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UNIT I
MINIMIZATION TECHNIQUES AND LOGIC GATES
1. Number Systems

The study of number systems is important from the viewpoint of understanding how data are
represented before they can be processed by any digital system including a digital computer. It
is one of the most basic topics in digital electronics. In this chapter we will discuss different
number systems commonly used to represent data. We will begin the discussion with the
decimal number system. Although it is not important from the viewpoint of digital electronics, a
brief outline of this will be given to explain some of the underlying concepts used in other
number systems. This will then be followed by the more commonly used number systems such
as the binary, octal and hexa decimalnumber systems.

1.1 Analogue versus Digital

There are two basic ways of representing the numerical values of the various physical quantities
with which we constantly deal in our day-to-day lives. One of the ways, referred to as analogue,
is to express the numerical value of the quantity as a continuous range of values between the
two expected extreme values. For example, the temperature of an oven settable anywhere from
0 to 100 °C may be measured to be 65 °C or 64.96 °C or 64.958 °C or even 64.9579 °C and so
on, depending upon the accuracy of the measuring instrument. Similarly, voltage across a
certain component in an electronic circuit may be measured as 6.5 V or 6.49 V or 6.487 V or
6.4869 V. The underlying concept in this mode of representation is that variation in the
numerical value of the quantity is continuous and could have any of the infinite theoretically
possible values between the two extremes.

The other possible way, referred to as digital, represents the numerical value of the quantity in
steps of discrete values. The numerical values are mostly represented using binary numbers. For
example, the temperature of the oven may be represented in steps of 1 °C as 64 °C, 65 °C, 66
°C and so on. To summarize, while an analogue representation gives a continuous output, a
digital representation produces a discrete output. Analogue systems contain devices that process
or work on various physical quantities represented in analogue form. Digital systems contain
devices that process the physical quantities represented in digital form.

Digital techniques and systems have the advantages of being relatively much easier to design
and having higher accuracy, programmability, noise immunity, easier storage of data and ease
of fabrication in integrated circuit form, leading to availability of more complex functions in a
smaller size. There all world, however, is analogue. Most physical quantities — position,
velocity, acceleration, force, pressure, temperature and flow rate, for example — are analogue in
nature. That is why analogue variables representing these quantities need to be digitized or
discretized at the input if we want to benefit from the features and facilities that come with the
use of digital techniques. In a typical system dealing with analogue inputs and outputs,
analogue variables are digitized at the input with the help of an analogue-to-digital converter
block and reconverted back to analogue form at the output using a digital-to-analogue converter
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block. Analogue-to-digital and digital-to-analogue converter circuits are discussed at length in
the latter part of the book. In the following sections we will discuss various number systems
commonly used for digital representation of data.

1.2 Introduction to Number Systems

We will begin our discussion on various number systems by briefly describing the parameters
that are common to all number systems. An understanding of these parameters and their
relevance to number systems is fundamental to the understanding of how various systems
operate. Different characteristics that define a number system include the number of
independent digits used in the number system, the place values of the different digits
constituting the number and the maximum numbers that can be written with the given number
of digits. Among the three characteristic parameters, the most fundamental is the number of
independent digits or symbols used in the number system. It is known as the radix or base of
the number system. The decimal number system with which we are all so familiar can be said to
have a radix of 10 as it has 10 independent digits, i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.Similarly, the
binary number system with only two independent digits, 0 and 1, is a radix-2 number system.
The octal and hexadecimal number systems have a radix (or base) of 8 and 16 respectively. We
will see in the following sections that the radix of the number system also determines the other
two characteristics. The place values of different digits in the integer part of the number are
given byr’, r', r, r’ and so on, starting with the digit adjacent to the radix point. For the
fractional part, these are r ', r2, r > and so on, again starting with the digit next to the radix
point. Here, r is the radix of the number system. Also, maximum numbers that can be written
with n digits in a given number system are equal to r™

1.3 Decimal Number System

The decimal number system is a radix-10 number system and therefore has 10 different digits or
symbols. These are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. All higher numbers after ‘9’ are represented in
terms of these 10 digits only. The process of writing higher-order numbers after ‘9’ consists in
writing the second digit (i.e. “1”) first, followed by the other digits, one by one, to obtain the
next 10 numbers from ‘10’ to ‘19°. The next 10 numbers from ‘20’ to ‘29’ are obtained by
writing the third digit (i.e.’2”) first, followed by digits ‘0’ to ‘9°, one by one. The process
continues until we have exhausted all possible two-digit combinations and reached ‘99°. Then
we begin with three-digit combinations. The first three-digit number consists of the lowest two-
digit number followed by ‘0’ (i.e. 100), and the process goes on endlessly.

The place values of different digits in a mixed decimal number, starting from the decimal point,
arel00, 101, 102 and so on (for the integer part) and 10—1, 10—2, 10-3 and so on (for the
fractional part). The value or magnitude of a given decimal number can be expressed as the sum
of the various digits multiplied by their place values or weights.

As an illustration, in the case of the decimal number 3586.265, the integer part (i.e. 3586) can
be expressed as

3586=6x 10"+ 8 x 10" + 5 x 10>+ 3 x 10> = 6 + 80 + 500 + 3000 = 3586
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and the fractional part can be expressed as
265=2x10"+6x102+5x10°=02+006+0005=0265

We have seen that the place values are a function of the radix of the concerned number system
and the position of the digits. We will also discover in subsequent sections that the concept of
each digit having a place value depending upon the position of the digit and the radix of the
number system is equally valid for the other more relevant number systems.

1.4 Binary Number System

The binary number system is a radix-2 number system with ‘0’ and ‘1’ as the two independent
digits. All larger binary numbers are represented in terms of ‘0’ and °1°. The procedure for
writing higher-order binary numbers after 1’ is similar to the one explained in the case of the
decimal number system. For example, the first 16 numbers in the binary number system would
be 0, 1, 10, 11, 100, 101, 110,111, 1000, 1001, 1010, 1011, 1100, 1101, 1110 and 1111. The
next number after 1111 is 10000, which is the lowest binary number with five digits. This also
proves the point made earlier that a maximum of only 16 (= 2*) numbers could be written with
four digits. Starting from the binary point, the place values of different digits in a mixed binary
number are 2°, 2!, 2% and so on (for the integer part) and2™', 272,27 and so on (for the fractional

part).
Example

Consider an arbitrary number system with the independent digits as 0, 1 and X. What is the
radix of this number system? List the first 10 numbers in this number system.

Solution
* The radix of the proposed number system is 3.

* The first 10 numbers in this number system would be 0, 1, X, 10, 11, 1X, X0, X1,
XX and 100.

1.4.1 Advantages

Logic operations are the backbone of any digital computer, although solving a problem on
computer could involve an arithmetic operation too. The introduction of the mathematics of
logic by George Boole laid the foundation for the modern digital computer. He reduced the
mathematics of logic to a binary notation of ‘0’ and ‘1°. As the mathematics of logic was well
established and had proved itself to be quite useful in solving all kinds of logical problem, and
also as the mathematics of logic (also known as Boolean algebra) had been reduced to a binary
notation, the binary number system had a clear edge over other number systems for use in
computer systems.

Yet another significant advantage of this number system was that all kinds of data could be
conveniently represented in terms of Os and 1s. Also, basic electronic devices used for hardware
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implementation could be conveniently and efficiently operated in two distinctly different
modes. For example, a bipolar transistor could be operated either in cut-off or in saturation very
efficiently.

Lastly, the circuits required for performing arithmetic operations such as addition, subtraction,
multiplication, division, etc., become a simple affair when the data involved are represented in
the form of Os and 1s.

1.5 Octal Number System

The octal number system has a radix of 8 and therefore has eight distinct digits. All higher-
order numbers are expressed as a combination of these on the same pattern as the one followed
in the case of the binary and decimal number systems described in Sections 1.3 and 1.4. The
independent digit sare 0, 1, 2, 3, 4, 5, 6 and 7. The next 10 numbers that follow ‘7°, for
example, would be 10, 11, 12,13, 14, 15, 16, 17, 20 and 21. In fact, if we omit all the numbers
containing the digits 8 or 9, or both ,from the decimal number system, we end up with an octal
number system. The place values for the different digits in the octal number system are 8°, 8',
8% and so on (for the integer part) and 8!, 872,87 and so on (for the fractional part).

1.6 Hexadecimal Number System

The hexadecimal number system is a radix-16 number system and its 16 basic digits are 0, 1, 2,
34,5,6,7,8,9, A, B, C, D, E and F. The place values or weights of different digits in a mixed
hexa decimal number are 16°, 16", 16 and so on (for the integer part) and 167,162, 16 and so
on(for the fractional part). The decimal equivalent of A, B, C, D, E and F are 10, 11, 12, 13, 14
and 15respectively, for obvious reasons.

The hexadecimal number system provides a condensed way of representing large binary
numbers stored and processed inside the computer. One such example is in representing
addresses of different memory locations. Let us assume that a machine has 64K of memory.
Such a memory has 64K (= 2'°= 65 536) memory locations and needs 65 536 different
addresses. These addresses can be designated as 0 to 65 535 in the decimal number system and
00000000 00000000 to 11111111 11111111 in the binary number system. The decimal number
system is not used in computers and the binary notation here appears too cumbersome and
inconvenient to handle. In the hexadecimal number system, 65 536different addresses can be
expressed with four digits from 0000 to FFFF. Similarly, the contents of the memory when
represented in hexadecimal form are very convenient to handle.

1.7 Number Systems — Some Common Terms

In this section we will describe some commonly used terms with reference to different number
systems.

1.7.1 Binary Number System

Bit is an abbreviation of the term ‘binary digit’ and is the smallest unit of information. It is
either ‘0’or “1°. A byte is a string of eight bits. The byte is the basic unit of data operated upon

4
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as a single unit in computers. A computer word is again a string of bits whose size, called the
‘word length’ or ‘word size’, is fixed for a specified computer, although it may vary from
computer to computer. The word length may equal one byte, two bytes, four bytes or be even
larger.

The I’s complement of a binary number is obtained by complementing all its bits, i.e. by
replacing Os with 1s and 1s with 0s. For example, the 1’s complement of (10010110), is
(01101001),. The 2’scomplement of a binary number is obtained by adding ‘1’ to its 1’s
complement. The 2°s complement of (10010110), is (01101010),.

1.7.2 Decimal Number System

Corresponding to the 1’s and 2’s complements in the binary system, in the decimal number
system we have the 9’s and 10’s complements. The 9’s complement of a given decimal number
is obtained by subtracting each digit from 9. For example, the 9’s complement of (2496),
would be (7503). The 10°’s complement is obtained by adding ‘1’ to the 9’s complement. The
10’s complement of (2496);4is (7504)1o.

1.7.3 Octal Number System

In the octal number system, we have the 7°s and 8’s complements. The 7’s complement of a
given octal number is obtained by subtracting each octal digit from 7. For example, the 7’s
complement of(562)s would be (215)s. The 8’s complement is obtained by adding ‘1’ to the 7’s
complement. The 8’s complement of (562)s would be (216)s.

1.7.4 Hexadecimal Number System

The 15’s and 16’s complements are defined with respect to the hexadecimal number system.
The 15 ’scomplement is obtained by subtracting each hex digit from 15. For example, the 15°s
complement of(3BF);swould be (C40),s. The /6’s complement is obtained by adding ‘1’ to the
15’°s complement. The 16°s complement of (2AE),;swould be (D52)6.

1.8 Number Representation in Binary

Different formats used for binary representation of both positive and negative decimal numbers
include the sign-bit magnitude method, the 1°s complement method and the 2’s complement
method.

1.8.1 Sign-Bit Magnitude

In the sign-bit magnitude representation of positive and negative decimal numbers, the MSB
represents the ‘sign’, with a ‘0’ denoting a plus sign and a ‘1’ denoting a minus sign. The
remaining bits represent the magnitude. In eight-bit representation, while MSB represents the
sign, the remaining seven bits represent the magnitude. For example, the eight-bit
representation of +9 would be 00001001, and that for =9 would be 10001001. An n—bit binary
representation can be used to represent decimal numbers in the range of —(2"" — 1) to +(2" ' —
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1). That is, eight-bit representation can be used to represent decimal numbers in the range from
—127 to +127 using the sign-bit magnitude format.

1.8.2 1’s Complement

In the 1’s complement format, the positive numbers remain unchanged. The negative numbers
are obtained by taking the 1’s complement of the positive counterparts. For example, +9 will be
represented as 00001001 in eight-bit notation, and —9 will be represented as 11110110, which is
the 1°s complement of 00001001. Again, n-bit notation can be used to represent numbers in the
range from —(2"" — I)to +(2""' — 1) using the 1’s complement format. The eight-bit
representation of the 1°s complement format can be used to represent decimal numbers in the
range from —127 to +127.

1.8.3 2’s Complement

In the 2’s complement representation of binary numbers, the MSB represents the sign, with a
‘0’used for a plus sign and a ‘1’ used for a minus sign. The remaining bits are used for
representing magnitude. Positive magnitudes are represented in the same way as in the case of
sign-bit or 1’scomplement representation. Negative magnitudes are represented by the 2’s
complement of their positive counterparts. For example, +9 would be represented as 00001001,
and —9 would be written as 11110111. Please note that, if the 2’s complement of the magnitude
of +9 gives a magnitude of —9,then the reverse process will also be true, i.e. the 2°s complement
of the magnitude of —9 will give a magnitude of +9. The n-bit notation of the 2°s complement
format can be used to represent all decimal numbers in the range from +(2""' — 1) to —=(2"™).
The 2’s complement format is very popular as it is very easy to generate the 2’s complement of
a binary number and also because arithmetic operations are relatively easier to perform when
the numbers are represented in the 2°s complement format.

1.9 Finding the Decimal Equivalent

The decimal equivalent of a given number in another number system is given by the sum of all
the digits multiplied by their respective place values. The integer and fractional parts of the
given number should be treated separately. Binary-to-decimal, octal-to-decimal and
hexadecimal-to-decimal conversions are illustrated below with the help of examples.

1.9.1 Binary-to-Decimal Conversion

The decimal equivalent of the binary number (1001.0101),is determined as follows:
* The integer part = 1001
* The decimal equivalent =1 x 2°+0 x2' +0x 2+ 1x2°=1+0+0+8=9
* The fractional part = .0101

« Therefore, the decimal equivalent =0 x 27 +1x 272+ 0x 27 + 1 x2-4=0+025+0

+0.0625=0.3125
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* Therefore, the decimal equivalent of (1001.0101), =9.3125
1.9.2 Octal-to-Decimal Conversion
The decimal equivalent of the octal number (137.21);is determined as follows:
* The integer part = 137
* The decimal equivalent =7 x 8"+ 3 x 8'+ 1 x 82 =7+ 24+ 64=95
* The fractional part = .21
+ The decimal equivalent =2 x 87" + 1 x 872 =0.265
* Therefore, the decimal equivalent of (137.21)g=(95.265),
1.9.3 Hexadecimal-to-Decimal Conversion
The decimal equivalent of the hexadecimal number (1E0.2A),4is determined as follows:
* The integer part = 1EQ
« The decimal equivalent = 0 x 16°+ 14 x 16" + 1 x 16> =0 + 224 + 256 = 480
* The fractional part = 2A
+ The decimal equivalent =2 x 16" + 10 x 16 > =0.164
* Therefore, the decimal equivalent of (1E0.2A),s= (480.164),0
Example

Find the decimal equivalent of the following binary numbers expressed in the 2’s complement
format:

(a) 00001110;

(b) 10001110.

Solution

(a) The MSB bit is ‘0’, which indicates a plus sign.

The magnitude bits are 0001110.

The decimal equivalent=0x2°+ 1 x 2"+ 1 x 22+ 1 x 2’ + 0 x2*+ 0 x 2° + 0 x 2°
=0+2+4+8+0+0+0=14

Therefore, 00001110 represents +14
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(b) The MSB bit is ‘1°, which indicates a minus sign

The magnitude bits are therefore given by the 2°s complement of 0001110, i.e. 1110010

The decimal equivalent =0 x 2°+ 1 x 2" + 0 x 22+ 0 x 2° + 1 x 2*+ 1 x 2°+1 x 2°
=0+2+0+0+16+32+64=114

Therefore, 10001110 represents —114

1.10 Decimal-to-Binary Conversion

As outlined earlier, the integer and fractional parts are worked on separately. For the integer
part, the binary equivalent can be found by successively dividing the integer part of the number
by 2and recording the remainders until the quotient becomes ‘0’. The remainders written in
reverse order constitute the binary equivalent. For the fractional part, it is found by successively
multiplying the fractional part of the decimal number by 2 and recording the carry until the
result of multiplication is ‘0’. The carry sequence written in forward order constitutes the binary
equivalent of the fractional part of the decimal number. If the result of multiplication does not
seem to be heading towards zero in the case of the fractional part, the process may be continued
only until the requisite number of equivalent bits has been obtained. This method of decimal—
binary conversion is popularly known as the double-dabble method. The process can be best
illustrated with the help of an example.

Example
We will find the binary equivalent of (13.375) .
Solution

* The integer part = 13

Divisor Dividend Remainder
2 13 —

2 6 1

2 3 0

2 1 1

— 0 1

* The binary equivalent of (13), is therefore (1101),
* The fractional part =.375

*0.375 x 2 =10.75 with a carry of 0

*0.75 x 2 =0.5 with a carry of 1

* 0.5 x 2 =0 with a carry of 1
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* The binary equivalent of (0.375),5= (.011),

* Therefore, the binary equivalent of (13.375),o=(1101.011),

1.11 Decimal-to-Octal Conversion

The process of decimal-to-octal conversion is similar to that of decimal-to-binary conversion.
The progressive division in the case of the integer part and the progressive multiplication while
working on the fractional part here are by ‘8’ which is the radix of the octal number system.
Again, the integer and fractional parts of the decimal number are treated separately. The process
can be best illustrated with the help of an example.

Example
We will find the octal equivalent of (73.75) 19
Solution

* The integer part = 73

Divisor Dividend Remainder
8 73 —

8 9 1

8 1 1

— 0 1

* The octal equivalent of (73);o=(111)g

* The fractional part = 0.75

*0.75 x 8 =0 with a carry of 6

* The octal equivalent of (0.75),0=(.6)s

* Therefore, the octal equivalent of (73.75)10 = (111.6)g
1.12 Decimal-to-Hexadecimal Conversion

The process of decimal-to-hexadecimal conversion is also similar. Since the hexadecimal
number system has a base of 16, the progressive division and multiplication factor in this case is
16. The process is illustrated further with the help of an example.

Example
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Let us determine the hexadecimal equivalent of (82.25) 9
Solution

* The integer part = 82

Divisor | Dividend Remainder
16 82 —

16 5 2

— 0 5

* The hexadecimal equivalent of (82),0= (52);6

* The fractional part = 0.25

*0.25 x 16 = 0 with a carry of 4

* Therefore, the hexadecimal equivalent of (82.25)9 = (52.4)16
1.13 Binary—Octal and Octal-Binary Conversions

An octal number can be converted into its binary equivalent by replacing each octal digit with
its three-bit binary equivalent. We take the three-bit equivalent because the base of the octal
number system is 8 and it is the third power of the base of the binary number system, i.e. 2. All
we have then to remember is the three-bit binary equivalents of the basic digits of the octal
number system. A binary number can be converted into an equivalent octal number by splitting
the integer and fractional parts into groups of three bits, starting from the binary point on both
sides. The Os can be added to complete the outside groups if needed.

Example

Let us find the binary equivalent of (374.26)s and the octal equivalent of (1110100.0100111),
Solution

* The given octal number = (374.26)s

* The binary equivalent= (011 111 100.010 110), =(011111100.010110),

* Any Os on the extreme left of the integer part and extreme right of the fractional part of the
equivalent binary number should be omitted. Therefore, (011111100.010110), =
(11111100.01011),

* The given binary number = (1110100.0100111),
*(1110100.0100111), = (1 110 100.010 011 1),

= (001 110 100.010 011 100), = (164.234)s

10
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1.14 Hex—Binary and Binary—Hex Conversions

A hexadecimal number can be converted into its binary equivalent by replacing each hex digit
with its four-bit binary equivalent. We take the four-bit equivalent because the base of the
hexadecimal number system is 16 and it is the fourth power of the base of the binary number
system. All we have then to remember is the four-bit binary equivalents of the basic digits of
the hexadecimal number system. A given binary number can be converted into an equivalent
hexadecimal number by splitting the integer and fractional parts into groups of four bits,
starting from the binary point on both sides. The Os can be added to complete the outside groups
if needed.

Example

Let wus find the binary equivalent of (17E.F6);sand the hex equivalent of
(1011001110.011011101),.

Solution

* The given hex number = (17E.F6),¢

* The binary equivalent = (0001 0111 1110.1111 0110),
=(000101111110.11110110),
=(101111110.1111011),

* The Os on the extreme left of the integer part and on the extreme right of the fractional part
have been omitted.

* The given binary number = (1011001110.011011101),
=(1011001110.0110 1110 1),

* The hex equivalent = (0010 1100 1110.0110 1110 1000), = (2CE.6E8);6

1.15 Hex—Octal and Octal-Hex Conversions

For hexadecimal—octal conversion, the given hex number is firstly converted into its binary
equivalent which is further converted into its octal equivalent. An alternative approach is firstly
to convert the given hexadecimal number into its decimal equivalent and then convert the
decimal number into an equivalent octal number. The former method is definitely more
convenient and straightforward. For octal-hexadecimal conversion, the octal number may first
be converted into an equivalent binary number and then the binary number transformed into its
hex equivalent. The other option is firstly to convert the given octal number into its decimal
equivalent and then convert the decimal number into its hex equivalent. The former approach is
definitely the preferred one. Two types of conversion are illustrated in the following example.

11
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Example
Let us find the octal equivalent of (2F.C4) sand the hex equivalent of (762.013)s
Solution
* The given hex number = (2F.C4)1s.
* The binary equivalent = (0010 1111.1100 0100),=(00101111.11000100),
=(101111.110001),= (101 111.110 001), = (57.61)s.
* The given octal number = (762.013)s.
* The octal number = (762.013)s= (111 110 010.000 001 011),
=(111110010.000001011),
= (0001 1111 0010.0000 0101 1000),= (1F2.058);s.

1.16 The Four Axioms

Conversion of a given number in one number system to its equivalent in another system has
been discussed at length in the preceding sections. The methodology has been illustrated with
solved examples. The complete methodology can be summarized as four axioms or principles,
which, if understood properly, would make it possible to solve any problem related to
conversion of a given number in one number system to its equivalent in another number system.

These principles are as follows:

1. Whenever it is desired to find the decimal equivalent of a given number in another number

system, it is given by the sum of all the digits multiplied by their weights or place values.
The integer and fractional parts should be handled separately. Starting from the radix point,
the weights of different digits are t°, r', r* for the integer part and r'', r2, 1 for the
fractional part, where r is the radix of the number system whose decimal equivalent needs
to be determined.

2. To convert a given mixed decimal number into an equivalent in another number system, the

integer part is progressively divided by r and the remainders noted until the result of
division yields a zero quotient. The remainders written in reverse order constitute the
equivalent. r is the radix of the transformed number system. The fractional part is
progressively multiplied by r and the carry recorded until the result of multiplication yields
a zero or when the desired number of bits has been obtained. The carrys written in forward
order constitute the equivalent of the fractional part.

3. The octal-binary conversion and the reverse process are straightforward. For octal-binary

conversion, replace each digit in the octal number with its three-bit binary equivalent. For
hexadecimal-binary conversion, replace each hex digit with its four-bit binary equivalent.
For binary—octal conversion, split the binary number into groups of three bits, starting from

12
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the binary point, and, if needed, complete the outside groups by adding Os, and then write
the octal equivalent of these three-bit groups. For binary—hex conversion, split the binary
number into groups of four bits, starting from the binary point, and, if needed, complete the
outside groups by adding Os, and then write the hex equivalent of the four-bit groups.

4. For octal-hexadecimal conversion, we can go from the given octal number to its binary
equivalent and then from the binary equivalent to its hex counterpart. For hexadecimal—
octal conversion, we can go from the hex to its binary equivalent and then from the binary
number to its octal equivalent.

Example

Assume an arbitrary number system having a radix of 5 and 0, 1, 2, L and M as its independent
digits.

Determine:

(a) the decimal equivalent of (12LM.LI);

(b) the total number of possible four-digit combinations in this arbitrary number system.

Solution

(a) The decimal equivalent of (12LM) is given by
Mx5"+Lx5'+2x5+1x5=4x5"+3x5'+2x5+1x5(L=3M=4)

=4+15+50+125=194

The decimal equivalent of (L1) is given by
Lx5'+1x57=3x5"+52=064

Combining the results, (12LM.L1)s = (194.64),,.

(b) The total number of possible four-digit combinations = 5* = 625.

Example

The 7°s complement of a certain octal number is 5264. Determine the binary and hexa decimal
equivalents of that octal number.

Solution
» The 7’s complement = 5264.
* Therefore, the octal number = (2513)s.

* The binary equivalent = (010 101 001 011), = (10101001011),.

13
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* Also, (10101001011), = (101 0100 1011), = (0101 0100 1011),= (54B);s.

¢ Therefore, the hex equivalent of (2513)s= (54B),¢ and the binary equivalent of (2513)s=
(10101001011),.

1.17 Floating-Point Numbers

Floating-point notation can be used conveniently to represent both large as well as small
fractional or mixed numbers. This makes the process of arithmetic operations on these numbers
relatively much easier. Floating-point representation greatly increases the range of numbers,
from the smallest to the largest, that can be represented using a given number of digits.
Floating-point numbers are in general expressed in the form

N=m x b° (1.1)

where m is the fractional part, called the significand or mantissa, e is the integer part, called the
exponent, and b is the base of the number system or numeration. Fractional part m is a p-digit
number of the form (£d. dddd...dd), with each digit d being an integer between 0 and b — 1
inclusive. If the leading digit of m is nonzero, then the number is said to be normalized.

Equation (1.1) in the case of decimal, hexadecimal and binary number systems will be written
as follows:

Decimal system

N=m x 10°(1.2)
Hexadecimal system

N=m x 16°(1.3)
Binary system

N=m x 2°(1.4)

For example, decimal numbers 0.0003754 and 3754 will be represented in floating-point
notation as 3.754 x 107" and 3.754 x 10’ respectively. A hex number 257.ABF will be
represented as2.57ABF x 16% In the case of normalized binary numbers, the leading digit,
which is the most significant bit, is always ‘1’ and thus does not need to be stored explicitly.

Also, while expressing a given mixed binary number as a floating-point number, the radix point
is so shifted as to have the most significant bit immediately to the right of the radix point as a
‘1’. Both the mantissa and the exponent can have a positive or a negative value.

The mixed binary number (110.1011), will be represented in floating-point notation as
.1101011x 2° = .1101011e + 0011. Here, .1101011 is the mantissa and e + 0011 implies that the
exponent ist3. As another example, (0.000111), will be written as .111e — 0011, with .111
being the mantissa and e — 0011 implying an exponent of —3. Also, (—0.00000101), may be
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written as —101 x 27 =—101e — 0101, where —.101 is the mantissa and e — 0101 indicates an
exponent of —5. If we wanted to represent the mantissas using eight bits, then .1101011 and
.111 would be represented as .11010110and .11100000.

1.18Binary Codes

The present chapter is an extension of the previous chapter on number systems. In the previous
chapter, beginning with some of the basic concepts common to all number systems and an
outline on the familiar decimal number system, we went on to discuss the binary, the
hexadecimal and the octal number systems. While the binary system of representation is the
most extensively use done in digital systems, including computers, octal and hexadecimal
number systems are commonly used for representing groups of binary digits. The binary coding
system, called the straight binary code and discussed in the previous chapter, becomes very
cumbersome to handle when used to represent larger decimal numbers. To overcome this
shortcoming, and also to perform many other special functions, several binary codes have
evolved over the years. Some of the better-known binary codes, including those used efficiently
to represent numeric and alphanumeric data, and the codes used to perform special functions,
such as detection and correction of errors, will be detailed in this chapter.

1.19 Binary Coded Decimal

The binary coded decimal (BCD) is a type of binary code used to represent a given decimal
number in an equivalent binary form. BCD-to-decimal and decimal-to-BCD conversions are
very easy and straight forward. It is also far less cumbersome an exercise to represent a given
decimal number in an equivalent BCD code than to represent it in the equivalent straight binary
form discussed in the previous chapter.

The BCD equivalent of a decimal number is written by replacing each decimal digit in the
integer and fractional parts with its four-bit binary equivalent. As an example, the BCD
equivalent of (23.15),ois written as (0010 0011.0001 0101)gcp. The BCD code described above
is more precisely known as the 8421 BCD code, with 8, 4, 2 and 1 representing the weights of
different bits in the four-bit groups, starting from MSB and proceeding towards LSB. This
feature makes it a weighted code, which means that each bit in the four-bit group representing a
given decimal digit has an assigned

Table 1.1 BCD codes.

Decimal 8421 BCD code 4221 BCD code 5421 BCD code
0 0000 0000 0000
1 0001 0001 0001
2 0010 0010 0010
15
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3 0011 0011 0011
4 0100 1000 0100
5 0101 0111 1000
6 0110 1100 1001
7 0111 1101 1010
8 1000 1110 1011
9 1001 1111 1100

weight. Other weighted BCD codes include the 4221 BCD and 5421 BCD codes. Again, 4, 2, 2
andl in the 4221 BCD code and 5, 4, 2 and 1 in the 5421 BCD code represent weights of the
relevant bits. Table 1.1 shows a comparison of 8421, 4221 and 5421 BCD codes. As an
example, (98.16)owill be written as 1111 1110.0001 1100 in 4221 BCD code and 1100
1011.0001 1001 in 5421 BCD code. Since the 8421 code is the most popular of all the BCD
codes, it is simply referred to as the BCD code.

1.19.1 BCD-to-Binary Conversion

A given BCD number can be converted into an equivalent binary number by first writing its
decimal equivalent and then converting it into its binary equivalent. The first step is
straightforward, and these cond step was explained in the previous chapter. As an example, we
will find the binary equivalent of the BCD number 0010 1001.0111 0101:

* BCD number: 0010 1001.0111 0101.
* Corresponding decimal number: 29.75.

* The binary equivalent of 29.75 can be determined to be 11101 for the integer part and .11 for
the fractional part.

* Therefore, (0010 1001.0111 0101)pcp=(11101.11),.
1.19.2 Binary-to-BCD Conversion

The process of binary-to-BCD conversion is the same as the process of BCD-to-binary
conversion executed in reverse order. A given binary number can be converted into an
equivalent BCD number by first determining its decimal equivalent and then writing the
corresponding BCD equivalent. As an example, we will find the BCD equivalent of the binary
number 10101011.101:

* The decimal equivalent of this binary number can be determined to be 171.625.
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* The BCD equivalent can then be written as 0001 0111 0001.0110 0010 0101.
1.19.3 Higher-Density BCD Encoding

In the regular BCD encoding of decimal numbers, the number of bits needed to represent a
given decimal number is always greater than the number of bits required for straight binary
encoding of the same. For example, a three-digit decimal number requires 12 bits for
representation in conventional BCD format. However, since 2'% 10°, if these three decimal
digits are encoded together, only 10bits would be needed to do that. Two such encoding
schemes are Chen-Ho encoding and the densely packed decimal. The latter has the advantage
that subsets of the encoding encode two digits in the optimal seven bits and one digit in four
bits like regular BCD.

1.19.4 Packed and Unpacked BCD Numbers

In the case of unpacked BCD numbers, each four-bit BCD group corresponding to a decimal
digit is stored in a separate register inside the machine. In such a case, if the registers are eight
bits or wider, the register space is wasted.

In the case of packed BCD numbers, two BCD digits are stored in a single eight-bit register.
The process of combining two BCD digits so that they are stored in one eight-bit register
involves shifting the number in the upper register to the left 4 times and then adding the
numbers in the upper and lower registers. The process is illustrated by showing the storage of
decimal digits ‘5* and “7’:

* Decimal digit 5 is initially stored in the eight-bit register as: 0000 0101.

* Decimal digit 7 is initially stored in the eight-bit register as: 0000 0111.

« After shifting to the left 4 times, the digit 5 register reads: 0101 0000.

* The addition of the contents of the digit 5 and digit 7 registers now reads: 0101 0111.
1.20 Excess-3 Code

The excess-3 code is another important BCD code. It is particularly significant for arithmetic
operations as it overcomes the shortcomings encountered while using the 8421 BCD code to
add two decimal digits whose sum exceeds 9. The excess-3 code has no such limitation, and it
considerably simplifies arithmetic operations. Table 1.2 lists the excess-3 code for the decimal
numbers 0-9.

The excess-3 code for a given decimal number is determined by adding 3’ to each decimal
digit in the given number and then replacing each digit of the newly found decimal number by
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Table 1.2Excess-3 code equivalent of decimal numbers.

Decimal number Excess-3 code Decimal number Excess-3 code
0 0011 5 1000
1 0100 6 1001
2 0101 7 1010
3 0110 8 1011
4 0111 9 1100

its four-bit binary equivalent. It may be mentioned here that, if the addition of ‘3’ to a digit
produces a carry, as is the case with the digits 7, 8 and 9, that carry should not be taken forward.
The result of addition should be taken as a single entity and subsequently replaced with its
excess-3 code equivalent. As an example, let us find the excess-3 code for the decimal number
597:

* The addition of ‘3’ to each digit yields the three new digits/numbers ‘8’, “12* and ‘10°.
* The corresponding four-bit binary equivalents are 1000, 1100 and 1010 respectively.
* The excess-3 code for 597 is therefore given by: 1000 1100 1010 =100011001010.

Also, it is normal practice to represent a given decimal digit or number using the maximum
number of digits that the digital system is capable of handling. For example, in four-digit
decimal arithmetic, 5 and 37 would be written as 0005 and 0037 respectively. The
corresponding 8421 BCD equivalents would be 0000000000000101 and 0000000000110111
and the excess-3 code equivalents would be0011001100111000 and 0011001101101010.

Corresponding to a given excess-3 code, the equivalent decimal number can be determined by
first splitting the number into four-bit groups, starting from the radix point, and then
subtracting0011 from each four-bit group. The new number is the 8421 BCD equivalent of the
givenexcess-3 code, which can subsequently be converted into the equivalent decimal number.
As an example, following these steps, the decimal equivalent of excess-3 number
01010110.10001010 would be 23.57.

Another significant feature that makes this code attractive for performing arithmetic operations
is that the complement of the excess-3 code of a given decimal number yields the excess-3 code
for 9’scomplement of the decimal number. As adding 9’s complement of a decimal number B to
a decimal number A achieves A — B, the excess-3 code can be used effectively for both addition
and subtraction of decimal numbers.

Example
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Find (a) the excess-3 equivalent of (237.75)pand (b) the decimal equivalent of the excess-3
number110010100011.01110101.

Solution

(a) Integer part = 237. The excess-3 code for (237),ois obtained by replacing 2, 3 and 7 with the
four-bit binary equivalents of 5, 6 and 10 respectively. This gives the excess-3 code for
(237)10as: 0101 0110 1010=010101101010.

Fractional part = .75. The excess-3 code for (.75);, is obtained by replacing 7 and 5 with the
four-bit binary equivalents of 10 and 8 respectively. That is, the excess-3 code for (.75);9 =
.10101000.

Combining the results of the integral and fractional parts, theexcess-3code for(237.75)¢
010101101010.10101000.

(b) The excess-3 code = 110010100011.01110101 =1100 1010 0011.0111 0101.

Subtracting 0011 from each four-bit group, we obtain the new number as: 1001 0111
0000.01000010.

Therefore, the decimal equivalent = (970.42),,.
1.21 Gray Code

The Gray code was designed by Frank Gray at Bell Labs and patented in 1953. It is an weighted
binary code in which two successive values differ only by 1 bit. Owing to this feature, the
maximum error that can creep into a system using the binary Gray code to encode data is much
less than the worst-case error encountered in the case of straight binary encoding. Table 1.3 lists
the binary and ~ Gray code equivalents of decimal numbers 0—15. An examination of the four-
bit Gray code numbers, as listed in Table 1.3, shows that the last entry rolls over to the first
entry. That is, the last and the first entry also differ by only 1 bit. This is known as the cyclic
property of the Gray code. Although there can be more than one Gray code for a given word
length, the term was first applied to a specific binary code for non-negative integers and called
the binary-reflected Gray code or simply the Gray code.

There are various ways by which Gray codes with a given number of bits can be
remembered. One such way is to remember that the least significant bit follows a repetitive
pattern of ‘2° (11,00, 11,...), the next higher adjacent bit follows a pattern of ‘4’ (1111, 0000,
1111, ...) and soon. We can also generate the n-bit Gray code recursively by prefixing a ‘0’ to
the Gray code for n —1 bits to obtain the first 2" numbers, and then prefixing ‘1’ to the
reflected Gray code for n —1 bits to obtain the remaining 2" numbers. The reflected Gray code
is nothing but the code written in reverse order. The process of generation of higher-bit Gray
codes using the reflect-and-prefix method is illustrated in Table 1.4. The columns of bits
between those representing the Gray codes give the intermediate step of writing the code
followed by the same written in reverse order.
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Table 1.3Gray code.
Decimal Binary Gray Decimal Binary Gray
0 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111
3 0011 0010 11 1011 1110
4 0100 0110 12 1100 1010
5 0101 0111 13 1101 1011
6 0110 0101 14 1110 1001
7 0111 0100 15 1111 1000

Table 1.4Generation of higher-bit Gray code numbers.

One-bit Gray code Two-bit Gray code Three-bit Gray code Four-bit Gray code
0 0 00 00 000 000 0000
1 1 01 01 001 001 0001
1 11 11 011 011 0011
0 10 10 010 010 0010
10 110 110 0110
11 111 111 0111
01 101 101 0101
00 100 100 0100
100 1100
101 1101
20
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111 1111
110 1110
010 1010
011 1011
001 1001
000 1000

1.21.1 Binary—Gray Code Conversion

A given binary number can be converted into its Gray code equivalent by going through the
following steps:

1. Begin with the most significant bit (MSB) of the binary number. The MSB of the Gray code
equivalent is the same as the MSB of the given binary number.

2. The second most significant bit, adjacent to the MSB, in the Gray code number is obtained
by adding the MSB and the second MSB of the binary number and ignoring the carry, if any.
That is ,if the MSB and the bit adjacent to it are both ‘1°, then the corresponding Gray code bit
would be a“0’.

3. The third most significant bit, adjacent to the second MSB, in the Gray code number is
obtained by adding the second MSB and the third MSB in the binary number and ignoring the
carry, if any.

4. The process continues until we obtain the LSB of the Gray code number by the addition of
the LSB and the next higher adjacent bit of the binary number.

The conversion process is further illustrated with the help of an example showing step-by-step
conversion of (1011); into its Gray code equivalent:

Binary 1011
Gray codel- - -
Binaryl011
Gray codel 1- -
Binaryl011

Gray codell1-
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Binaryl011
Gray codel 110
1.21.2 Gray Code—Binary Conversion

A given Gray code number can be converted into its binary equivalent by going through the
following steps:

1. Begin with the most significant bit (MSB). The MSB of the binary number is the same as the
MSB of the Gray code number.

2. The bit next to the MSB (the second MSB) in the binary number is obtained by adding the
MSB in the binary number to the second MSB in the Gray code number and disregarding the
carry, if any.

3. The third MSB in the binary number is obtained by adding the second MSB in the binary
number to the third MSB in the Gray code number. Again, carry, if any, is to be ignored.

4. The process continues until we obtain the LSB of the binary number.

The conversion process is further illustrated with the help of an example showing step-by-step
conversion of the Gray code number 1110 into its binary equivalent:

Gray codel110

Binaryl- - -

Gray codel110

Binary10 - -

Gray codel110
Binary101-

Gray codel110
Binary1011

1.22 Alphanumeric Codes

Alphanumeric codes, also called character codes, are binary codes used to represent
alphanumeric data. The codes write alphanumeric data, including letters of the alphabet,
numbers, mathematical symbols and punctuation marks, in a form that is understandable and
processable by a computer. These codes enable us to interface input—output devices such as
keyboards, printers, VDUs, etc., with the computer. One of the better-known alphanumeric
codes in the early days of evolution of computers, when punched cards used to be the medium
of inputting and outputting data, is the 12-bit Hollerith code. The Hollerith code was used in
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those days to encode alphanumeric data on punched cards. The code has, however, been
rendered obsolete, with the punched card medium having completely vanished from the scene.
Two widely used alphanumeric codes include the ASCII and the EBCDIC codes. While the
former is popular with microcomputers and is used on nearly all personal computers and
workstations, the latter is mainly used with larger systems.

Traditional character encodings such as ASCII, EBCDIC and their variants have a limitation
interms of the number of characters they can encode. In fact, no single encoding contains
enough characters so as to cover all the languages of the European Union. As a result, these
encodings do not permit multilingual computer processing. Unicode, developed jointly by the
Unicode Consortium and the International Standards Organization (ISO), is the most complete
character encoding scheme that allows text of all forms and languages to be encoded for use by
computers.

1.23Digital Arithmetic

Having discussed different methods of numeric and alphanumeric data representation in the first
two chapters, the next obvious step is to study the rules of data manipulation. Two types of
operation that are performed on binary data include arithmetic and logic operations. Basic
arithmetic operations include addition, subtraction, multiplication and division. AND, OR and
NOT are the basic logic functions. While the rules of arithmetic operations are covered in the
present chapter, those related to logic operations will be discussed in the next chapter.

1.24 Basic Rules of Binary Addition and Subtraction

The basic principles of binary addition and subtraction are similar to what we all know so well
in the case of the decimal number system. In the case of addition, adding ‘0’ to a certain digit
produces the same digit as the sum, and, when we add ‘1’ to a certain digit or number in the
decimal number system, the result is the next higher digit or number, as the case may be. For
example, 6 + 1 in decimal equals ‘7’ because ‘7’ immediately follows ‘6’ in the decimal
number system. Also, 7 + 1 in octal equals ‘10’ as, in the octal number system, the next
adjacent higher number after <7 is “10°. Similarly, 9 + 1 in the hexadecimal number system is
‘A’. With this background, we can write the basic rules of binary addition as follows:

1.0+ 0=0.
2.0+1=1.
3.1+0=1.

4.1+ 1=0with a carry of ‘1’ to the next more significant bit.
5.1+ 1+ 1=1with a carry of ‘1’ to the next more significant bit.

Table 1.5 summarizes the sum and carry outputs of all possible three-bit combinations. We have
taken three-bit combinations as, in all practical situations involving the addition of two larger
bit
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Table 1.5Binary addition of three bits.

A B Carry- | Sum Carry- | A B Carry- | Sum Carry-
in (Cy) out (C,) in (Ciy) out (C,)

0 0 0 0 0 1 0 0 1 0

0 0 1 1 0 1 0 1 0 1

0 1 0 1 0 1 1 0 0 1

0 1 1 0 1 1 1 1 1 1

numbers, we need to add three bits at a time. Two of the three bits are the bits that are part of
the two binary numbers to be added, and the third bit is the carry-in from the next less
significant bit column.

The basic principles of binary subtraction include the following:

1.0-0=0.
2.1-0=1.
3.1-1=0.

4.0—1=1 with a borrow of 1 from the next more significant bit.

The above-mentioned rules can also be explained by recalling rules for subtracting decimal
numbers. Subtracting ‘0’ from any digit or number leaves the digit or number unchanged. This
explains the first two rules. Subtracting ‘1’ from any digit or number in decimal produces the
immediately preceding digit or number as the answer. In general, the subtraction operation of
larger-bit binary numbers also involves three bits, including the two bits involved in the
subtraction, called the minuend(the upper bit) and the subtrahend (the lower bit), and the
borrow-in. The subtraction operation produces the difference output and borrow-out, if any.
Table 1.6 summarizes the binary subtraction operation. The entries in Table 1.6 can be
explained by recalling the basic rules of binary subtraction mentioned above, and that the
subtraction operation involving three bits, that is, the minuend (A) , the subtrahend (B) and the
borrow-in (Bj;,), produces a difference output equal to (A — B — By,). It may be mentioned here
that, in the case of subtraction of larger-bit binary numbers, the least significant bit column
always involves two bits to produce a difference output bit and the borrow-out

Table 1.6Binary subtraction.

Inputs Outputs
Minuend Subtrahend Borrow-in Difference Borrow-out
0 0 0 0 0
0 0 1 1 1
24
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bit. The borrow-out bit produced here becomes the borrow-in bit for the next more significant
bit column, and the process continues until we reach the most significant bit column. The
addition and subtraction of larger-bit binary numbers is illustrated with the help of examples in
sections 3.2 and 3.3respectively.

1.25 Addition of Larger-Bit Binary Numbers

The addition of larger binary integers, fractions or mixed binary numbers is performed column
wise in just the same way as in the case of decimal numbers. In the case of binary numbers,
however, we follow the basic rules of addition of two or three binary digits, as outlined earlier.
The process of adding two larger-bit binary numbers can be best illustrated with the help of an
example.

Consider two generalized four-bit binary numbers (Aj;, Ay, Ay, Ag) and (B3, By, By, By), with A,
and Byrepresenting the LSB and A; and B; representing the MSB of the two numbers. The
addition of these two numbers is performed as follows. We begin with the LSB position. We
add the LSB bits and record the sum S, below these bits in the same column and take the carry
Co, if any, to the next column of bits. For instance, if Aj =1 and By= 0, then Sy =1 and Cy, = 0.
Next we add the bits A; and Bjand the carry Cy from the previous addition. The process
continues until we reach the MSB bits. The four steps are shown ahead. C,, C;, C, and C; are
carrys, if any, produced as a result of adding first, second, third and fourth column bits
respectively, starting from LSB and proceeding towards MSB. A similar procedure is followed
when the given numbers have both integer as well as fractional parts:

(] A R Y
. A, Ay A A, 2 A A I
B, B B B B, B B, B
I"ll 'ﬁl "ll
Ill'_-.l IZI:':] (] I{':I L, If',_:-
I A A A; 4 A4 1 \ 1,
2 B, B B B B B, A,
5. 5, 5 A 5 9, 5
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1.25.1 Addition Using the 2’s Complement Method

The 2’s complement is the most commonly used code for processing positive and negative
binary numbers. It forms the basis of arithmetic circuits in modern computers. When the
decimal numbers to be added are expressed in 2’s complement form, the addition of these
numbers, following the basic laws of binary addition, gives correct results. Final carry obtained,
if any, while adding MSBs should be disregarded. To illustrate this, we will consider the
following four different cases:

1. Both the numbers are positive.

2. Larger of the two numbers is positive.

3. The larger of the two numbers is negative.

4. Both the numbers are negative.

Case 1

* Consider the decimal numbers +37 and +18.

* The 2’s complement of +37 in eight-bit representation = 00100101.
* The 2’s complement of +18 in eight-bit representation = 00010010.

* The addition of the two numbers, that is, +37 and +18, is performed as follows

IR RN R
+ LR TLRIT O

OOTTOITT
* The decimal equivalent of (00110111), is (+55), which is the correct answer.
Case 2
* Consider the two decimal numbers +37 and -18.
* The 2’s complement representation of +37 in eight-bit representation = 00100101.
* The 2’s complement representation of —18 in eight-bit representation = 11101110.

* The addition of the two numbers, that is, +37 and —18, is performed as follows:
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+ 11100110
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* The final carry has been disregarded.

* The decimal equivalent of (00010011), is +19, which is the correct answer.

Case 3

* Consider the two decimal numbers +18 and —37.

*—37 in 2’s complement form in eight—bit representation = 11011011.

*+18 in 2’s complement form in eight—bit representation = 00010010.

* The addition of the two numbers, that is, =37 and +18, is performed as follows:
1011011

+ (R 010
L1000 10

* The decimal equivalent of (11101101),, which is in 2’s complement form, is —19, which is the
correct answer. 2’s complement representation was discussed in detail in Chapter 1 on number
systems.

Case 4

* Consider the two decimal numbers —18 and —37.
*—18in 2’s complement form is 11101110.
*—37in 2’s complement form is 11011011.

* The addition of the two numbers, that is, —37 and —18, is performed as follows:

[ L0 [0 ]
+ 11101110
| JOW0 O]

* The final carry in the ninth bit position is disregarded.
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* The decimal equivalent of (11001001),, which is in 2°s complement form, is —55, which is the
correct answer.

It may also be mentioned here that, in general, 2’s complement notation can be used to perform
addition when the expected result of addition lies in the range from —2"' to +(2"' - 1), n being
the number of bits used to represent the numbers. As an example, eight-bit 2’s complement
arithmetic cannot be used to perform addition if the result of addition lies outside the range
from —128 to +127. Different steps to be followed to do addition in 2’s complement
arithmetic are summarized as follows:

1. Represent the two numbers to be added in 2°s complement form.
2. Do the addition using basic rules of binary addition.

3. Disregard the final carry, if any.

4. The result of addition is in 2’s complement form.

Example

Perform the following addition operations:

1.(275.75) 9% (37.875)19

2. (AF1.B3),s+ (FFF.E) s

Solution

1. As a first step, the two given decimal numbers will be converted into their equivalent binary
numbers (decimal-to-binary conversion has been covered at length in Chapter 1, and therefore
the decimal-to-binary conversion details will not be given here):

(275.75)10= (100010011.11), and (37.875)0= (100101.111),

The two binary numbers can be rewritten as (100010011.110), and (000100101.111), to have
the same number of bits in their integer and fractional parts. The addition of two numbers is
performed as follows:

TCEICAORREL
COW W] 111
[0 11001101

The decimal equivalent of (100111001.101), is (313.625),.

2. (AF1.B3);s = (101011110001.10110011), and (FFF.E);s = (111111111111.1110),.
(111111111111.1110), can also be written as (111111111111.11100000), to have the same
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number of bits in the integer and fractional parts. The two numbers can now be added as
follows:

OLOTO L] 1O 100 1001 |
OLERRLEEEELTE. L1 OO0
EICRRERT 11 DO . TOL TOM ]

The hexadecimal equivalent of (1101011110001.10010011), is (1AF1.93)6, which is equal to
the hex addition of (AF1.B3);sand (FFF.E);.

Example
Find out whether 16-bit 2’s complement arithmetic can be used to add 14 276 and 18 490.
Solution

The addition of decimal numbers 14 276 and 18 490 would yield 32 766. 16-bit 2’s complement
arithmetic has a range of —2'° to +(2"° — 1), i.e. =32 768 to +32 767. The expected result is
inside the allowable range. Therefore, 16-bit arithmetic can be used to add the given numbers.

Example

Add — 118 and — 32 firstly using eight-bit 2’s complement arithmetic and then using 16-bit
2’scomplement arithmetic. Comment on the results.

Solution
* —118 in eight-bit 2’s complement representation = 10001010.
* —32 in eight-bit 2°s complement representation = 11100000.

* The addition of the two numbers, after disregarding the final carry in the ninth bit position, is
01101010. Now, the decimal equivalent of (01101010),, which is in 2’s complement form, is
+106. The reason for the wrong result is that the expected result, i.e. —150, lies outside the
range of eight-bit 2’s complement arithmetic. Eight-bit 2°s complement arithmetic can be used
when the expected result lies in the range from —27 to + (2’— 1), i.e. =128 to +127. =118 in 16-
bit 2’scomplement representation = 1111111110001010.

* —32 in 16-bit 2’s complement representation = 1111111111100000.

* The addition of the two numbers, after disregarding the final carry in the 17th position,
produces 1111111101101010. The decimal equivalent of (1111111101101010),, which is in 2’s
complement form, is —150, which is the correct answer. 16-bit 2’s complement arithmetic has
produced the correct result, as the expected result lies within the range of 16-bit 2’s complement
notation.
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1.26 Subtraction of Larger-Bit Binary Numbers

Subtraction is also done column wise in the same way as in the case of the decimal number
system. In the first step, we subtract the LSBs and subsequently proceed towards the MSB.
Wherever the subtrahend (the bit to be subtracted) is larger than the minuend, we borrow from
the next adjacent higher bit position having a ‘1°. As an example, let us go through different
steps of subtracting (1001),from (1100),.

In this case, ‘1’ is borrowed from the second MSB position, leaving a ‘0’ in that position. The
borrow is first brought to the third MSB position to make it ‘10°. Out of ‘10’ in this position, ‘1’
is taken to the LSB position to make ‘10’ there, leaving a ‘1’ in the third MSB position. 10 — 1
in the LSB column gives 1°, 1 — 0 in the third MSB column gives ‘1°, 0 — 0 in the second MSB
column gives ‘0’ and 1 — | in the MSB also gives ‘0’ to complete subtraction. Subtraction of
mixed numbers is also done in the same manner. The above-mentioned steps are summarized as
follows:

1. 1 1 0 0 2 X I & 0
1 O 0 1 1 O O 1

L2 1L 1 0 0 4 1 1 0 0
1 o 0 1 1 0 0 1

1.26.1 Subtraction Using 2’s Complement Arithmetic

Subtraction is similar to addition. Adding 2’s complement of the subtrahend to the minuend and
disregarding the carry, if any, achieves subtraction. The process is illustrated by considering six
different cases:

1. Both minuend and subtrahend are positive. The subtrahend is the smaller of the two.
2. Both minuend and subtrahend are positive. The subtrahend is the larger of the two.
3. The minuend is positive. The subtrahend is negative and smaller in magnitude.

4. The minuend is positive. The subtrahend is negative and greater in magnitude.

5. Both minuend and subtrahend are negative. The minuend is the smaller of the two.
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6. Both minuend and subtrahend are negative. The minuend is the larger of the two.
Case 1

* Let us subtract +14 from +24.

* The 2’s complement representation of +24 = 00011000.

* The 2’s complement representation of +14 = 00001110.

* Now, the 2’s complement of the subtrahend (i.e. +14)is 11110010.

* Therefore, +24 — (+14) is given by

OO0 1 1O
+ 11110010
BLLERRERRER

with the final carry disregarded.
* The decimal equivalent of (00001010), is +10, which is the correct answer.
Case 2
* Let us subtract +24 from +14.
* The 2’s complement representation of +14 = 00001110.
* The 2’s complement representation of +24 = 00011000.
* The 2’s complement of the subtrahend (i.e. +24) = 11101000.
e Therefore, +14 — (+24) is given by
(ACMMAT T T4

+ 111000
TITI0110

* The decimal equivalent of (11110110),, which is of course in 2’s complement form, is —10
which is the correct answer.

Case 3

* Let us subtract —14 from +24.
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* The 2’s complement representation of +24 = 00011000 = minuend.
* The 2’s complement representation of —14 = 11110010 = subtrahend.
* The 2’s complement of the subtrahend (i.e. —14) = 00001110.

* Therefore, +24 — (—14) is performed as follows:

00011000
+ 00001110
00100110

* The decimal equivalent of (00100110), is +38, which is the correct answer.
Case 4

* Let us subtract —24 from +14.

* The 2’s complement representation of +14 = 00001110 = minuend.

* The 2’s complement representation of —24 = 11101000 = subtrahend.

* The 2’s complement of the subtrahend (i.e. —24) = 0001 1000.

* Therefore, +14 — (—24) is performed as follows:

00001110
+ 00011000
00100110

* The decimal equivalent of (00100110), is +38, which is the correct answer.
Case S

* Let us subtract —14 from —24.

* The 2’s complement representation of —24 = 11101000 = minuend.

* The 2’s complement representation of —14=11110010 = subtrahend.

* The 2’s complement of the subtrahend = 00001110.
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* Therefore, —24 — (—14) is given as follows:

1101000
+ 00001110
I1110110

* The decimal equivalent of (11110110),, which is in 2’s complement form, is —10, which is the
correct answer.

Case 6

* Let us subtract —24 from —14.

* The 2’s complement representation of —14 = 11110010 = minuend.
* The 2’s complement representation of —24=11101000 = subtrahend.
* The 2’s complement of the subtrahend = 00011000.

e Therefore, —14 — (—24) is given as follows:

1110010
+ 00011000
00001010

with the final carry disregarded.

* The decimal equivalent of (00001010),, which is in 2’s complement form, is +10, which is the
correct answer.

It may be mentioned that, in 2’s complement arithmetic, the answer is also in 2’s complement
notation, only with the MSB indicating the sign and the remaining bits indicating the
magnitude. In2’s complement notation, positive magnitudes are represented in the same way as
the straight binary numbers, while the negative magnitudes are represented as the 2’s
complement of their straight binary counterparts. A ‘0’ in the MSB position indicates a positive
sign, while a ‘1’ in the MSB position indicates a negative sign.

The different steps to be followed to do subtraction in 2’s complement arithmetic are
summarized as follows:

33

AllAbtEngg Android Application for Anna University, Polytechnic & School



www.AllAbtEngg.com

1. Represent the minuend and subtrahend in 2°s complement form.
2. Find the 2’s complement of the subtrahend.

3. Add the 2’s complement of the subtrahend to the minuend.

4. Disregard the final carry, if any.

5. The result is in 2’s complement form.

6. 2°s complement notation can be used to perform subtraction when the expected result of
subtraction lines in the range from —2"' to +(2"" — 1), n being the number of bits used to
represent the numbers.

Example

Subtract (1110.011), from (11011.11), using basic rules of binary subtraction and verify the
result by showing equivalent decimal subtraction.

Solution

The minuend and subtrahend are first modified to have the same number of bits in the integer
and fractional parts. The modified minuend and subtrahend are (11011.110), and (01110.011),
respectively:

(MIEI N BLT
— 01110011
0lIaT.a71

The decimal equivalents of (11011.110), and (01110.011), are 27.75 and 14.375 respectively.
Their difference is 13.375, which is the decimal equivalent of (01101.011)5.

Example
Subtract (a) (— 64)ofrom (+ 32)9and (b) (29.4) 1ifrom (4F.B);s. Use 2’s complement arithmetic.
Solution:

(a) (+32)9 in 2’s complement notation = (00100000),.

(—64);0in 2’s complement notation = (11000000),.

The 2’s complement of (—64),o= (01000000),.

(+32)10 — (—64)10is determined by adding the 2°s complement of (—64);oto (+32)1,.

Therefore, the addition of (00100000), to (01000000), should give the result. The

operation is shown as follows:
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QOO0
+ 01000
01 10000

The decimal equivalent of (01100000), is +96, which is the correct answer as
+32 — (—64) = +96.

(b) The minuend = (4F.B);,= (01001111.1011),.

The minuend in 2’s complement notation = (01001111.1011),.
The subtrahend = (29.A),6= (00101001.1010),.

The subtrahend in 2°s complement notation = (00101001.1010)5.
The 2’s complement of the subtrahend = (11010110.0110),.

(4F.B);s — (29.A);sis given by the addition of the 2’s complement of the
subtrahend to the minuend.

OLOOLITL. 1011
4 FTC] 1T i
CCH OO0 LR

with the final carry disregarded. The result is also in 2’s complement form.
Since the result is a positive number, 2’s complement notation is the same as it
would be in the case of the straight binary code.

The hex equivalent of the resulting binary number = (26.1)6, which is the
correct answer.

1.27 Binary Multiplication

The basic rules of binary multiplication are governed by the way an AND gate functions when
the two bits to be multiplied are fed as inputs to the gate. Logic gates are discussed in detail in
the next chapter. As of now, it would suffice to say that the result of multiplying two bits is the
same as the output of the AND gate with the two bits applied as inputs to the gate. The basic
rules of multiplication are listed as follows:

1.0x0=0.
2.0x1=0.
3.1x0=0.
4.1x1=1.
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One of the methods for multiplication of larger-bit binary numbers is similar to what we are
familiar with in the case of decimal numbers. This is called the ‘repeated left-shift and add’
algorithm. Microprocessors and microcomputers, however, use what is known as the ‘repeated
add and right-shift’ algorithm to do binary multiplication as it is comparatively much more
convenient to implement than the ‘repeated left-shift and add’ algorithm. The two algorithms
are briefly described below. Also, binary multiplication of mixed binary numbers is done by
performing multiplication without considering the binary point. Starting from the LSB, the
binary point is then placed after n bits, where n is equal to the sum of the number of bits in the
fractional parts of the multiplicand and multiplier.

1.27.1 Repeated Left-Shift and Add Algorithm

In the ‘repeated left-shift and add’ method of binary multiplication, the end-product is the sum
of several partial products, with the number of partial products being equal to the number of bits
in the multiplier binary number. This is similar to the case of decimal multiplication. Each
successive partial product after the first is shifted one digit to the left with respect to the
immediately preceding partial product. In the case of binary multiplication too, the first partial
product is obtained by multiplying the multiplicand binary number by the LSB of the multiplier
binary number. The second partial product is obtained by multiplying the multiplicand binary
number by the next adjacent higher bit in the multiplier binary number and so on. We begin
with the LSB of the multiplier to obtain the first partial product. If the LSB is a ‘1°, a copy of
the multiplicand forms the partial product, and it is an all ‘0’ sequence if the LSB is a ‘0’. We
proceed towards the MSB of the multiplier and obtain various partial products. The second
partial product is shifted one bit position to the left relative to the first partial product; the third
partial product is shifted one bit position to the left relative to the second partial product and so
on. The addition of all partial products gives the final answer. If the multiplicand and multiplier
have different signs, the end result has a negative sign, otherwise it is positive. The procedure is
further illustrated by showing (23),0 % (6);omultiplication.

(SLIRE |
Multipficand : R B i | =Tt (23 )

Multiplier: ———— (50
(IR EEART
10111
Tl 11

10h il bl
000 1610 The decimal equivalent

of (10001010) is (138) , which is the correct result.
1.27.2 Repeated Add and Right-Shift Algorithm

The multiplication process starts with writing an all ‘0’ bit sequence, with the number of bits
equal to the number of bits in the multiplicand. This bit sequence (all ‘0’ sequence) is added to
another same-sized bit sequence, which is the same as the multiplicand if the LSB of the
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multiplier is a ‘1°, and an all ‘0* sequence if it is a ‘0’. The result of the first addition is shifted
one bit position to the right, and the bit shifted out is recorded. The vacant MSB position is
replaced by a ‘0°. This new sequence is added to another sequence, which is an all ‘0’ sequence
if the next adjacent higher bit in the multiplier is a ‘0°, and the same as the multiplicand if it is a
‘1°. The result of the second addition is also shifted one bit position to the right, and a new
sequence is obtained. The process continues until all multiplier bits are exhausted. The result of
the last addition together with the recorded bits constitutes the result of multiplication. We will
illustrate the procedure by doing (23);9 * (6);omultiplication again, this time by using the
‘repeated add and right-shift’ algorithm:

* The multiplicand = (23);0 = (10111), and the multiplier = (6);o = (110),. The multiplication
process is shown in Table 1.7.

« Therefore, (10111), x (110), = (10001010),.

Table 1.7Multiplication using the repeated add and right-shift algorithm.

10111 ".."Il_ﬁliil'-li-:':lml
| 10 Muluplier

AR ERT Atart
e (RN E TR

0 Result of first addition

LIRURERERH 0 (Result of addition shifted one bit fo right)
+ 1ol

I I | Foesult of second addition

il 161 {Resull of addition shifted one bit to nghi)
+ ikl 0
| iyl 0 Fesuwlt of third addiiion
0] i CET o Resale of wddinen shified one bit o right]

Example

Multiply (a) (100.01), x (10.1),by using the ‘repeated add and lefi-shift’ algorithm and (b)
(2B)1s* (3)1sby using the ‘add and right-shift’ algorithm. Verify the results by showing
equivalent decimal multiplication.

Solution

(a) As a first step, we will multiply (10001), by (101),. The process is shown as follows:
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IR
w 101

1 0001
00000
10001

1010101

The multiplication result is then given by placing the binary point three bits after the LSB,
which gives (1010.101) as the final result. Also, (100.01), = (4.25);0and (10.1), = (2.5)10.
Moreover, (4.25)19 x (2.5)10= (10.625);, and (1010.101), equals (10.625),,, which verifies the
result.

(b) (2B)1= 00101011 = 101011 and (3),6=0011 = 11.

Different steps involved in the multiplication process are shown in Table 3.4.

The result of multiplication is therefore (10000001),. Also, (2B);6= (43)10 and (3)16 = (3)10-
Therefore, (2B)6 * (3)16= (129). Moreover, (10000001), = (129),,, which verifies the result.
1.28 Binary Division

While binary multiplication is the process of repeated addition, binary division is the process of
repeated subtraction. Binary division can be performed by using either the ‘repeated right-shift
and

Table 1.8Example.

bebnar il Fultiplicand
11 "|1||I|||'-||-.-|
kg an Sl
 FEEREl | )
Felalll Wesali of find additien
0lnldal I | Basull of sddupea shifted ome Bin wongln)
o I
| O Ek il da o Rewalt ool second sldition
@l drndan i {Resnlt of addition shified ome big in ri;_'hll
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subtract’ or the ‘repeated subtract and left-shift’ algorithm. These are briefly described and
suitably illustrated in the following sections.

1.28.1 Repeated Right-Shift and Subtract Algorithm

The algorithm is similar to the case of conventional division with decimal numbers. At the
outset, starting from MSB, we begin with the number of bits in the dividend equal to the
number of bits in the divisor and check whether the divisor is smaller or greater than the
selected number of bits in the dividend. If it happens to be greater, we record a ‘0’ in the
quotient column. If it is smaller, we subtract the divisor from the dividend bits and record a ‘1’
in the quotient column. If it is greater and we have already recorded a ‘0, then, as a second
step, we include the next adjacent bit in the dividend bits, shift the divisor to the right by one bit
position and again make a similar check like the one made in the first step. If it is smaller and
we have made the subtraction, then in the second step we append the next MSB of the dividend
to the remainder, shift the divisor one bit to the right and again make a similar check. The
options are again the same. The process continues until we have exhausted all the bits in the
dividend. We will illustrate the algorithm with the help of an example. Let us consider the
division of (100110), by (1100),. The sequence of operations needed to carry out the above
division is shown in Table 1.9. The quotient = 011 and the remainder = 10.

Table 1.9Binary division using the repeated right-shift and subtract algorithm.

5l el
Firei =iop il &k ] |0 [ivedenad
—| 1dk01 % Ly
Sl S I | frm Firsl Tived MESH ol diadiadenil
—5 1 1adl Iy clidied tia jpl
ol Fiest sulrac o sensnnder
Ihind sl | (L bkl MSEH & pided
— | | B Lirwraer righd <hiltd
ik an sectil cenE N remaEck

Table 1.10Binary division using the repeate subtract and left-shift algorithm.

g gl 1 ik 1 11
[ I

IR IFirsl wurrs ap e

T |1 *lawa RSHE Gpspaeded

i (O | =i Pum ik

0| 1 ik Pt BRMBE gpmpoeaslodd
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1.28.2 Repeated Subtract and Left-Shift Algorithm

The procedure can again be best illustrated with the help of an example. Let us consider solving
the above problem using this algorithm. The steps needed to perform the division are as
follows. We begin with the first four MSBs of the dividend, four because the divisor is four bits
long. In the first step, we subtract the divisor from the dividend. If the subtraction requires
borrow in the MSB position, enter a‘0’ in the quotient column; otherwise, enter a ‘1°. In the
present case there exists a borrow in the MSB position, and so there is a ‘0’ in the quotient
column. If there is a borrow, the divisor is added to the result of subtraction. In doing so, the
final carry, if any, is ignored. The next MSB is appended to the result of the first subtraction if
there is no borrow, or to the result of subtraction, restored by adding the divisor, if there is a
borrow. By appending the next MSB, the remaining bits of the dividend are one bit position
shifted to the left. It is again compared with the divisor, and the process is repeated. It goes on
until we have exhausted all the bits of the dividend. The final remainder can be further
processed by successively appending Os and trying subtraction to get fractional part bits of the
quotient. The different steps are summarized in Table 1.10. The quotient = 011 and the
remainder = 10.

Example

Use the ‘repeated right-shifi and subtract’ algorithm to divide (110101), by (1011),. Determine
both the integer and the fractional parts of the quotient. The fractional part may be determined
up to three bit places.

Solution

The sequence of operations is given in Table 3.7. The operations are self-explanatory.

* The quotient = 100.110.

* Now, (110101), =(53)10 and (1011), = (11)1.

* (53)10 divided by (11),4 gives (4.82)yo.

* (100.110), = (4.75)10, which matches with the expected result to a good approximation.

Table 1.11Example
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Cheotien
Farst step I 1110l Diivechend
—1aill Divisor
aaln First sablraction
Second step i aoloo Mext MSE appended
-1011 Drivisor right shifled
Third step ] Gk L kb ] Mexi MSR appendad
-1onl1 Divisor right shifted
nopmol Al bils exhanded
| Q0 E il " appended
—1 ] 1 Drivisor right shifted
111 Second subiracton
Fourth step i firi1in ‘0" appended
-1l Divisor right shifted
0011 Third subtraction
Fifth siep 1] oogl1ln ‘" appended
11011 Crivisor night shifted

il Fourih subiraction

Example

Use the ‘repeated subtract and lefi-shifi’ algorithm to divide (100011), by (100), to determine
both the integer and fractional parts of the quotient. Verify the result by showing equivalent
decimal division. Determine the fractional part to two bit places.

Solution

The sequence of operations is given in Tablel.12. The operations are self-explanatory.
* The quotient = (1000.11),= (8.75)1o.

* Now, (100011), = (35)10 and (100), = (4)1o.

* (35)10 divided by (4);¢ gives (8.75)10 and hence is verified.

Example

Divide (AF)sby (09),susing the method of ‘repeated right shift and subtract’, bearing in mind
the signs of the given numbers, assuming that we are working in eight-bit 2’s complement
arithmetic.
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Solution
¢ The dividend = (AF).

* As it is a negative hexadecimal number, the magnitude of this number is determined by its
2’scomplement (or more precisely by its 16’s complement in hexadecimal number language).

Table 1.12Example.

Chictsen Ikl &1 1 Divadend
—1 (i [riwiare
| [ ikia M barmoar
i Mexe MSE appended
— | (kb
il 1k d Harrow exasts
+1 B
EEH Final carry sgnorexd
ekl Mext MEE appended
— 1 tHid
il 1.0k 1 Barrve exists
+ 1 (ki
okl Final carry ignored
gl Mext WSE appendsd
— 1 G0
it 111 Barrow exists
+1 €k dh
il Firad carry sgnored
011 W appended
— | £k 4}
i 01 Mo barroa
0100 0 apperded
— ] Ekih
1 0 M borrow

* The 16’s complement of (AF);s = (51)ys.

* The binary equivalent of (51);= 01010001 = 1010001.
* The divisor = (09)1s.

« It is a positive number.

* The binary equivalent of (09),, = 00001001.
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* As the dividend is a negative number and the divisor a positive number, the quotient will be a
negative number. The division process using the ‘repeated right-shift and subtract’ algorithm is
given in Table 3.9.

* The quotient = 1001 = (09) 1.

* As the quotient should be a negative number, its magnitude is given by the 16’s complement
of (09)167 1e. (F7)1(,

* Therefore, (AF),¢ divided by (09),6 gives (F7)1s.
1.29 Boolean Algebra and Simplification Techniques

Boolean algebra is mathematics of logic. It is one of the most basic tools available to the logic
designer and thus can be effectively used for simplification of complex logic expressions. Other
useful and widely used techniques based on Boolean theorems include the use of Karnaugh
maps in what is known as the mapping method of logic simplification and the tabular method
given by Quine—McCluskey. In this chapter, we will have a closer look at the different
postulates and theorems of Boolean algebra and their applications in minimizing Boolean
expressions. We will also discuss at length the mapping and tabular methods of minimizing
fairly complex and large logic expressions.

1.30 Introduction to Boolean Algebra

Boolean algebra, quite interestingly, is simpler than ordinary algebra. It is also composed of a
set of symbols and a set of rules to manipulate these symbols. However, this is the only
similarity between the two. The differences are many. These include the following:

1. In ordinary algebra, the letter symbols can take on any number of values including infinity. In
Boolean algebra, they can take on either of two values, that is, 0 and 1.

2. The values assigned to a variable have a numerical significance in ordinary algebra, whereas
in its Boolean counterpart they have a logical significance.

3. While °.” and “+’ are respectively the signs of multiplication and addition in ordinary algebra,
in Boolean algebra ‘.” means an AND operation and ‘+’ means an OR operation. For instance,
A + Bin ordinary algebra is read as A plus B, while the same in Boolean algebra is read as A
OR B. Basic logic operations such as AND, OR and NOT have already been discussed at length
in Chapter 4.

4. More specifically, Boolean algebra captures the essential properties of both logic operations
such as AND, OR and NOT and set operations such as intersection, union and complement. As
an illustration, the logical assertion that both a statement and its negation cannot be true has a
counterpart in set theory, which says that the intersection of a subset and its complement is a
null(or empty) set.
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5. Boolean algebra may also be defined to be a set A supplied with two binary operations of
logical AND (A), logical OR (V), a unary operation of logical NOT (=) and two elements,
namely logical FALSE (0) and logical TRUE (1). This set is such that, for all elements of this
set, the postulates or axioms relating to the associative, commutative, distributive, absorption
and complementation properties of these elements hold good. These postulates are described in
the following pages.

1.30.1 Variables, Literals and Terms in Boolean Expressions

Variables are the different symbols in a Boolean expression. They may take on the value ‘0’ or
‘1’. For instance, in expression (1.1), A, B and C are the three variables. In expression (1.2), P,
Q, R and S are the variables:

A+A.B+A.C+A.B.C(.1)

(P+Q)(R+S)(P+Q+R)12)

The complement of a variable is not considered as a separate variable. Each occurrence of a
variable or its complement is called a /iteral. In expressions (1.1) and (1.2) there are eight and
seven literals respectively. A term is the expression formed by literals and operations at one
level. Expression (1.1)has five terms including four AND terms and the OR term that combines
the first-level AND terms.

1.30.2 Equivalent and Complement of Boolean Expressions

Two given Boolean expressions are said to be equivalent if one of them equals ‘1’ only when
the other equals ‘1” and also one equals ‘0’ only when the other equals ‘0’. They are said to be
the complement of each other if one expression equals ‘1’ only when the other equals ‘0°, and
vice versa. The complement of a given Boolean expression is obtained by complementing each
literal, changing all *.” to “+* and all “+’ to °.’, all Os to Is and all 1s to Os. The examples below
give some Boolean expressions and their complements:

Given Boolean expression

A.B + A.B(1.3)

Corresponding complement
(A+B).(A+ B)(1.4)
Given Boolean expression
(A+ B).(A + B)(1.5)
Corresponding complement
(A.B) + (A.B)(1.6)
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When OR ed with its complement the Boolean expression yields a ‘1°, and when ANDed with
its complement it yields a ‘0°. The “.” sign is usually omitted in writing Boolean expressions
and is implied merely by writing the literals in juxtaposition. For instance, A.B would normally
be written as AB.

1.30.3 Dual of a Boolean Expression

The dual of a Boolean expression is obtained by replacing all *.” operations with ‘+’ operations,
all‘+’ operations with °.” operations, all Os with 1s and all 1s with Os and leaving all literals
unchanged.

The examples below give some Boolean expressions and the corresponding dual expressions:
Given Boolean expression

A.B+A.B(1.7)

Corresponding dual

(A+B).(A+B)(1.8)

Given Boolean expression

(A+ B).(A+ B)(1.9)

Corresponding dual

A.B 4+ A.B(1.10)

Duals of Boolean expressions are mainly of interest in the study of Boolean postulates and
theorems. Otherwise, there is no general relationship between the values of dual expressions.
That is, both of them may equal ‘1’ or ‘0’. One may even equal ‘1” while the other equals ‘0’.
The fact that the dual of a given logic equation is also a valid logic equation leads to many more
useful laws of Boolean algebra. The principle of duality has been put to ample use during the
discussion on postulates and theorems of Boolean algebra. The postulates and theorems, to be
discussed in the paragraphs to follow, have been presented in pairs, with one being the dual of
the other.

Example
Find (a) the dual ofA.E +B.C + C.Dand (b) the complement oj'[(A.E + E). D+ ﬂ F.

Solution
(a) The dual of A.B + B.C + C.Dis given by (4 + B_) (B + E) (C+D)

(b) The complement of[(A.E + E).D + ﬂ.F is given by [(Z + B). C+ m E+F.
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Example

Simplify (A.B + €.D)[(A+ B).(C + D)].

Solution

eLet (A.B +(C.D) = X.

« Then the given expression reduces to X. X.

* Therefore, (A.B + C.D)[(A+B).(C +D)] = 0.

1.31 Postulates of Boolean Algebra

The following are the important postulates of Boolean algebra:
.11 =10+ 0 = 0.

2.1.0 = 0.1

Il
I
(=]
+
[y

Il
[y
+
(=]

Il
[y

3.00=01+4+1=1.
41=0and0=1.

Many theorems of Boolean algebra are based on these postulates, which can be used to simplify
Boolean expressions. These theorems are discussed in the next section.

1.32 Theorems of Boolean Algebra

The theorems of Boolean algebra can be used to simplify many a complex Boolean expression
and also to transform the given expression into a more useful and meaningful equivalent
expression. The theorems are presented as pairs, with the two theorems in a given pair being the
dual of each other. These theorems can be very easily verified by the method of ‘perfect
induction’. According to this method, the validity of the expression is tested for all possible
combinations of values of the variables involved. Also, since the validity of the theorem is
based on its being true for all possible combinations of values of variables, there is no reason
why a variable cannot be replaced with its complement, or vice versa, without disturbing the
validity. Another important point is that, if a given expression is valid, its dual will also be
valid. Therefore, in all the discussion to follow in this section, only one of the theorems in a
given pair will be illustrated with a proof. Proof of the other being its dual is implied.
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1.32.1 Theorem 1 (Operations with ‘0’ and ‘1°)

(a) 0.X = 0 and (b) 1 + X = 1
(1.11)

where X is not necessarily a single variable — it could be a term or even a large expression.

Theorem 1(a) can be proved by substituting all possible values of X, that is, 0 and 1, into the
given expression and checking whether the LHS equals the RHS:

* For X=0,LHS=0.X=0.0=0=RHS.
* For X=1,LHS =0.1 = 0=RHS.
Thus, 0.X = 0 irrespective of the value of X, and hence the proof.

Theorem 1(b) can be proved in a similar manner. In general, according to theorem 1,
0.(Boolean expression) = 0 and 1 + (Boolean expression) = 1. For example, 0. (A.B + B.C +
C.D) =0and 1 + (A.B + B.C + C.D) = 1, where A, B and C are Boolean variables.

1.32.2 Theorem 2 (Operations with ‘0’ and ‘1°)

(a) 1.X = X and (b) 0 + X = X
(1.12)

where X could be a variable, a term or even a large expression. According to this theorem,
ANDing a Boolean expression to ‘1’ or ORing ‘0’ to it makes no difference to the expression:

* For X=0, LHS = 1.0=0=RHS.
*For X=1,LHS=1.1=1=RHS.

Also, 1.(Boolean expression) = Boolean expression and 0 + (Boolean expression) = Boolean
expression. For example,

1.A+BC+CD)y=0+ A+ BC+CD)y=A+B.C+C.D
1.32.3 Theorem 3 (Idempotent or Identity Laws)
(a) XXX....X=Xand (b) X + X+ X+ - -+ X=X (1.13)

Theorems 3(a) and (b) are known by the name of idempotent laws, also known as identity laws.
Theorem 3(a) is a direct outcome of an AND gate operation, whereas theorem 3(b) represents
an ORgate operation when all the inputs of the gate have been tied together. The scope of
idempotent laws can be expanded further by considering X to be a term or an expression. For
example, let us apply idempotent laws to simplify the following Boolean expression:

(A.B.B + C.C)(A.B.B + A.B + C.C) = (AB + C)(A.B + A.B + ()
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= (AB+C)(AB+C) = (AB + C)
1.32.4 Theorem 4 (Complementation Law)
(@)X.X = 0Oand(b) X + X = 1(1.14)

According to this theorem, in general, any Boolean expression when ANDed to its complement
yield as ‘0’ and when ORed to its complement yields a ‘1°, irrespective of the complexity of the
expression:

«ForX = 0,X = 1. Therefore, X.X = 0.1 = 0.
«ForX = 1,X = 0. Therefore, X.X = 1.0 = 0.

Hence, theorem 4(a) is proved. Since theorem 4(b) is the dual of theorem 4(a), its proof is
implied.

The example below further illustrates the application of complementation laws:
(A+ B.C)(A + B.C) = 0and(A + B.C) + (A + B.C) = 1
Example
Simplify the following:
[1+ LM+ LM+ LML+ M(LM)+ LML + M)
Solution
* We know that (1 + Boolean expression) = 1.
« Also, (L. M) is the complement of (L + M) and (L. M) is the complement of (L + M).
* Therefore, the given expression reduces to 1. (0 + 0) = 1.0 = 0.
1.32.5 Theorem 5 (Commutative Laws)
@QX+Y =Y+X and (b) X.Y = Y.X(1.15)

Theorem 5(a) implies that the order in which variables are added or ORed is immaterial. That
is, the result of A OR B is the same as that of B OR A. Theorem 5(b) implies that the order in
which variables are ANDed is also immaterial. The result of A AND B is same as that of B
AND A.

1.32.6 Theorem 6 (Associative Laws)

QX+ +2)=Y+(Z+X)=Z+(X+Y)
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and

(b) X. (Y.Z) Y. (Z.X) Z. (X.Y)

(1.16)

Theorem 6(a) says that, when three variables are being ORed, it is immaterial whether we do
this by ORing the result of the first and second variables with the third variable or by ORing the
first variable with the result of ORing of the second and third variables or even by ORing the
second variable with the result of ORing of the first and third variables. According to theorem
6(b), when three variables are being ANDed, it is immaterial whether you do this by ANDing
the result of ANDing of the first and second variables with the third variable or by ANDing the
result of ANDing of the second and third variables with the first variable or even by ANDing
the result of ANDing of the third and first variables with the second variable.

For example,

A.B + (C.D + E.F) =C.D + (A.B + E.F) = E.F + (A.B + C.D)

Also

Theorems 6(a) and (b) are further illustrated by the logic diagrams in Figs (a) and (b).

DTy Dy

al

)

—D—_j— — _D——)_

Figure Associative laws.
1.32.7 Theorem 7 (Distributive Laws)
@WX.Y+2)=XY+XZand D)X +Y.Z =KX +Y)X + 2)(1.17)

Theorem 7(b) is the dual of theorem 7(a). The distribution law implies that a Boolean
expression can always be expanded term by term. Also, in the case of the expression being the
sum of two or more than two terms having a common variable, the common variable can be
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taken as common as in the case of ordinary algebra. Table gives the proof of theorem 7(a) using
the method of perfect induction. Theorem 7(b) is the dual of theorem 7(a) and therefore its
proof is implied. Theorems 7(a) and (b) are further illustrated by the logic diagrams in Figs
6.2(a) and (b). As an illustration, theorem 7(a) can be used to simplify A.B + A.B + A.B +
A. B as follows:

AB + AB+ AB+AB=A(B+B)+A(B+B)=A1+A1=4A+A=1

Table Proof of distributive law.

X b4 4 Y+24 Xy XL MY +E) RY+RE

L] A 1l 1k i 0 il ]
L 0 | | L i il 4]
1 | il | L] i i 0
1 | | | L 1 il L

=]
C
-

P4

ibj
Figure Distributive laws.
Theorem 7(b) can be used to simplify(4 + B). (A + B). (A + B). (A + B) as follows:

(A+B).(A+B).(A+B).(A+B) = (A+B.B).(A+B.B) = (A+0).(A+0) = A.A =
0
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1.32.8 Theorem 8

(a) X ¥ +XF=X and (M (X+PNAX+F)i=X

This is a special case of theorem 7 as
XYY+ET=X(¥+H=XI1=%X and [(X4+N(X+Fi=X+¥Y¥V=X4+0=4X

This theorem, however, has another very interesting interpretation. Referring to theorem 8(a),
there are two two-variable terms in the LHS expression. One of the variables, Y , is present in
all possible combinations in this expression, while the other variable, X, is a common factor.
The expression then reduces to this common factor. This interpretation can be usefully
employed to simplify many a complex Boolean expression.

As an illustration, let us consider the following Boolean expression:
ABCD+ABCD+ABCD+ABCD+ABCD+ABCDHABCD+ARCDH

In the above expression, variables B, C and D are present in all eight possible combinations,
and variable A is the common factor in all eight product terms. With the application of theorem

8(a), this expression reduces to A. Similarly, with the application of theorem 8(b),(A + B +

C).(A+ B+ C).(A+ B+ C).(A+ B + C) also reduces to A as the variables B and C
are present in all four possiblecombinations in sum terms and variable A is the common factor
in all the terms.

1.32.9 Theorem 9
@WEX+Y).Y=X.Yand DX.Y+Y=X+Y (1.18)
(X+Y).Y=XY+Y.Y = X.Y

Theorem 9(b) is the dual of theorem 9(a) and hence stands proved.

1.32.10 Theorem 10 (Absorption Law or Redundancy Law)

@WX + XY =Xand(W)X.X +Y) =X (1.19)

The proof of absorption law is straightforward:
X+XY=XAQ+7V)=X1=X

Theorem 10(b) is the dual of theorem 10(a) and hence stands proved.

The crux of this simplification theorem is that, if a smaller term appears in a larger term, then
the larger term is redundant. The following examples further illustrate the underlying concept:
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A+AB+ABC+ABC+CBA=A
and
(A+B+C).(A+B).(C+B+A)=A+B
1.32.11 Theorem 11
@WZX+ZXY=ZX+ZY

and

BCZ+X)Z+X+V=CZ+X)Z+Y)
(1.20)

Table gives the proof of theorem 11(a) using the method of perfect induction. Theorem 11(b) is
the dual of theorem 11(a) and hence stands proved. A useful interpretation of this theorem is
that, when

Table Proof of theorem 11(a).

X Y Z Vb3 VA ZX ZXY ZX+ZXY EN+EY

Lh il Lk 1l i L 1k [l il
i ] 1 il i | 0 il il
ih I ib i i i 1] M il
1 | i L | | 1 I |

il Lk 1 Ly [l Lk 1 il

{i | | ] ] ] [ |
i ii 1] i i
| | | | }] {} | |

-

a smaller term appears in a larger term except for one of the variables appearing as a
complement in the larger term, the complemented variable is redundant.

As an example, (A + B).(A+ B + C).(A + B + D) can be simplified as follows:
(A+B).(A+B+C).(A+B+D)
= (A+B)B+C)(A+B+D) = (A+B)(B+C)(B+D)

1.32.12 Theorem 12 (Consensus Theorem)

@XY+XZ+Y.Z=XY+X.Z
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and
GX+.X+2).+2)= X+V).(X+2) (1.21)

Table shows the proof of theorem 12(a) using the method of perfect induction. Theorem 12(b)
is the dual of theorem 12(a) and hence stands proved.

A useful interpretation of theorem 12 is as follows. If in a given Boolean expression we can
identify two terms with one having a variable and the other having its complement, then the
term that is formed by the product of the remaining variables in the two terms in the case of a
sum-of-products expression

Table Proof of theorem 12(a).

X Y 2 Xy XL | X¥r+XZ4+¥7F X¥r+XZ

il 1] ] ] 0 1] ] (1]
il { | { I [ | |
] | Ll 11 Ll 1y L 1)
] | | ] I | I |
(¥ ] 1] 0 F] 0 {l

ib i i1 i ] i il

b |

I I | 0 I I |

=
i
[
e

or by the sum of the remaining variables in the case of a product-of-sums expression will be
redundant. The following example further illustrates the point:

ABC+ACD+BCD+BCD+ACD=ABC+AC.O+B.C.D

If we consider the first two terms of the Boolean expression, B C D becomes redundant. If we
consider the first and third terms of the given Boolean expression, A C D becomes redundant.

Example
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Frove i ASC O+ AT P+ ARCTI+ARTH+ ARCHDE+ARCTE + A BT 0E cm
e 1I.ﬂ'h'|"|I.'I-I|.|I.'-' A K.

Sodirimr
ABC A BC D+ ASC T+ AT D+ ABCDESABT D E+ARTNE

= AHCD+ARCT+ARCH+ARCD

= LB+ O+ T = AR

* ABCD wppmes in ARCOE ARCT sppeass in ABCHE md ART.D sppears in
LHCE

o A resuln all theee five-variable ferms are recondont

# Al vigules © amd apgEsar o ol l,hh'\-\.lllln.' comnbatmsis sl ore e o pelininko

1.32.13 Theorem 13 (DeMorgan’s Theorem)

[:I':Ill.'lll.|_l:~|.:+l‘!|.-3_uu + +.-I{.I.r|-= -l-..:-rlq_ =) --\.I”
O [F KK K=K 4 G+ G tee s + X

According to the first theorem the complement of a sum equals the product of complements,
while according to the second theorem the complement of a product equals the sum of
complements. Figures(a) and (b) show logic diagram representations of De Morgan’s theorems.
While the first theorem can be interpreted to say that a multi-input NOR gate can be
implemented as a multi-input bubbled AND gate, the second theorem, which is the dual of the
first, can be interpreted to say that a multi-input NAND gate can be implemented as a multi-
input bubbled OR gate.

DeMorgan’s theorem can be proved as follows. Let us assume that all variables are in a logic
‘0’state. In that case

LHS =[X, + X; + X3+ - + X, | =[0+0+0+ .- +0] =0 =1

RHS =X, X, %.... X, =000,... 0=111....1=]

Therefore, LHS = RHS.

Now, let us assume that any one of the n variables, say X, is in a logic HIGH state:
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e —"

:':n—u_l

|}

¥4 A

R — : A2

¥3 M
B

Figure DeMorgan’s theorem.

LHS =X+ X, + X+ X, | =[T+04+0+---+0]=T=0

HHH =f.. -:

X =100....0=011_....1=0

Therefore, again LHS = RHS.
1.32.14 Theorem 14 (Transposition Theorem)
() XY+ X Z={(X+Z)(X+V)
and

M {X+NIX+Z)=XZ+X.Y

This theorem can be applied to any sum-of-products or product-of-sums expression having two
terms, provided that a given variable in one term has its complement in the other. Table gives
the proof of theorem 14(a) using the method of perfect induction. Theorem 14(b) is the dual of
theorem 14(a)and hence stands proved.

As an example,
AB+AB=(A+B).{A+B) and AB+AB=(A+BLIA+B)

Incidentally, the first expression is the representation of a two-input EX-OR gate, while the
second expression gives two forms of representation of a two-input EX-NOR gate.
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Table Proof of theorem 13(a).

X ¥ Z XY XZ XiZ XT4+¥ X¥4XZ XX LY

0 0 L1 il 0 il I i} 0
i il I i I I I I I
0 | i il (1 i I i i
0 I | il | I I i |
| il il il il | il i} il
I i | 0l 0 I {l il i
i i i I i I I | I
1 | | | () | | | 1

1.32.15 Theorem 15

(@) XX X.V.2....)=X.AL0. ¥, Z....)
B X+AXX.YZ....Y=X+f0,1.¥.Z....)

Accordiing o theorem [3a), iF a varnble X s multiplied by oo expression contsming X axd X i
addliticn 1o other varkables, then all X9 and Xs enn be replaced with 15 amd Ty reapeatively. This woukl
be valid s XX =X and X1 =X, Al X.X = D usd X0 = 0L Accordiig 1o theorem 156), if 4
variable X is added w0 an expression containing terms having X and X in addition 10 other varabbes.
et all Xs cas be ||.'|!l]u|.'|.'|] with Os and all X can be :l.'E'l|.b.1.‘lJ with ls. This s iI,EH.iII |J-l.'|:|'|umi|.'l|l: an
K4 X asowell as X +0 cquale X. Also, ¥+ X and X+ 1 bath equal 1.

Tliis jrui.r af thecrens i very sl c|iJ|!|]|!|.lI'|I|g IL'\JLIIIIJ.‘I"A._'- ina :_:i'ﬁ.'li Chpreakioi. A i||:||.aiJrIu:'||
corollary of this pair of theorenss is thal, if the multiplying vorisble i= X in theorem 15(a), then ol
X5 will be replaced by Us and all X5 will be replaced by [s. Similarfy. if the variahle heing added in
theorem 15(b)is X, then Xs and X in the expression ane reploced by 1s and Os respectively, In thm
eie the twe thearems can be writiem as fnllows:
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A L. =00 L LA L)
MX+ AL =X+ ML0Y % ...}

The theorems are further hestrated with the help of the following examples:

L AJAB+ACHAL DAL = A 0B+ 1.O+H(D4 DLl +E)| = A{C+ D).
2 AH[AB+ACHIA+RAA+E = A+ 0B+ 1O+ B+ E | =A+C+ 4.
1.32.16 Theorem 16

(@) XX, T ens =X LY. I+ X A0 LY, E)
(b} XX, Vo . Z) =X+ 0. LYV ... 2)IX+ A1L.0.¥,....20

T pooal ol theonen 16001 16 weaslillopianl md = pivon as dolloss:

T R = ' . T 0| 0 A 4 |
=.'|!.r|I.IF.I.....II-I-.T.rILI.I.I.-....i'f||l'|'|||:|*fl.'|nIFlI.'ll-I

Ay

A P58 55 T O || 0 | . i A+ |
=[N0 E e FTTE+ AL, K 21 Theman 1500

1.32.17 Theorem 17 (Involution Law)
X=X

Irwoaluibon Baw says thar the complemwent ol the compleiment ol an espresion leaves (s expeession
anchumged, Ao, the dual of the dual of @n sxpression 12 e orginal capression. This theoem forns
tlie Faizas ol |i:|:|||.|.||.'_.|: ihe cujlinvickeni rnl.a.luul-ul'-'-dllﬁ f!l:rut'ﬁil.lu fur o BivCn stitii-ul- |1|1.1|.1|J|.l: EXpresian.,
aml vice Yirsa

Example
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Proawe e followmg,

L LAM+ W)+ L PO = (L+P.00(L+M+N).
2 [AB+CH+ DD+ IE+F1LG|=D{AB+C1+D.GAE+F

Sofution

I. Letws assume that L=X (M+N)=¥ and F.0=2Z.
The LHS of the given Boolean equistion then reduces o X ¥ 4+ X7,
Appdving the transpoaition theorem,

XY+ XZ=(X+Z1iX+N=(L+P.OHL+M+¥5)=RHS5

1 Letwsasume D=X. A B+ C=FV and (E+F1.G=7F.
The LHS of given the Bouolean equation then reduces o (X + YU X +2)
Applving the Uanspositien theoren,

(X4 NIX+Z1=XZ+X ¥ =DGIE+FI+DIAB+T)I=RHS
Example

S il e Boedean egpression we @ wae-togd OF gore, sipply Boslsant fews and thiresny 1
wendify i ir aneie o7 wiey aw b feciliiale tae plomentation af o tee-inpat OF gate. b osiwg Fae-dnpur
NANDY pivdes owedy

Snlarion
® A meocinpe OF gae is represenied o the Boolean squation ¥ = (4 + ),
where A aml & ue IImepuI logic vunables amd 1 s e oaipan
" Mow 44 B= |ﬁ+ﬁl Iradu tion Taw
- (A DeMorgmn s thoorem

= |¢H|.¢Fm| Tdempstent low
® Figune shvars the NANDF gue imglemeniation of & twosinped OF pole.

A

(A+B)

]
oL |
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Example
A el piierehfe Boadevat ol il Feaderey 1o ittty e ekpiei e frar o Fiver-rmgng EX-EM ovire i
wrwchr nd AT G o D el @l P il FEX-62R avire I AT e dinsirann il o8 T 1 id AN
el .u||'l
Sdnifon
# A pwosinpul EX-OR pate 15 represenied by the Hovnlean expresson § A.H+ A A
* Mow, LB+ AE= r'i..l'p' FAH leyolution law
- A A e Mlorpun’s low
= [BAA+BI||AlA+ ]
={BAT L AAT)
L r-;|||.||i|-|| % i @ lam ihad camn he i||||'\l||'lln.'||ll\.'|.| with M A MY e |l|||!..
* Figure shavws the bnmic diagram
A A-AB
= 1 AB £t e
AB+AB
B B AB

1.33 Simplification Techniques

In this section, we will discuss techniques other than the application of laws and theorems of
Boolean algebra discussed in the preceding paragraphs of this chapter for simplifying or more
precisely minimizing a given complex Boolean expression. The primary objective of all
simplification procedures is to obtain an expression that has the minimum number of terms.
Obtaining an expression with the minimum number of literals is usually the secondary
objective. If there is more than one possible solution with the same number of terms, the one
having the minimum number of literals is the choice.

The techniques to be discussed include:
(a) the Quine—McCluskey tabular method;
(b) the Karnaugh map method.

Before we move on to discuss these techniques in detail, it would be relevant briefly to describe
sum-of-products and product-of-sums Boolean expressions. The given Boolean expression will
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be in either of the two forms, and the objective will be to find a minimized expression in the
same or the other form.

1.33.1 Sum-of-Products Boolean Expressions

A sum-of-products expression contains the sum of different terms, with each term being either a
single literal or a product of more than one literal. It can be obtained from the truth table
directly by considering those input combinations that produce a logic ‘1’ at the output. Each
such input combination produces a term. Different terms are given by the product of the
corresponding literals. The sum of all terms gives the expression. For example, the truth table in
Table can be represented by the Boolean expression

¥ =A .B.CIABC4HABCH+ABC

Considering the first term, the output is ‘1” when A = 0 B = 0 and C = 0. This is possible only

when4, B and C are ANDed. Also, for the second term, the output is ‘1’ only when B, C and A
are ANDed. Other terms can be explained similarly. A sum-of-products expression is also
known as a minterm expression.

Table truth table of boolean expression of equation

A Fil C ¥
i {] |1 |
ih 1} ] 1l
(i | i {i
| 11 () I
| 1l | |
| | 0 1
| | | {i

1.33.2 Product-of-Sums Expressions

A rr||.||.|._:l al-sums éxpressm contmns ibe product of difterent tenms, wath esch ferm |'l|_'|||=':_ eiher i
singhe Titeral or o sum of more thon o lierad. IE can be obtnined {rom the uth tsble by coasidering
thse mpot combinabions ikl preduce a logse "0 at the sutpol. Each such ipui combanatien gives a
fesm, el the product of all such terms. gives the expression. Differend eerms are obsiined by taking
e summ il 1Be |.'-.||||.'~.il|1|||:lln|_: |nerals. Here, '0° and *| I-|!'\-|!:-|.'|.'|i'l-:'|'. mean the wocomplemented and
coamplemenied variables, unlike sam-ol-prmodocis ERPIRSEIMIS where 07 gl °1° |I."'|I:l.'l.|||.|.'|'| FIb

\.'“!I:flil\.'ll:n.'lll.\.'d arxl U||l.ll||||:]-.'|:||.'|'.1|.'|.' VarEses
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To illostrase this furiher, consader opee again the truih toble in Table 6.5, Since ench e in the
e o the product-of-sums expression (s going 1o be the sum of Herals, this implies s @ = going
1o be implescated wsaing an O operation, Now, an OR gate gooduces a logic 0" only when all jis
inpats are in the bogio "0 stale, which meons that the fird ferm corresponding to the second row of
b truth ke will he A+ B4 O The product-of-suimns Boolean syprescion for this ouih bl i given
by (A4 BLTIAAFB+CWA+BEOWAFTET),

Tranalvnming the given product-of-sums eXprosion inbe s equivalent sim-of-prodiscls expeession
i a stmightforeard process. Muoltiplying out the given expression and camying ol the abvious
sumplification provides ibe cquivalemt sum-d-prodocis eapoesaion:

(A+ R+ CUA+ B+ O+ 8+ ONA+E+C
={AA+ AR+ A CH+HRA+-RE+BCHC A+ C B CC{AA+A R+ AC+RBA+RE
+EC+CAFC RO

={A+BC+EFCHA+ O+ O = ABC+ ARC+ABCHARC
A gveen sm-of - proedibeld expression can be iinsfocmed ol an equivakonl product-ol-sams cxpossion
by (a) nking the daal of ihe pven expression. (B mulbplving ooe difierent enms e get the sume-nt-
pronfoces Fega, (¢} removang redandaney and (0} taking o chial fo get the cgnivalest prodoct-sf-2ams
expression). As an lustition, 1o e od e egquivaben product-of-oums expression of Uee swm-ol-
ot expressieg

AB+AH

Th: dual o ihe given expression = (A 4 BpL0A - B

A+ BAA+ T = A A+ AT+ BA+ B =0+ AT+ EA+0 = AF+ A8

The dual of (A-B+ A_H) = (A + B1{A+ B). Therefon

AR+ AB=(A+FLIA+H

1.33.3 Expanded Forms of Boolean Expressions

Expanded sum-of-products and product-of-sums forns of Bookan expressions ane wseful not only
in analtyang these expressions bl abso in the application of mammization kechmgies such & the
Chuane-MeCluskey tabular method ond the Kamoogh mapping method for simplifying given Boolean
expressions. The expanded form. sum-of-products or peodect-of-sums, is obtaised by including oll
possible combanations of missing vorables,

As on Wustrativn, coasider the following sem-of-prodects expression:

AB+BCHABRCHAL
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1t is a three-varinhle expression. Expanded versions ol different minterms can be writlen o follows:
* AB=AB(C+CI=ABC+ARC

B =R C{A+A4)=0C A+ KA

s AR Bn wimmnplete tenm asd hos no missing varahle.

¢ AC=ACIB+ B =ACH+ACE

Thee wiparlid siwm-of-produets cxprossion b therefure glven by

ABCHART L ARTHABTHARTHABCHARC=AFC+ AR
+ A BC+ABC+ABC+ARC

Ax anether st ion, consider the product-of-sims cxpresson

(A+HLA+H+T+D)

It 15 four-vartable exprossion with A, 8, © and 0 being the four variables. A+ B i thes cre expands
o (A+8+C+ QLA+ +C+ LA+ R+ O+ A+ 8+ T+ I3
The expunded product-el-sums expression s therefore gives by

AERECHFMAA+F B+ O+ DA+ B+ T+ DA BT+ DA+ R+T+T
=(A+B+C+MAA+B+C+MAA+B+C+0LiA+A+C+ )

1.33.4 Canonical Form of Boolean Expressions
An expanded fonm of Hoolean expression, where each térm cominins all Boalean variables bn their toe
or complemenied foms, is alse knowns as the comenical fiw ol the expression.
As an flosgmtion, QAR O = A8 C+ABCHARC is 2 Boolean function of three variables

expressed i conomical forme This fanction alier siiplifcatnen edices w AE A B and Bess i1
camompcal form

1.33.5 X and Il and Nomenclature

= and 11 netstems are fespectively wsod e present sam-of-produce and pioduet-of-suims. Bockai
expressions. We will Hkusirage wese notstions with e belp of examples. Leg us consider e following
Boolean function:

AR C.D)=ARC+ARCD+ABCO+ARCD

W will pepreseal thas lunetion using 2 notstsss, The ficst step is o weie the expansded sum-of -prodices
]| Iy
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fA.F.C.N=AFCID4+ D)+ ABCD+ARC. D+ AEC.D

=ABCD+ARCH+ARCH+ABCO+ABCD
Differeon erms are hen amneed o sscesdmg onrder of the Woary pumbers reprosaiied by vadous

fermis, with true varables representing o "1 and o complemenied vanoble epresenting o 0, The
cxpression becomes
AAEC.ON=AFRCD+ARCD+ART.D+AFCHN+ABCD

Thie difTeereiint ek sepresent 001, R, IO, 00T and 111 The deeisol equivalent of hese teims
ewclmsed (0 ke X then gives ihe X nelation o the given Boolean function. That =, 74, R, O =
ELRE% 1R

The complement of (4, 8, C. O, chat s, A, 8O, B, can be direcily deenmined from 2 pocation
by including (Be lefiamt enries froa the st of all pessible nuebers for o Foar-vanishle Tnction,
Thal is.

AL CIN="3023,4.67. 10,1112 13,14

Let ws nome ke the cose of o produgi-of-sims Boolcan Tonetion and e represeatation i [
prmenlarure. Let we consider the Boolem luneten

JARC D =(BLC T IALRLC+ DAL THC LT
The exgrsled prosivct-oi-suems Gwm is given by
[A+B+C+ A+ 8+ C=MAA+F+C+ DA+ B+ T+
The bumary mumbcis repicscied by the differem s wenms are R T TN gnd G {rriie - amd
complemeniod vamuabdes lwre represent O wod | eespecavely b When arramged msscending onder, ihese
rmibsers are LT D111, AT and 110 Thenslome.

AR C.=[T57 010,12 eod FUABCPI=[]0.1.2.4,5.6.8.9, 10 13, 14,15

An useresing covollary of whal we hove discessed above b thol, il o grven Boolean function
FTAGRCT wogiven by fTAH, Che 50, 147, theny

AAEC=]]2.3:5.6 and [lA.EB Q=3 130.5.6=]]01.4.7

Uptional combanations can @lso be incorporied nte % and 1 nomenclaure usieg saitable sdemtilienrs;
b b e wsed s Edenfiers, For ecnmple, 1 AL B Cl=A RO+ ARC+ AR Cand A BC ARC
s optonil condbuninng, thes

A BEO=2 045435 37=23 0,4.54% 1.7
& d

A B =T]1.26+[]37=]]1.2.64]]3.7
i i

Example
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Fara .Hr-u.ll't'cm__l'a.u:ﬂrm A, By= ELI. . prove et f1 AL ) =ﬂ_ l.3amd 1A H= EJ..'- =n|'.|.1

Sadantionn e T

* A B=YhI=AB+AN Atdl=8 o
e Mow, [[LL3=s{A+ B A+B = AA+AB+-RA+RE=AR+AN+R=HK
'lHLI“‘.E|.3=ﬁ.ﬂ+ﬂ.ﬂ=3.lﬁ-l_—.-ﬂ=ﬂ'- B B

and [TILI = A+ BHdA+ BI=A A+ AR+ BA+RR=A8+AB+H=FR,
o Theefore, 5 1. 3= 2
® Also, A, B =R,
& Thomefom, f{A.Bi=8w A H=Y 1L3=[]0.1

=BiA+Al=R

T

1.34 Quine—McCluskey Tabular Method

The Qume-MeCliskey tabulor method of simplification = Based ot eomplementstiin s
swhich suys

E¥Y+ KT =X

where N represents edher o varmble or & lerm or an expresson and Y ois o varable. This thasiem
implies that, il & Boolean ¢h|'||'|;,:hi|’||1 ooatakns two terms thin differ only inoone varabbe, then they can
bex csnbivesd wogeiher anil reploced with @ iemm that is smalfer by one Rieral, The some procedune i
applicd for the other poers of ferms wheever such o reducison s possible. All these borne. rodwoed
by one Dl are futher cxamined 1o see if they con e redoced ludber. The process contimees
umiil the terms become inedocible. The imeducible benms e called e |'r.l.|,rrJ|:r'ru|.l'|. An -:|-|1Ii|1|un1
gt ol prime dmplicants tha can aceonnd for sl8 the origimal teoms then eonstidses the: minimiesd
eapretsion. The chiique cam be appliad equally well for samnueng sam-of-products anil prodisc-
of-sunes expressions und 15 padsculaly awcfol ke Boolean functions having more than six varshles as
i can b iwechanieed awl nim on o compaiies. Ol atber Band, s Kamough mapping method, io b
sl Liier, s a0 graphicsl method sl beeoies very cambersone when tie nunber o vardahles

exceeds six,

Thee srep-by-atep procedure for application of the sk method for minimicing Boolean expredsion,
by p.||.:||5-ut'-|'.r| ety mmnil prl:-,lln:l-u'ul'-o:nrnn.. i ol ime] se Fisllemws:

I The Baolesum expression o be sumplified is expanckl it B s ool in espandsd foon

2 Drifferen wenms in the expression are divided inio provps depensding upon the oumber ol |2 ey hove

True ol complemsentesd varahles in o sim-ol-proclics espreasn mean 1 el T pespectively
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The reversa s true in the case of a product of-sums expression. The growps are then armnged,

Bepinming with the greap having e s nomber of [x o its icluded terms, Terms wathin ths

snimie groig ire arrairged b ascending order of the decimal mimilsen reprosented by ihese leiins,
As an illustrata. consider Uhe exprossion

ABC+ABCH+ABCH+ABCHABTD

The growpamg ol daflereit oo and e arringeiment of dilferent oo within the group are shown
LS

ABT KMF  Firsd gionip
AFC 1K} Second group
rﬂ.c . 01 Thind group
ABC fii|

ABC 111 Folrly gngp

As amniher illusirion, consider a prodpci-ofssums expressbon given by

A+ B+ C+MAA+ B CHDN A+ B CHMIAL BT HINAAFBLCH D)
(A+F4+C+PIA+ELC+HTH

The Emuutavi of groups dsl the amangement of e sitan dilfesent grps e tlse prodsi-of-
slms cxpression are as oelloss:

ARC.D (0
A E.E‘.E ETEN
Al 00 i
ABCHD — U1
A .E.E.ﬁ CITRE
AACD LL1E
ABCTH 11

I may by menioncd here that the Boolean sxpressions ihal we hove considencd above did ned
contuin my optiomal terve 15 there are any, ey pne also copsidered shale formmg groups. Thes
commgetes i firg bl

5. The terms of the [irsi group are soccesstvely mniched width those o the nexd adgacent higher-
wrder gromp o lock for any pessible molching and conseguent reduction. The tenns are considered
malched whes all Hierals exespt for ome mnleli. The pairs of molched termae are rephsccd wilh o
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single lerm wihere the posilion of the ynmatched fiterals 15 replaced with o dash (—). These new
iy formed ss o resdply of gty moehing process fina o place in the seeond wble The iernsin dhe
firss tahle that do o find o mateh are colled the prime implicans and are marked with an asterizk
(=} The matched terms are teked [«

4. Terms in thwe secomd group sre comparesd with thase in the dhird growp s kak for 8 possible match,
Augrain, tenms in bhe secomd grsap thal do not Tind @ match become the prme onplicanis.

5. The prossess comtines unti] we reach fhe lust groap, This compleles the Tirst round of matehing.
The dermms reselting rom the matclnng i the fed round are recorded inthe second 1able.

B Tl et step is to perform matehing operatios iy e second ahie, Wiale compatig the 1eamns for
a mesdch. 1l s mportamt thad a dash [—) s alzo Inealed ke any other lileral, tha s, the dash signs
b weed 1o maich. The process contipues on v fe third @hie, the founh talle amd w0 on unatil the
terms beooame imeducible amy fudleer.

T A optieem selechion of prime implicants e account e all the eniginal terms constituges the terms
for the i ged espression. Althowgh optional Glse callad "™t e’ lemms ae considenasd fop
maptchng, duy & ot lave 10 b sccoumed for voe paine uoplicasts kave been dentified,

Lt us consisler an example, Consider the following sum-ol“proshicts expression;
ABC+ARDAT D RCTLARTD
In il T sgep, we wiride the expapded version of the given expression, 16 can be written 2 follows;

ARCH+ABCD+ABRCDHARCOYABRCR+ABRCO+ARCD
+ABCT+ARCD

T domations ol grops, g placemeni of ooy (o dilfesdn groops sl the Tev-amed manctensg ae
whusaiy fos Frelbonies:

LY 15 L 1 L E H I 1 B i I
ik i i | i L] il 1 w 1] o - [ | £
ik il i i n i 1] n i i 3 1] (] -
ik I i n ——— . " 0 i ] o
ik 1 ] I i L] I I i 1 1} - o«
ik i i i 0 | il i - ii i = i oy
ik i i i L] i i i b - i i [ =
| il 1] | 1 L] i 1
i i n i i 1 il 1] ¥ 1] i [ o
i I i | n | i i w il 1 - [ ] #
i i if 1 o - 1 LU} | o
1] ] | - o
i 1 L] '
i ! i - B

The secomd reand of matching begans wich the tabde showe on the preyeeas page. Each teray in the Tirsi
group s commpared with every ferm in e sccond group, For instanee, the fisst semm inoibe st sroup
0| wichees woich the second lenm in the seconed group 00— e viehl =1, which i recordel in
ke wible shown below: The process continaes until all werms hove been compered for e possible maich,
Sinve this pew tmble has only ome group, the ierms coptained therein are all prime implicants. I the
present esample, the tenns in the frst ol second wibdes have all Fond & match, Bl chat s pal abanys
b cae
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A B 8 (B

{1 - - I ¥
- - ] | ”
i [ - - x
- 1 ] - &

The nexi iabbe is whal is known as the prime boplicant ke, The prime implicant imble comtains all the
original terms i dilferem columns aml ol e |1'||'|1|.: i|1||'|lh,:.|||1:-. regorded] im dilTeremt rows as shown

bl

{HMIE o g i (L} 11 il 1K1 114K 11k

o o/ o o - =] P—AD

¥ ¥ ¥ ¥ -—  @=Cn
¥ v ¥ W —-— g — .-1.£
o o W W — = F—=RC

Each prime implicont is idemiified by o better. Ench prime imphicont is then examined ane by one ond
the werms it eam neeount for are teked s shevan. The nest gep i o write o product-ol-sume expreéssion
st the prime plicants & aecoumnt for ol the wenns, Dol present dlusisadem, o s given as follows,

(P40 R+ 5P+ Q4R+ SLRL P+ R0+ 5

Civioues sinplilicains modoces this expressom o PORSY which can be miterpicied w0 weean tle afl
prime smplcants, thal = P, 3, B ol S e needed e account loc il the ongmad feoms,
Therelore, the minimsized exprosson = AJ0+ O 00 A B+ B0,

What has been deserbel above & the formal method of detemmining b aplirmim s ol prime
unplecaids, la nxost o the cases whoe the prowes Dnepdicant abke s pol i complex, the escrass can
he dore even intuitively. The exercise begins with dentifieation of those termes that can be accounted
for by only a single prime fmplicont, In the presemt example, (R, G010, 1031 and | 144} are swch
terms, As oo pesult, P, G0 K and 8 become the essentinl prime impleeams, The nexi step e @ Gind o if
Y BerTs Wave niol Beem coversd by Lhe gsseniial T|-|1|'rr|.' il|‘1|iL‘.l.I1|:":. IR IS presem case, all éems have
becn coverad by cssemtinl prime maplicants. T et all prome wepdicents aic esseitaal prime Dinplicmts
i the present example.

A another Dlu=iraibon, ket s conzider a procect-of-saims expresdion given by

(A+H+E+PAA+ 0+ + DA+ B+ 0= DA+ B+ WA+ B+ 0+

Tl prrencedure v stinibar we bl deseribed Gor the case of simplelication of sum-ol-proediscs @ pressions,
The resmlting tables leading o identiticatbon of prime implicams are as follows:
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4 g i I¥ A ] i i A n L ] A H [ Ik
1] ] 1] | i I il | o i | - | o - ] - I -
ik i | | - 1 [l [ W
i i 1i | i I |
| 1 | L] | I i | o - 1 I | W
| | | | | I | LU | 1 - | o

| i ] - .

| [

Tee pronse implocant e 1s comsimcied after @l pame mplucemis bave beon wemitfied o kook for
il cplinsum set ol prime napficants needeod s account Fir all the oripinal erms. The prorse meplicant
inble shows chat both ibe prume implicamds are ke esseniial ones;

i i 11K LLLLL) 1111 Prina: laplicanis
W Ll 1=
v ¥ o ¥ s o]

The minimused expression = (A+ B+ T1(F+ T

Example

Usimg the Cine-MeClhikey rabiilier omethod, fird the sdmimman sam of prodocty for J1A, B, C 0 =

T2, 3.9, 12 13, 145+ T 0,7, 10, 15)
']

Serlaatiaon

The dalferent steps 1o lnding the solutbon otk given problem are tabeled below, As we s see,
cight prms implecasis hove been sbennficd. These prme anpheants alosg with the iapats consanie
the prime implicant tahle, Remeniber that eplional inpits are ol comssdersd whiles consimicting the
prioe impbicenl inhbe:

A ] [ fi] A & [ i A i E fi]
il 4] 1l { o 11 il i - W 11 Ik - - )
i L - 0 "3 I I - - *
i i i [ i il - i o
il 11 | 1 w - il i | .
I il 1 - o
i ] | I« - L | ] "
1 ] ik | o
1 i | a g i = | i :
1 1 1k 0 I - 0 | .
] - ] [ .
] 1 1 I I | [T} = oy
| 1 1 I I | - I W
1 1 i 1
- | | I .
1 1 1 I & I | - | i
I | | - o
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The pm‘l.l..l-.:l-u:-f-l-um:.' c:-ipn:cs.i-.ln thit fells abount the combination of |1rir|'|r: impli..'qnlu required o
acvonl for all the 1erms i given by the expression

{L+ 50+ X 0NV S L+PLIT L P+ TRIO+T)
Adter obvious sumplifacation, this reduces o the expression
TAL+5k M+ 51N +ShAL+F)
=T ILM 4+ LN+ MY+ 3L0LN + P 4+ L5+ 2%
= FALMN A SLN + PN + LY+ P5)
= TALMNN + LEMY + LMY + LMPS + LNS + PNY + L% + F5)
= FTALMN + LMPN + LS + F5)
= TLMN + TLAMEN + TLE + T

i EHT BT finK | 14ki it I Prime implicanis
o o —mnj 1.
o —Lin L11
o [LE iy |
o o =0l I
¥ =i iy
11 R
o e o 1 e = 5
+ o o 1 Jp— I

T swmnol -preadiscts. Hownbean e gpression (630 <tates tead all the gt combinsums cin be aceounied
for by the prime implicants (T, £, W My oor (7. LML BN o (T, L 5 oe (T8, 51 The mist
aptimaii capression woalkd resull from ether TS oF T, Thereloe, e mpnimized Boolean fnchion
in given by

fia B e M= Af+RECD+ AR

o ey
fIARC B =AB+AB+ACD
1.35 Karnaugh Map Method
A Karnsugh map s a grophical represeniation of the logic system. I cas be dravwen directly from either
minterm [ sum=al-products) or maxieem {prodocl-of-sums ] Boslean expressions. Drowing a Kamaagh
map from the trugh tabde involves an ndditionnl sep of writing the minienm or maxiern expression

|.‘|-r|1.'|||.||ﬂ,;.' upmn whether i desared W have o minmad .*\.I.Iru-l.r!'-|'q1r|JuL1.h o1 & imineniaed |l||1Jul.'I-
Of-slims Expresion

1.35.1 Construction of a Karnaugh Map

An gevariable Eommooph mop has 27 sguares, aned each possible input is allodted o square. In the case
of a minterm Knmaegh map,. *1 s plaged in all ibose sguares for which the omtpue is 1, and P
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ix placed im all those sguares for which the caipur is 90, Ou are omited for simpliciege. Ao XY s
|1I.||.'1.'1.I in SURNIeS ..'qmp.lrp.liuu: o il e’ cowslntions, Inothe onse of o maxienm I::I,I'mlu,ﬂ]l (IIETES
2 1" is placed in ol those squares for which il outpat s °0°, @nd o 0 s placed for mput eniries
corresponchng oo 1 oaipi, Agam, Oseare ooiied loe sunphcity, and a0 X w plcad imosguares
carresponding bo ‘don’l care” conditions.

The choice ol werms identifving different poas pod colmmmns of 0 Karmosgh map is pot unigue for a
gi". co numbes of vamables, The 1.'vn|_'.' comditmn 1o ke satisfied i3 tha the I.Ilf"t-ilrlli'll.il.lh l:ll'm|_1|||.'|:'|ll ERL
anid adjacent colmmins shouwld be the sane excepd for one ol the Bierals being complemended. Also, the
extrenke rows and extreme columns are considensd adjacent. Some of the possible desiprmtion swles for
ta, three- ol foar-vamaksle nierm Hmludl_"ll naT e gil.'l.'rl i Flgh

The style of row wdentiiicatssn weed ot b the same as thot of column ideptilication s long as 1
memels the basic reguinsment with respect o adjacent terms, L s, however, accepied praciioe o adopt a
apifirm style of row and column idestilication, Also, tbe siyke shown in Figs dal, {ajand  {a)
15 inoke commonly used, Soine wete siyles are showin m Fiee - A sinlar discussaon applics for
nuexterm Kamaugh maps.

Hovimg drown the Kamoagh map, the pexi slep is o form greape ol 15 as per the: following
guidelines:

I. Each sguare conminmg a *1° must be considercd at kenst once, although it can be comsidered as
often ax desived,

2. The objective choald be o acermnt for all the morked squares in the minimam mmber of groups.

3. The nmmber of S| ina o musi nlwave be a pvaer al 2, e, EreRIps s leave 1. 2,4, K, I,
o ¢ BAJRUITER

4. Each group. shoald be os lorge as possible, which means that o square shoold nol ke scoounted for
by itsedl 0 it con e accounte] B by & groap of twao sguiores; a groap of two sguares shoold el be
ke i ke o lved sajlLares L be imclwled in s g ol Tewar sLjilres anid & o,

3 "Chon't gare” entries ean be used in accounting For all of |-squires & make spionom grsaps, They
g asarked X7 in the comresposding sguares. T is, heewiever, el neosssary e oeceunt- foe oll “don’t
care” snfrics. Unly such cnmies that e be usad wowslvantage shodid be nsad

B n g B
[ ] &
A A
L] ]
[CO - i@
I &
A A
ik i

Figure Two-variable Karnaugh map.
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BE Bc BC BE B0 BE BE Bo
i B
A A
L] (]|
Bz BE BT BC Bt B: Bc BO
y E
A A
=] (]|

Figure Three-variable Karnaugh map.

CO CO ch cD o & b co
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Figure Four-variable Karnaugh map.
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Figure Different styles of row and column identification.

Having accounded for gromps with all 15, the minimam “sum-of-prodects” o ‘prodiel-ef-sans
eapressions can b wreitten dirctly Trmn s Karmoagh mag,

Figure 600 shows the inmh toble, mimperm Karnaugh map and maxeerm Romsugh mop of the
Boolean Tasction of o vwo-bagan OR gae, The mbnieam and mastenn Boolesn exphessions for the
two-input CHE gale are s follows:

=+ 8 (masterm ar prosdsct-of-su )

Y= A B+ AR+ AR (minterm or smm-of-produecis

Figure 6.11 shows the truth ishle, misterm Kammegh mop and naxienm Karnaegh map of the three-
vanible Boolean fuscrion

F=ARC+ARC+ART +ART

F=A4+T+TLA+F+TMAFIETHA+ALT)
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Sum-of-producis K-map
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A
A 1

Product-ol-gums K-map
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= | D | == |3 |0
e N T [ =

Figure Two-variable Karnaugh maps.

A B c ¥ BC_BC BC BT
0 0 L] 1 Al 1 i
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4 1 a 1 Surm-al-products K-map
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g @ R L B+ BeC B:C B4T
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1 1 0 1 Al ]
i 1 1 4]

Froduct-of-sums K-map

Figure Three-variable Karnaugh maps.

Vemid+ B+ T =DhiA+ B+ C+TNA+ T+ 0+ iA-F+T+T
(A+B4+ T+ MAA+B+C+ AT +C +MIA+E+T+M

¥ ABC D+ ARCT+A BT D+ARCH+ART D+ARCD+ART D+AB.CD
F={A+B8+C+TH{A+B+C+DLA+E+C+ DA+ B+ C+ DA+ T+T+T)
JA4T+T+ A+ E+C+ DA+ T+ T+ A+ B+ C+ DA+ 8+T+0)

¥=TFT4 R
Y = ThfA+ T}
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Figure Four-variable Karnaugh maps.
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Figure Group formation in minterm and maxterm Karnaugh maps.
1.36 Logic Gates and Related Devices

Logic gates are electronic circuits that can be used to implement the most elementary logic
expressions, also known as Boolean expressions. The logic gate is the most basic building block
of combinational logic. There are three basic logic gates, namely the OR gate, the AND gate
and the NOT gate. Other logic gates that are derived from these basic gates are the NAND gate,
the NOR gate, the EXCLUSIVE-OR gate and the EXCLUSIVE-NOR gate. This chapter deals
with logic gates and some related devices such as buffers, drivers, etc., as regards their basic
functions. The treatment of the subject matter is mainly with the help of respective truth tables
and Boolean expressions. The chapter is adequately illustrated with the help of solved
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examples. Towards the end, the chapter contains application-relevant information in terms of
popular type numbers of logic gates from different logic families and their functional
description to help application engineers in choosing the right device for their application.
Different logic families used to hardware-implement different logic functions in the form of
digital integrated circuits are discussed in the following chapter.

1.37 Positive and Negative Logic

The binary variables, as we know, can have either of the two states, i.e. the logic ‘0’ state or the
logic ‘1’ state. These logic states in digital systems such as computers, for instance, are
represented by  two different voltage levels or two different current levels. If the more
positive of the two voltage or current levels represents a logic ‘1’ and the less positive of the
two levels represents a logic “0°, then the logic system is referred to as a positive logic system. If
the more positive of the two voltage or current levels represents a logic ‘0’ and the less positive
of the two levels represents a logic ‘1°, then the logic system is referred to as a negative logic
system. The following examples further illustrate this concept.

If the two voltage levels are 0 V and +5 V, then in the positive logic system the 0 V represents a
logic ‘0’ and the +5 V represents a logic “1°. In the negative logic system, 0 V represents a logic
‘I’and +5 V represents a logic ‘0.

If the two voltage levels are 0 V and —5 V, then in the positive logic system the 0 V represents
a logic ‘1’ and the —5 V represents a logic ‘0’. In the negative logic system, 0 V represents a
logic ‘0’and —5 V represents a logic ‘1.

It is interesting to note, as we will discover in the latter part of the chapter, that a positive OR is
a negative AND. That is, OR gate hardware in the positive logic system behaves like an AND
gate in the negative logic system. The reverse is also true. Similarly, a positive NOR is a
negative NAND, and vice versa.

1.38 Truth Table

A truth table lists all possible combinations of input binary variables and the corresponding
outputs of a logic system. The logic system output can be found from the logic expression,
often referred to as the Boolean expression that relates the output with the inputs of that very
logic system. When the number of input binary variables is only one, then there are only two
possible inputs, i.e. ‘0’ and ‘1’. If the number of inputs is two, there can be four possible input
combinations, i.e. 00, 01, 10and 11. Figure (b) shows the truth table of the two-input logic
system represented by Fig. 4.1(a). The logic system of Fig. 4.1(a) is such that Y = 0 only when
both A =0 and B = 0. For all other possible input combinations, output Y = 1. Similarly, for
three input binary variables, the number of possible input combinations becomes eight, i.e. 000,
001, 010, 011, 100, 101, 110 and 111. This statement can be generalized to say that, if a logic
circuit has n binary inputs, its truth table will have 2n possible input combinations, or in other
words 2n rows. Figure shows the truth table of a three-input logic circuit, and it has 8 (= 2°
rows. Incidentally, as we will see later in the chapter, this is the truth table of a three-input AND
gate. It may be mentioned here that the truth table of a three-input AND gate as given in Fig. is
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drawn following the positive logic system, and also that, in all further discussion throughout the
book, we will use a positive logic system unless otherwise specified.

A Logec: -y
B Bysiam
[&)

- o | e
- o o= alm
P = |

=t}

Figure Two-input logic system.

. B c T
W] i) 0 0
o Q 1 ]
W] 1 0 0
o 1 0
i (K ] 0
1 0 1 0
1 1 o 0
1 1 1 1

Figure Truth table of a three-input logic system
1.39 Logic Gates

The logic gate is the most basic building block of any digital system, including computers. Each
one of the basic logic gates is a piece of hardware or an electronic circuit that can be used to
implement some basic logic expression. While laws of Boolean algebra could be used to do
manipulation with binary variables and simplify logic expressions, these are actually
implemented in a digital system with the help of electronic circuits called logic gates. The three
basic logic gates are the OR gate, the AND gate and the NOT gate.

1.39.1 OR Gate
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An OR gate performs an ORing operation on two or more than two logic variables. The OR
operation on two independent logic variables A and B is written as Y = A + B and reads as Y
equals A OR Band not as A plus B. An OR gate is a logic circuit with two or more inputs and
one output. The output of an OR gate is LOW only when all of its inputs are LOW. For all other
possible input combinations, the output is HIGH. This statement when interpreted for a positive
logic system means the following. The output of an OR gate is a logic ‘0’ only when all of its
inputs are at logic ‘0°. For all other possible input combinations, the output is a logic ‘1°. Figure
shows the circuit symbol and the truth table of a two-input OR gate. The operation of a two-
input OR gate is explained by the logic expression

Y=A+B

As an illustration, if we have four logic variables and we want to know the logical output of (A
+B + C + D, then it would be the output of a four-input OR gate with A, B, C and D as its

inputs.

A B v

" 0 o o
= ALB 0 1 '

B | o |
1 1 |

Figure Two-input OR gate.

A FE—
B Y=haBaC
G
fah
2
- m— —  Y=AELCHD
i
b}
) | B | © ¥
THENEEE
o o i 1
] ] o 1
i} 1 I 1
1 v} '+ 1
1 n} | 1
] 1 ] 1
1 I 1
1=l
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Figure (a) Three-input OR gate, (b) four-input OR gate and (c) the truth table of a three-
input OR gate.

Figures (a) and (b) show the circuit symbol of three-input and four-input OR gates.
Figure(c)shows the truth table of a three-input OR gate. Logic expressions explaining the
functioning of three-input and four-input OR gatesare Y=A+B+CandY=A+B+C+D.

Example
How would you hardware-implement a four-input OR gate using two-input OR gates only?
Solution

Figure(a) shows one possible arrangement of two-input OR gates that simulates a four-input
ORgate. A, B, C and D are logic inputs and Y 3 is the output. Figure(b) shows another possible
arrangement. In the case of Fig.(a), the output of OR gate 1 is Y 1 = (A + B). The second

B —

A e L n  —
.F! D Ilr: Ve @ o D 2
== )" oy

0

|a f1=1}

Figure Example.

OR gate produces the output Y 2 =(Y 1 + C) = (A + B + C). Similarly, the output of OR gate 3
isY3=(Y2+D)=(A+ B+ C+D). In the case of Fig.(b), the output of OR gate 1 is Y 1 = (A
+ B). The second OR gate produces the output Y 2 = (C + D). Output Y 3 of the third OR gate
isgivenby(Y1+Y2)=(A+B+C+D).

Example
Draw the output waveform for the OR gate and the given pulsed input waveforms of Fig.(a).
Solution

Figure (b) shows the output waveform. It can be drawn by following the truth table of the OR
gate.
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Figure Example.
1.39.2 AND Gate

An AND gate is a logic circuit having two or more inputs and one output. The output of an
AND gate is HIGH only when all of its inputs are in the HIGH state. In all other cases, the
output is LOW. When interpreted for a positive logic system, this means that the output of the
AND gate is a logic ‘1’ only when all of its inputs are in logic ‘1 state. In all other cases, the
output is logic ‘0°. The logic symbol and truth table of a two-input AND gate are shown in Figs
(a) and (b) respectively. Figures (a)and (b) show the logic symbols of three-input and four-input
AND gates respectively. Figure(c)gives the truth table of a four-input AND gate.

The AND operation on two independent logic variables A and B is written as Y = A B and
reads as Y equals A AND B and not as A multiplied by B. Here, A and B are input logic
variables and Y is the output. An AND gate performs an ANDing operation:

A__
—Y=AR
B_
(8]

A | B | XY
HIEHE
i | [
1| o |0
o O

i)

Figure Two-input AND gate.
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1

Figure (a) Three-input AND gate, (b) four-input AND gate and (c) the truth table of a
four-input AND gate.

* For a two-input AND gate, Y = A B;
* For a three-input AND gate, Y = A B C;
* For a four-input AND gate, Y =A B CD.

If we interpret the basic definition of OR and AND gates for a negative logic system, we have
an interesting observation. We find that an OR gate in a positive logic system is an AND gate in
anegative logic system. Also, a positive AND is a negative OR.

Example

Show the logic arrangement for implementing a four-input AND gate using two-input AND
gates only.

Solution

Figure shows the hardware implementation of a four-input AND gate using two-input AND
gates. The output of AND gate 1 is Y 1 = A B. The second AND gate produces an output Y 2
given byY 2=Y 1 C = A B C. Similarly, the output of AND gate3is Y=Y 2D=ABCD
and hence the result.
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A= Y1

C— ' 9 }——¥=ABGD

Figure Implementation of a four-input AND gate using two-input AND gates.
1.39.3 NOT Gate

A NOT gate is a one-input, one-output logic circuit whose output is always the complement of
the input. That is, a LOW input produces a HIGH output, and vice versa. When interpreted for a
positive logic system, a logic ‘0’ at the input produces a logic ‘1’ at the output, and vice versa.
It is also known as a ‘complementing circuit’ or an ‘inverting circuit’. Figure shows the circuit
symbol and the truth table.

The NOT operation on a logic variable X is denoted asX or X'. That is, if X is the input to a

NOT circuit, then its output Y is given by ¥ = X or X'and reads as Y equals NOT X. Thus, if X
=0Y=landifX=1Y=0.

X - - L]
LEL
ERE
b = 0 |
— Y
1 L]
[}

Figure (a) Circuit symbol of a NOT circuit and (b) the truth table of a NOT circuit.

Example
For the logic circuit arrangements of Figs (a) and (b), draw the output waveform.
Solution

In the case of the OR gate arrangement of Fig. (a), the output will be permanently in logic
‘1’state as the two inputs can never be in logic ‘0’ state together owing to the presence of the
inverter. In the case of the AND gate arrangement of Fig.(b), the output will be permanently in
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logic ‘0’state as the two inputs can never be in logic ‘1’ state together owing to the presence of
the inverter.

U -

(i)

Figure Example.

1.39.4 EXCLUSIVE-OR Gate

The EXCLUSIVE-OR gate, commpaly weillen as EX-OR gale, i3 & two-mpt, coc-omlgan pate, Figurey

{m} and {b} l.'I!HF-EL'li"-‘El:.: whow ke lDE_H: symbol and truth loble of a two-Lnput EX-OR grbe. As cun
b seen from the tmeth fable, the sotpat of an EX-OR gate is 5 logie *17 when the inputs ane onlike snd
A logic 07 when the wpets are ke Althoagh EX-OR pates are available ininlegraged circait foom
ondy as twe- gl gacs, ualiks oflar gates which ane avallable 1o makiple inputs also, nudtple-lnput
EX-DE logic humictions gan be implemented neing more than soe vag-input gates, The tmith ohle of
arnulikple-mput EXGOR functbon can be eopressed as follows. The oupoet of o mulple-anpur EXxCOR
lngic Munction 15 a logic 17 when the number af 1s in the inpui sequence is odod and o legic 07 when
the number of s an (e gt sequence s even, includigg wens That b am all Os mpal seqiemce also

prochsces a logic 0 af fhe owpul. Figore ik showes the froth table of a fowr-impst EX-OR fonction,
The owtpist of a two-tnpul EX-OR gake (s capressad by

F=dAf B =AR+ AR
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Figure (a) Circuit symbol of a two-input EXCLUSIVE-OR gate, (b) the truth table of a
two-input EXCLUSIVE-OR gate and (c) the truth table of a four-input EXCLUSIVE-OR
gate

1.39.5 NAND Gate
MAND stands for NOT AND, An AND pate follewed by o NOT croub makes it o MAND pate [Fag.
(a)], Figare (b} shows the cimwit symbol of a twe-inpat NAND gaie. The tuth foble of a
MAND gate Is obrakned Froom the wuth wble of an AND gase by complementag the ouipul coirees [Fie
(] The output of a MAND gale 15 a logee ' when all its mputs are a kegie ‘17 For all sther
inpui combinations. the autput & o legic °17. NAND gate operstion s logically expressed as
¥ =AF

In genesal, dwe Hoolbean expresseon Dor o NAND gate with more than two inpass can be wotlon as
¥F=i{d.0.L.03..)

83

AllAbtEngg Android Application for Anna University, Polytechnic & School



www.AllAbtEngg.com

A }
B
[l
A
[
B
=)
A a W
a a 1
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1 a 1
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e

Figure (a) Two-input NAND implementation using an AND gate and a NOT circuit, (b)
the circuit symbol of a two-input NAND gate and (c) the truth table of a two-input NAND
gate.

1.39.6 NOR Gate

MOR stands for ROT OR. An O gate fellowed by a NOT cercuil makes 5l o OB gate |[Fig. iaj]
The cruth table of & NOR gaie 5 obabned fom the walh sable of an OF gale by complemening the
oustpud eiiries, The putpol of @ NOR gote = logic *1 ' when all ig= inpais are legic 0. For all ather inpui
conbinutions, the ot s o logee *0°, The soatpul of & two-iepat NOR pate is logically exgressed as

F={4d+8)

A A
: ) Devaw
B B
(a) ib

& B i

o 1 o

1 o a

1] 1 i

e
84

AllAbtEngg Android Application for Anna University, Polytechnic & School



www.AllAbtEngg.com

Figure (a) Two-input NOR implementation using an OR gate and a NOT circuit, (b) the
circuit symbol of a two-input NOR gate and (c) the truth table of a two-input NOR gate.

In general, the Boolean expression for o NOR gate with morg than twe inputs can be written s

F=(A4+EB+C =0

1.39.7 EXCLUSIVE-NOR Gate

EXCLUSIVE-NOR (commondy writhen as EX-NOHR) means NOFT of EX-COR, i the legic gate thal
wie pet by complementing the outpat of an EX-OR pate. Figure shows its circurt symbol along

wiith fi= pruth pahle
The wuih stke of an EX-MNOR gue s obined from the woath wble of an EX-OR pare by

cormplementing the calpul entnes. Logically,

F o (A B B} A0+ A

- = o O =
= 0o = o|lm

Figure (a) Circuit symbol of a two-input EXCLUSIVE-NOR gate and (b) the truth table
of a two-input EXCLUSIVE-NOR gate.

The papur al a two-nput EX-NOR gate s a bopbe 1" when tee inputs age like and & logic ‘0
when ibey are unbike. In general, the outpul of a mulibpdecinpul EX-MOR kxgic function 13 o logs
‘¥ when the number of 1 in the Ingud. soqoence s ndd and 2 logec *17 when the namber of 15 in the
ir||1u| sEqUERCE & even im.'ludiu.l.' sera. Thal is, an all (s inpul: SEL|UECE alwn |1n'-:|u:h|:'s N I-JE'H: ‘17 at

the output
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1.40 Universal Gates

A universal gate i3 a gate which can implement ary Boolean function without need to
use any other gate tvpe

The NAND and NOR gates are universal gales

In practice, this is advantageous since NAND and NOR gates are economical and
easier to fabnicate and are the basic gates used inall 1C digital logic tamilics.

In fact, an AND gate is typically implemented as a NAND gate followed by an
inverter not the other way around!!

Likewise, an OR gate 15 typically implemented as a NOR gate Tollowed by an mmverter
nat the other wiy around! |

1.40.1 NAND Gate is a Universal Gate

To prove that any Boolean function can be implemented using only NAND gates, we
will show that the AND, OR. and NOT operations can be performed using only these

gates

Implementing an Inverter Using only ™ AND Gaie
The figure shows two ways inwhich o NAND gate can be wsed as an inverter (NVOT

gaie).

1. Al MAMD input pins connect o the inpud signal A gives an output A

D e

2, One NAND input pin 1s connected to the input signal A while all other input pins
are connected to logic 1, The output will be A"

= WA AT " a
P — H}n—
I

¥ =
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Implementing AND Using only NAND Gates
An ANDY gute can be replaced by NAND gafes as shown in the figure (The AND is
replaced by a MAND gate with iis output complemented by a NAND gate inverter)

DD -
& Bl

Implementing OR Using only NAND Guaes
An OR gate can be replaced by NAND gates as shown in the figure (The OR gate is
replaced by a MAND gate with all its inputs complemented by NAMND gate inveners).

£l
e
SiD

Thas, the NAND gate is a universal gate since it can implement the AND, OR
and NOT Munctisns.

1.40.2 NOR Gate is a Universal Gate

To prove that any Boobean function can be implemented using andy NOR gates, we
will showw that the AND, OR, and NOT operations can be performed using only these

gales

Implementing an loverter Usinge only NOR Gate
The figure shows two wavs in which a2 NOR gate can be used 2= an inverter (NOT

Zite).
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1. All NOR inpul pins connect 1@ the anput signal A gives on outpul A

A L ::I-"-"-"-M'L B |::: A

2, One NOR input pin is connected o the input signal & while all other input pins are
comnected to logic O, The output wall be A"

-]

Implementing OR Using only NOR Guates

An OR pafe can be repliced by MOR gates 05 shown w the figare (The OR 15
replaced by a MOR gate with ifts output complemented by a KOR gate imverter)

ST TS e
— j
5= - 51‘/

Implementing AND Using valy NOR Gutes

Am AND gate can be replaced by NOR gates as shown in the figure (The AND gate 12
replaced by a NOR gate with all its inputs complemented by NOR gate inverters)

(A+BTeAB |, ——- an
—_—
-

Thus, the NOR gate is a aniversal gate since i can implement the AND, OR and
MOT fanetions,

1.41 Equivalent Gates

The shown figure summanzes important cases of gate equivalence. Note that bubbles
indicate & complement operation {inverter),

A NAMND gate 15 equevalent to an mverted-inpot OR gate

— i A'sR'=
A — (a) i _iamy
— ;._
B B
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An AND gate 15 equivalent toan inverted-input NOR gate

D —pF

B

A MNOR gate is equivalent to an inverted-input AN gate.

j\ : — 2 {A+E]
B—f g~

An OR gate 15 equivalent 1o an imverted-mput NAND gate.

A e wE=

. A —] A+B
B ;

B

Pwo NOT pates in series are same @5 @ buffer because they cancel each other as A =
A
A A A=A
& . {>D I;>¢.

We have seen betore that Boolean fimctions m elther SOF or POS forms can be
mplemented using 2-Level implementations.

=
r

1.42 Two-Level Implementations

For SOP forms AND gates will bean the first level ond o single OR gote will be in the
second level

For POS Forms OF gates will be in the Grest level and a single AND gt will be inothe
second level.

Mote that using inverters to complement mpul varables s not counted 25 a level

We will show that SOP forms can be implemented using only MAND gates, while
POS forms can be implemented wsing only NOR gates.

This 15 best explmned through examples.

Example 1: Implement the following SOF function

F=XE+Y'Z+X"YZ
Being an SOF expression, it 15 implemented in 2-levels as shown in the figure.
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-
D>
D

§ =

Introducing two successive inveriers at the mputs of the OR gate results inthe shown
equivalent implementation. Smee two successive nverters on the same line will not
have an overall effect on the logic as it iz shown before,

By associating ene of the mverters with the output of the first level AND gate and the
other with the tnput of the OR gate, it 15 clear that this implementation 15 reducible to
2-level implementation where both levels are MAND gates as shown in Figure

} .

Y
L

(06

Exnmple 2; Implement the following POS function

F ={X+¥&) (Y'+R) (X' +Y+E)
Being a POS expression, it i unplemented in 2-levels as shown in the figure.

DF

Z

54§
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- —

Introducg two successive inverters at the inputs of the AND gate results in the
shown equivalent implementation. Since bwo successive inverters on the same ling
will not have an overall effect on the logic as it is shown before.

By associating one of the mverters wath the output of the first level OR gates and the
other with the input of the AND gate, it is clear thad this implementation is reducible
to 2-level implementation where both levels are NOR gates as shown in Figure

N
W
i

There are some other types of 2-level combmational circuits whach are
» NAND-AND
= AND-NOR,
= NOR-OR.
s OR-NAND

These are explained by examples,
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AND-NOR funcrions:

Example 3; Implement the following funeiion
F=XZVZ+ X7 or
FaXZ+YEL+X¥Z

since I s i S0P form, it can be mplemented by using NAND=NAND circuit
By complementing the outpul we can get F, or by using MAND-AND cireunt as
shovwm in the figure

X
Y

-
=D
B

z
It can also be implemented using ANVD-YOR circuit as it is equivalent o NAND-
AND circust as shown in the figure

) —
D=~
£ o

OR-NAND functions:

Example 4 lmplement the following functicn
F=X+ZWMY + 20X +Y+Z) o
Fe(X+Z Y+ ZUX+F+2Z)
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Since F* 15 in POS form, it can be implemented by using NOR-NOR ¢ircuit
By complementing the output we can getl F, or by using NOR-0R cirouit as shown in
the Nigure.

It can also be implemented using OR-NAND circuit as it is equivalent to NOR-OR
circuit as shown in the figure.
x

F 4

A

1.43 Two marks Questions and Answers

1. Define Digital Systems.
A System which is processing discrete or digital signal is called as Digital System.
2. What is meant by bit?
A Binary digit is called bit.
3. What is the best example of digital system?
Digital computer is the best example of a digital system.
4. Define Radix.
It specifies the number of symbols used for corresponding number system. .

5. Define Nibble and Byte.
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