this 
register is programmable. In the example, the least significant 3 bits of the type register are 
determined by the request selected by the priority logic. If this register is programmable, the 5 
most significant bits could be initialized when the system is turned on.  



PONJESLY COLLEGE OF ENGINEERING 

100

 

Fig 2.26: Representative interrupt priority management design 
 

2.7.4 BLOCK TRANSFERS AND DMA 
If the data transfer rate to or from an I/O device is relatively low, then the 

communication can be performed using either programmed or interrupt I/O. But executing 
instructions and performing interrupt sequences take more time than is sometimes available.  

For data rates of high magnitude, block transfers, which use DMA controllers to 
communicate directly with memory, are required. The activity involved in transferring a byte or 
word over the system bus is called a bus cycle.  

During any given bus cycle, one of the system components connected to the system 
bus is given control of the bus. This component is said to be the master during that cycle and 
the component it is communicating with is said to be the slave.   

The CPU with its bus control logic is normally the master, but other specially designed 
components can gain control of the bus by sending a bus request to the CPU. After the current 
bus cycle is completed the CPU will return a bus grant signal and the component sending the 
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request will become the master. Taking control of the bus for a bus cycle is called cycle 
stealing.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 2.27 Single datum output transfer during a block transfer 
 

Just like the bus control logic, a master must be capable of placing addresses on the 
address bus and directing the bus activity during a bus cycle. The components capable of 
becoming masters are processors (and their bus control logic) and DMA controllers. Sometimes 
a DMA controllers associated with a single interface, but they are often designed to 
accommodate more than one interface.
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The 8086 receives bus requests through its HOLD pin and issues grants from its hold 
acknowledge (HLDA) pin. A request is made when a potential master sends a 1 to the HOLD 
pin. Normally, after the current bus cycle is complete the 8086 will respond by putting a 1 on 
the HLDA pin.  

When the requesting device receives this grant signal it becomes the master. It will 
remain master until it drops the signal to the HOLD pin, at which time the 8086 will drop the 
grant on the HLDA pin.  

One exception to the normal sequence is that if a word which begins at an odd address 
is being accessed, then two bus cycles are required to complete the transfer and a grant will not 
be issued until after the second bus cycle.  

During a block input byte transfer, the following sequence occurs as the datum is sent 
from the interface to the memory:. 

1. The interface sends the controller a request for DMA service. 
2. The controller gains control of the bus. 
3. The contents of the address register are put on the address bus. 
4. The controller sends the interface a DMA acknowledgment which tells theinterface to 
put data on the data bus. (For an output it signals the interface to latch the next data placed 
on the bus.) 
5. The data byte is transferred to the memory location indicated by the address bus. 
6. The controller relinquishes the bus. 
7. The address register is incremented by 1. 
8. The byte count register is decremented by 1. 
9. If the byte count register is nonzero, return to step 1; otherwise, stop. 
 

Status and control registers : 
 Indicates the type of transfer to be conducted.  

 It has a "do" bit for initiating the I/O activity (a bit that can be sensed by the I/O 
device)  

 Bit for indicating whether or not the device is currently busy.   

 An enable bit which controls whether or not it will recognize DMA requests from the 
interface.  A data direction bit to supervise an input or output transfer.  

Byte count register:  notes the number of bytes yet to be transferred to initiate a block transfer. 
Address register:  holds the address of the next memory location. 
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Fig 2.28: Minimal DMA controller/interface configuration 
 
2.8 INTRODUCTION TO MULTIPROGRAMMING 

A process is a programming unit which performs an independent task. When processes 
are executed in a serial fashion, the system is called a uni programming system. In such 
systems, normally only one process is stored in the memory at a time and the next process is not 
loaded for execution until the current one is terminated. This is not adequate for a large number 
of applications, those in which the ability to respond to events in real time is required or which 
must be able to execute numerous programs rapidly and efficiently.  

For example, suppose that a microprocessor-based system is to collect and process 
data from two independent data devices. If operated in a uni programming environment, either
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process may miss some of its input data while the other process is executing. This can happen 
even when the incoming data rate for both processes is low. The problem is not caused by the 
lack of processing power or by the speed of the interfaces, but is a result of the sequential nature 
of the overall processing scheme.  

For a multiprogramming environment, the code for two or more processes is in 
memory at the same time and is executed in a time-multiplexed fashion. If, in the above 
example, the processes were executed in a multi programmed system, they could take turns 
using the CPU and one process could be performing its computations while the other is doing 
I/O, and vice versa.  

A single CPU can still execute only one instruction at a time. However, through 
resource sharing a multi programmed single CPU system appears as if it is executing several 
processes simultaneously.  

Let us consider two processes, say 1 and 2. If uni processing is used, the activity is 
typically as shown in Fig. 2.29. 

 
Fig2.29 :Uniprogramming activity 

Here process 1 begins and continues until I/O is needed (point A), then the I/O is 
initiated and the processing continues in parallel with the I/O until the processing needs the 
input data. At this time it must wait until the I/O is completed (point B). When the I/O is 
finished (point C)the processing is resumed. A similar description applies to points D, E, and F. 
At the end of process 1, process 2 can begin and its operation is basically the same as that of 
process 1. 

On the other hand, if multiprogramming is applied, then the activity is as illustrated in 
Fig. 2.30.It is seen that instead of the CPU being idle while it is waiting for process 1 I/O, in a 
multiprogramming system process 2 can be begun and can utilize the CPU until it needs to wait 
for I/O. At that time, if process 1has finished its I/O operation, it can resume its use of the CPU. 
Thus the overall processing time can be significantly reduced. 
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Fig 2.30: Multiprogramming activity utilizing a single CPU and a single DMA channel 

A multiprogramming system may be capable of accommodating several users at the 
same time. When this is the case the users take turns getting control of the CPU, with each user 
being allocated a time slice, and the system is said to be time-shared.  

Multiprogramming can be used in systems that include more than one processor. Such 
systems, called multiprocessing systems, have the ability to execute more than one instruction 
at a time. 
2.8.1Process Management and iRMX 86 

In a single-processor multiprogramming system, two or more processes reside in the 
memory and share the CPU, but the CPU can execute only one of these processes at a time. In a 
simple multiprogramming system there are three states that the processes can be in, with each 
process being in exactly one of these states at any given time. These states are: 
1. Running-When the process is currently being executed by the CPU. 
2. Blocked-When the execution of the process cannot be continued because it is waiting for an 
event to occur, e.g., it is waiting for the completion of an I/O operation. 
3. Ready-When the execution of the process can be resumed any time. For example, the I/O 
process has been waiting has finished and the processing is able to continue. 

As time passes each process will rotate among these states as shown in Fig 2.31.At the 
time a process is started it is placed in a waiting queue of ready processes. When the process 
that is currently executing switches from the running state to the blocked state because it must 
wait for I/O, the CPU becomes available and a process in the ready queue is selected by the 
process scheduler and is changed from ready to running. While a process is in the blocked state 
its execution is suspended. After its I/O is completed, a blocked process becomes ready and it is 
placed in the ready queue.  
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Fig 2.31: Process states and state changes 
In the simplest multiprogramming arrangement a process is allowed to execute until it 

is terminated or must wait for I/O. However, to prevent a process from dominating the CPU 
usage, a system can be designed so that a running process must return to the ready state after a 
specified period of time, thus giving the other processes a chance to execute.  

A structure of a ready list that is based on FIFO scheduling and a linked list is shown 
in Fig. 2.32. 

The first-element pointer indicates which process is at the top of the queue and the 
last-element pointer indicates which process is at the bottom. The last-element pointer is needed 
so that new processes can be added to the queue without having to search through the entire list. 
In the example, it is assumed that each process has an ID that is the same as a position in the 
array containing the linked list. It is also assumed that the queue presently consists of the 
processes 3, 6, 2, 8, and 5, in that order. Therefore, 3 is in the first element pointer, 5 is in the 
last-element pointer, and the processes 2, 3, 5, 6, and8 are currently in the ready state. The 
remaining entries in the process table are occupied by running and blocked processes or are not 
currently being used. If the number 0 is used to indicate the end of the list, it cannot be used as a 
process ID. If the process IDs are to be represented by 1 byte and there can be no process 0,then 
the maximum number of processes that can be in the system at one time is 255. 

Each element in the list contains a forward queue pointer (fqp), which indicates the 
next element in the list, and a process control block pointer for locating a block of memory that 
is used to store important information related to the process.  

The process control block serves as the process's save area for storing the machine 
status as well as for storing such things as the process ID, the process state, a code indicating 
how and why the process entered its current state, and so on. 

When the CPU switches from one running process to another, it is necessary for the 
monitor to:
1. Save the machine status of the running process in the process control block.
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2. Update the remainder of the process control block. 
3. Get the ID of the next process to be run from the first-element pointer. 
4. Delete the process that has just entered the running state by setting the first element pointer 
equal to the fqp of the deleted element. 
5. Change the state of the process that was just removed from the ready list to running and 
restore the machine status of this process. 

 
 

Fig 2.32: Structure of a ready queue
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Fig 2.33: Structure of a prioritized ready queue
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As a result of step 5 the newly selected process will continue from the point at which it 
was suspended. A process that is currently in the system can be added to the ready list by: 

1. Storing its process ID into the fqp of the current last element (the element pointed to 
by the last-element pointer) and into the last-element pointer. 
2. Clearing the fqp in its process table entry. 
3. Updating its process control block. 
For many applications, especially those involving real-time data processing, it is 

necessary to assign priorities to the various processes by giving the process requiring the fastest 
service the highest priority. Processes may still be given the same priority, with the FIFO policy 
being applied within each priority level. If priorities are used, the system must include a priority 
table. 

As shown in Fig. 2.33, each element in this table would represent a priority level and 
have two fields, with the first field containing the first-element pointer for the priority level and 
the second field containing the last-element pointer for the level. If the priority of a process is 
changed, it must be deleted from its current priority chain and appended to the bottom of the 
chain having its new priority. This action is aided by the inclusion of a backward queue pointer 
(bqp) so that priority changes can be made quickly. The priority scheduling system illustrated in 
Fig. 2.38assumes the following, ready processes: 

Priority 0: None 
Priority 1: 9-4-1-3 
Priority 2: 2-7-5 
Priority 3: 10 
Priority 4: None 
Priority 5: None 

To select the next running process, the scheduler would search the priority table starting with 
the highest priority until a nonzero first-element pointer is found, and would then delete that 
process from the ready queue. 

 
2.8.2 Semaphore Operations 

In multiprogramming systems, processes are allowed to share common software and 
data resources as well as hardware resources. In many situations, a common resource may be 
accessed and updated by only one process at a time and other processes must wait until the one 
currently using the shared resource is finished with it. A resource of this type, which is 
commonly referred to as a serially reusable resource, must be protected from being  
simultaneously accessed and modified by two or more processes. A serially reusable, resource 
may be a hardware resource(such as a printer, card reader, or tape drive), .a file of data, or a 
shared memory area. 

For example, let us consider a personnel file that is shared by processes 1and 2. 
Suppose that process 1 performs insertions, deletions, and changes, and process 2 puts the file 
in alphabetical order according to last names. If accessed sequentially, this file would both be 
updated by process 1 and then sorted by process 2, or vice versa. However, if both processes 
were allowed to access the file at the same time, the results would be unpredictable and almost 
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certainly incorrect. The solution to this problem is to allow only one process at a time to enter 
its critical section of code, i.e., that section of code that accesses the serially reusable resource. 

Preventing two or more processes from simultaneously entering their critical sections 
for accessing a shared resource is called mutual exclusion.  

A flag used to reserve a shared resource is called a semaphore and the operations of 
requesting and releasing the resource are commonly known as the P and V semaphore 
operators. If  FLAG = 1 indicates that the resource is free and FLAG =0indicates it is busy. 
 
2.8.3Common Procedure Sharing 

In a multiprogramming system, it is desirable to allow two or more users to share 
procedures. These procedures are known as common procedures, and typically are library 
routines or system programs such as I/O drivers, code conversion routines, and so on. For 
example, several users may simultaneously want to use a text editor to edit their programs. 
Without code sharing, several copies of the text editor would need to be loaded into memory. 
With code sharing, only one copy needs to be kept in memory, thus providing a significant 
savings in storage. 

A common procedure may be shared in serial fashion just like any other shared 
resource. The application of serially shared procedures is rather limited, and a broader form of 
sharing is necessary, a form in which a procedure is shared in a time multiplexed fashion or is 
concurrently reusable. This means that a procedure must be such that it can be called by another  
process before the execution of the procedure due to a prior call is completed. Such a procedure 
is said to be reentrant.  

A reentrant procedure must consist of code, called pure code, which does modify 
itself. To meet this requirement a reentrant procedure can store the data to be modified by the 
routine only in memory locations that are associated with the calling process; it cannot, even 
temporarily, store such data in locations that are local to itself.  
2.8.4 Memory Management 

The simplest method for storing more than one job in the memory is the partition 
allocation scheme. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 2.34: Partition memory allocation
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As depicted in Fig. 2.34, if this scheme is used, each job is allocated a contiguous area of 
memory.  

 
Fig 2.35: Merging adjacent free partitions 

When a job needs to be executed, the loader requests the required amount of memory 
from the memory management routine, which is the part of the operating system that is 
responsible for storage allocation. If the memory management routine finds a contiguous free 
area whose size is larger than the job size, the beginning address of that free area is returned to 
the loader. After adjusting the necessary relative addresses so that they become physical 
addresses, the loader can load the job into the allocated area. Of course, the initial state of the 
job is "ready" and the job may not start executing immediately .If there is no single free area 
large enough, the job must wait before it can be loaded from mass storage. 

Each entry would contain the status, size, and beginning address of the partition, with 
the status being: 
Allocated-If the partition is currently allocated to a job. 
Free-If the partition is available. 
Unused-If the entry is not associated with a partition. 
The third possibility may result from two adjacent free partitions being combined into one. 
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2.8.5 Virtual Memory and the 80286 
For each memory reference, the logical address output by the CPU is translated into 

the physical address, which is the address sent to the memory by the memory management 
hardware. Logical addresses are the addresses that are generated by the instructions according 
to the addressing modes. 

Because the logical addresses may be different from the physical addresses, the user 
can design a program in a logical space, also called a virtual space. 
 
2.9 SYSTEM BUS STRUCTURE 

Fig 2.36: Typical system bus architecture
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A set of conductors used for communicating information between the components in a 
computer system is called a bus. If a bus connects two minor components within a major 
component (e.g., the control unit to the set of working registers within the CPU), it is called an 
internal bus. When a bus connects two major components, such as a CPU and an interface, it is 
called an external bus.  

Because an internal bus is ordinarily internal to an IC device and its construction is 
dependent on the device. External buses have common characteristics that must be understood 
when designing the overall architecture of a computer system. Some systems include more than 
one external bus. Others contain only one bus, which is referred to as the system bus, and it is 
the basic structure of system buses, particularly those in 8086 and 8088 based systems. 

Figure 2.36 illustrates the fundamental structure of a system bus and its relationships 
to the various components of the computer system. The complexity of the bus control logic 
depends on the amount of translation needed between the system bus and the pins on the CPU, 
the timing requirements, whether or not interrupt management is included, and the size of the 
overall system. If a system component other than the CPU can be master of the bus, then all of 
the address and data lines and most of the control lines must be capable of being logically 
disconnected from the CPU or bus control logic, i.e., most pins connected to the bus must be 
such that they can enter a high-impedance state. 

Generally, the circuits that drive the pins on a single-chip CPU have a quite limited 
driving capability and can be connected to only a few interfaces. For a small system, many or 
all of the CPU control pins could be used directly and the handshaking logic could be reduced 
or, perhaps, eliminated. Similarly, drivers and receivers would not be needed for the data and 
address lines. However, systems with several interfaces would need bus driver and receiver 
circuits connected to the bus in order to maintain adequate signal quality. 

In addition to drivers and receivers, timing considerations may be such that latches are 
needed to hold the address that is output by the CPU during one part of the bus cycle but must 
be maintained throughout the cycle. Some processors, including the 8086 and 8088, use the 
same pins for both data and addresses. This means that during a data transfer operation the 
address, which is output first, must be latched before the bus is used to transfer the data. 

The timing of the signals within the CPU and bus control logic is controlled by a 
clock. The bus cycles and CPU activity are controlled by groups of clock pulses. The exact 
number of clock pulses, or cycles, within a bus cycle varies. Atypical CPU input transaction 
would proceed by outputting the address of the data during the first clock cycle, signaling that a  
read is to take place during the second clock cycle, waiting an indeterminate number of clock  
cycles for the addressed device to put the data on the data lines, inputting the data, and signaling 
the device that the transfer is complete during the last clock cycle. For an output transaction the 
address would again be output during the first cycle and the data would be output during the 
second cycle along with a write signal. After the addressed device has accepted the data it 
would return a transfer complete acknowledgment which causes the CPU to enter the last cycle. 

8088 is fully software compatible with the8086 and, as an 8-bit processor, is hardware 
compatible with the peripherals in the8080/8085 family. By using the 8088, an existing 
8080/8085-based system can be updated with minimal hardware modification.
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2.10 MULTIPROCESSOR CONFIGURATION 

If a system includes two or more components that can execute instructions 
simultaneously, it is called a multiprocessing system. The added processors could be special 
purpose processors which are specifically designed to perform certain tasks efficiently, or other 
general purpose processors. For example, due to the 8086's limited data width and its lack of 
floating point arithmetic instructions, it requires many instructions to perform a single floating 
point operation.  

For a system requiring a lot of computations, it would be desirable to perform such 
calculations with a supporting numeric data processor that is specifically designed to quickly 
operate on floating point numbers and numbers having larger than usual data widths. Also, it is 
sometimes advantageous to include in a system an I/O processor with greater capabilities than a 
DMA controller, one that can perform string manipulations, code conversion, character 
searching, and bit testing as well as the normal DMA operations. This would permit the CPU to 
concentrate on higher level functions. 

In addition to improving the overall cost/performance ratio of a system, a 
multiprocessor configuration offers several desirable features not found in a one-processor 
design.  

Several processors may be combined to fit the needs of an application. In a 
multiprocessor system tasks are divided among the modules. Should a failure occur, it is easier 
and cheaper to find and replace the malfunctioning processor than it is to find and replace the 
failing part in a complex processor. 

Two problems must be considered in designing a multiprocessor system, bus 
contention and inter processor communication.  

The maximum mode of the 8086 and 8088 is specifically designed to implement 
multiprocessor systems. Multiprocessing features are provided in maximum mode to 
accommodate three basic configurations.  
 
They are  

1. Coprocessor configuration 
2. Closely coupled configurations 
3. Loosely coupled configurations. 

2.11  Coprocessor configuration: 
In coprocessor configuration the CPU and the supporting or external processor share 

not only the entire memory and I/O subsystem, but also share the same bus control logic and 
clock generator.  

In this configuration, the 8086/8088 is the master or host, and the supporting processor 
is the slave. The bus access control is provided by the CPU; therefore, the bus request signal 
from the supporting processor is connected to the CPU. In coprocessor configuration the 
supporting processor is dependent and must interact directly with the CPU.  
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Fig 2.37: Coprocessor configuration 
8086 instruction set is not sufficient to effectively satisfy some complex applications. 

For such applications, the 8086 must be supplemented with coprocessors that extend the 
instruction set in directions that will allow the necessary special computations to be 
accomplished more efficiently. For example, the 8086 has no instructions for performing 
floating  point arithmetic, but by using an Intel 8087numeric data processor as a coprocessor, an 
application that heavily involves floating point calculations can be readily satisfied. 
 

 
Fig 2.38: Synchronization between the 8086 and its coprocessor 

A coprocessor design does not require any extra logic other than that normally needed 
for a maximum mode system. Both the CPU and coprocessor execute their instructions from the 
same program, which is written in a superset of the 8086 instruction set. Other than possibly 
fetching an operand for the coprocessor, the CPU does not need to take any further action if the 
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instruction is executed by the coprocessor. The interaction between the CPU and the 
coprocessor when an instruction is executed by the coprocessor is depicted in Fig. 2.38. 

An instruction to be executed by the coprocessor is indicated when an escape (ESC) 
instruction appears in the program sequence. Only the host CPU can fetch instructions, but the 
coprocessor also receives all instructions and monitors the instruction sequencing of the host. 
An ESC instruction contains an external operation code, indicating what the coprocessor is to 
do and is simultaneously decoded by both the coprocessor and the host.  

At this point the host may simply go on to the next instruction or it may fetch the first 
word of a memory operand for the coprocessor and then go on to the next instruction. If the 
CPU fetches the first word of an operand, the coprocessor will capture the data word and its 20-
bit physical address. For a source operand that is longer than one word, the coprocessor can 
obtain the remaining words by stealing bus cycles. 

If the memory operand specified in the ESC instruction is a destination, the 
coprocessor ignores the data word fetched by the host and later the coprocessor will store the 
result into the captured address. In either case, the coprocessor will send a busy (high) signal to 
the host's  pin and, as the host continues processing the instruction stream, the coprocessor 
will perform the operation indicated by the code in the ESC instruction.  

This parallel operation continues until the host needs the coprocessor to perform 
another operation or must have the results from the current operation. At that time the host 
should execute a WAIT instruction and wait until its   pin is activated by the 

coprocessor.The WAIT instruction repeatedly checks the   pin until it becomes 
activatedand then executes the next instruction in sequence. 
2.12 Closely coupled configurations: 

In closely coupled configurations configuration the CPU and the supporting or external 
processor share not only the entire memory and I/O subsystem, but also share the same bus 
control logic and clock generator. In a closely coupled configuration the supporting processor 
may act independently. 

For instruction fetches and data references, the independent processor accesses the bus 
through the CPU's / lines. 

 
 
 
 
 
 
 
 
 
 

 

Fig 2.39: Closely coupled configuration
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Instead of using special instructions such as ESC and WAIT, communication between 
the host and the independent processor is accomplished through shared memory space. As 
illustrated in Fig. 2.40, the host sets up a message in memory and then wakes up the 
independent processor by sending a command to one of the independent processor's ports.  

 
Fig 2.40 Interprocessor communication through shared memory 
 
The independent processor then accesses the shared memory to get the assigned task 

and executes the task in parallel with the host. After the task is completed, the external 
processor notifies its host of the completion by using either a status bit or an interrupt request. 
The message format varies depending on the design of the independent processor and the 
application. Typically, a message should specify which operation is to be performed, the input 
parameters, and the addresses of the locations in which to store the results. 
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2.13 Loosely coupled configurations: 

 
 

Fig 2.41: Loosely coupled configuration 
Loosely coupled configurations are used for medium-size to large systems. Each 

module in the system may be the system bus master and may consist of an 8086, an 8088, 
another processor capable of being a bus master, or a coprocessor or closely coupled 
configuration. Several modules may share the system resources, and system bus control logic 
must resolve the bus contention problem. As shown in Fig. 2.41, each potential bus master runs 
independently and there are no direct connections between them. 
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Interprocessor communication is made possible through the shared resources. In 
addition to the shared resources, each module may include its own memory and I/O devices. 
The processors in the separate modules can simultaneously access their private subsystems 
through their local buses and perform their local data references and instruction fetches 
independently, thus improving the degree of concurrent processing. 

In a loosely coupled multiprocessor system, each CPU has its own bus control logic 
and bus arbitration is resolved by extending this logic and adding external logic that is common 
to all master modules. Therefore, several CPUs can form a very large system and each CPU 
may have independent processors and/or a coprocessor attached to it. A loosely coupled 
configuration provides the following advantages: 
1.  High system throughput can be achieved by having more than one CPU. 
2. Each bus master module is an independent unit and normally resides on a separate PC board. 

Therefore, a bus master module can be added or removed without affecting the other 
modules in the system. 

3.  A failure in one module normally does not cause a breakdown of the entire system and the 
faulty module can be easily detected and, replaced. 

4.  Each bus master may have a local bus to access dedicated memory or I/O devices so that a 
greater degree of parallel processing can be achieved. 

In a loosely coupled multiprocessor system, more than one bus master module may 
have access to the shared system bus. Since each master is running independently, extra bus 
control logic must be provided to resolve the bus arbitration problem. This extra logic is called 
bus access logic and it is its responsibility to make sure that only one bus master at a time has 
control of the bus. Simultaneous bus requests are resolved on a priority basis. There are three 
schemes for establishing priority: 

1. Daisy chaining. 
2. Polling. 
3. Independent requesting. 

Implementation of the control logic may vary depending on the complexity of the bus access 
logic included in each module. 
2.13.1 Daisy chaining 

The daisy chain method is characterized by its simplicity and low cost. All masters use 
the same line for making bus requests. To respond to a bus request signal, the controller sends 
out a bus grant signal if the bus busy signal is inactive. The grant signal serially propagates 
through each master until it encounters the first one that is requesting access to the bus. This 
module blocks the propagation of the bus grant signal, activates the busy line, and gains control' 
of the bus. Therefore, any other requesting module will not receive the grant signal and the 
priority is determined by the physical locations of the modules. The one located closest to the 
controller has the highest priority. 

Compared to the other two methods, the daisy chain scheme requires the least number 
of control lines and this number is independent of the number of modules in the system. 
However, the arbitration time is slow due to the propagation delay of the bus grant signal. This 
delay is proportional to the number of modules and, therefore, a daisy chain-based system is 
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limited to only a few modules. Furthermore, the priority of each module is fixed by its physical 
location and the failure of a module causes the whole system to fail. 

 
Fig 2.42: Daisy chain method 

2.13.2 Polling 
The polling scheme uses. a set of lines sufficient to address each module. In response 

to a bus request, the controller generates a sequence of module addresses. When a requesting 
module recognizes its address, it activates the busy line and begins to use the bus. The major 
advantage of polling is that the priority can be dynamically changed by altering the polling 
sequence stored in the controller. 

 
Fig 2.43 Polling method 

 
2.13.3 Independent requesting 

The independent requests scheme resolves priority in a parallel fashion. Each module 
has a separate pair of bus request and bus grant lines and each pair has apriority assigned to it. 
The controller includes a priority decoder, which selects the request with the highest priority 
and returns the corresponding bus grant signal Arbitration is fast and is independent of the 
number of modules in the system. Compared to the other two methods, the independent 
requests design is the fastest; however, it requires more bus request and bus grant lines (2n lines 
for n modules). 
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Fig 2.44: Independent requests method 

 
 

LIST OF QUESTIONS 
PART A 

 
1. What are the two modes in which 8086 operates? 

8086 operates in two modes 
3. Minimum mode and  
4. Maximum mode.  

 
2. Explain the difference between minimum mode and maximum mode of operation. 
 

Minimum mode Maximum mode 

1. When 8086 is operating in minimum 
mode the pin MN/MX will be connected 
to VCC 

2. It is used in single processor 
environment 

When 8086 is operating under  
maximum mode the pin MN/MX will be 
connected to  GND. 
It is used in multi processor 
environment 

 
3. State the functions of queue status lines QS0 and QS1 in 8086 microprocessor. 
 

QS1 QS0 Function 
0 
0 
1
1

0 
1 
0
1

Queue is in idle state 
First byte of opcode has entered into the queue 
Queue empty
Subsequent byte of opcode has entered into the queue


