
AllAbtEngg Android Application for Anna University, Polytechnic & School

 UNIT I

 MINIMIZATION TECHNIQUES AND LOGIC GATES

1. Number Systems

The study of number systems is important from the viewpoint of understanding how data are
represented before they can be processed by any digital system including a digital computer. It
is one of the most basic topics in digital electronics. In this chapter we will discuss different
number systems commonly used to represent data. We will begin the discussion with the
decimal number system. Although it is not important from the viewpoint of digital electronics, a
brief outline of this will be given to explain some of the underlying concepts used in other
number systems. This will then be followed by the more commonly used number systems such
as the binary, octal and hexa decimalnumber systems.

1.1 Analogue versus Digital

There are two basic ways of representing the numerical values of the various physical quantities
with which we constantly deal in our day-to-day lives. One of the ways, referred to as analogue,
is to express the numerical value of the quantity as a continuous range of values between the
two expected extreme values. For example, the temperature of an oven settable anywhere from
0 to 100 °C may be measured to be 65 °C or 64.96 °C or 64.958 °C or even 64.9579 °C and so
on, depending upon the accuracy of the measuring instrument. Similarly, voltage across a
certain component in an electronic circuit may be measured as 6.5 V or 6.49 V or 6.487 V or
6.4869 V. The underlying concept in this mode of representation is that variation in the
numerical value of the quantity is continuous and could have any of the infinite theoretically
possible values between the two extremes.

The other possible way, referred to as digital, represents the numerical value of the quantity in
steps of discrete values. The numerical values are mostly represented using binary numbers. For
example, the temperature of the oven may be represented in steps of 1 °C as 64 °C, 65 °C, 66
°C and so on. To summarize, while an analogue representation gives a continuous output, a
digital representation produces a discrete output. Analogue systems contain devices that process
or work on various physical quantities represented in analogue form. Digital systems contain
devices that process the physical quantities represented in digital form.

Digital techniques and systems have the advantages of being relatively much easier to design
and having higher accuracy, programmability, noise immunity, easier storage of data and ease
of fabrication in integrated circuit form, leading to availability of more complex functions in a
smaller size. There all world, however, is analogue. Most physical quantities position,
velocity, acceleration, force, pressure, temperature and flow rate, for example are analogue in
nature. That is why analogue variables representing these quantities need to be digitized or
discretized at the input if we want to benefit from the features and facilities that come with the
use of digital techniques. In a typical system dealing with analogue inputs and outputs,
analogue variables are digitized at the input with the help of an analogue-to-digital converter
block and reconverted back to analogue form at the output using a digital-to-analogue converter

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

block. Analogue-to-digital and digital-to-analogue converter circuits are discussed at length in
the latter part of the book. In the following sections we will discuss various number systems
commonly used for digital representation of data.

1.2 Introduction to Number Systems

We will begin our discussion on various number systems by briefly describing the parameters
that are common to all number systems. An understanding of these parameters and their
relevance to number systems is fundamental to the understanding of how various systems
operate. Different characteristics that define a number system include the number of
independent digits used in the number system, the place values of the different digits
constituting the number and the maximum numbers that can be written with the given number
of digits. Among the three characteristic parameters, the most fundamental is the number of
independent digits or symbols used in the number system. It is known as the radix or base of
the number system. The decimal number system with which we are all so familiar can be said to
have a radix of 10 as it has 10 independent digits, i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.Similarly, the
binary number system with only two independent digits, 0 and 1, is a radix-2 number system.
The octal and hexadecimal number systems have a radix (or base) of 8 and 16 respectively. We
will see in the following sections that the radix of the number system also determines the other
two characteristics. The place values of different digits in the integer part of the number are
given byr0, r1, r2, r3 and so on, starting with the digit adjacent to the radix point. For the
fractional part, these are r 1, r 2, r 3 and so on, again starting with the digit next to the radix
point. Here, r is the radix of the number system. Also, maximum numbers that can be written
with n digits in a given number system are equal to rn.

1.3 Decimal Number System

The decimal number system is a radix-10 number system and therefore has 10 different digits or
symbols. These are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. All higher numbers
terms of these 10 digits only. The process of writing higher-
writing the
next 10 numbers

continues until we have exhausted all possible two-
we begin with three-digit combinations. The first three-digit number consists of the lowest two-

. 100), and the process goes on endlessly.

The place values of different digits in a mixed decimal number, starting from the decimal point,

fractional part). The value or magnitude of a given decimal number can be expressed as the sum
of the various digits multiplied by their place values or weights.

As an illustration, in the case of the decimal number 3586.265, the integer part (i.e. 3586) can
be expressed as

 3586 = 6 × 100 + 8 × 101 + 5 × 102 + 3 × 103 = 6 + 80 + 500 + 3000 = 3586

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

and the fractional part can be expressed as

 265 = 2 × 10 1 + 6 × 10 2 + 5 × 10 3 = 0 2 + 0 06 + 0 005 = 0 265

We have seen that the place values are a function of the radix of the concerned number system
and the position of the digits. We will also discover in subsequent sections that the concept of
each digit having a place value depending upon the position of the digit and the radix of the
number system is equally valid for the other more relevant number systems.

1.4 Binary Number System

The binary number system is a radix- independent

writing higher-
decimal number system. For example, the first 16 numbers in the binary number system would
be 0, 1, 10, 11, 100, 101, 110,111, 1000, 1001, 1010, 1011, 1100, 1101, 1110 and 1111. The
next number after 1111 is 10000, which is the lowest binary number with five digits. This also
proves the point made earlier that a maximum of only 16 (= 24) numbers could be written with
four digits. Starting from the binary point, the place values of different digits in a mixed binary
number are 20, 21, 22 and so on (for the integer part) and2 1, 2 2, 2 3 and so on (for the fractional
part).

Example

Consider an arbitrary number system with the independent digits as 0, 1 and X. What is the
radix of this number system? List the first 10 numbers in this number system.

Solution

XX and 100.

1.4.1 Advantages

Logic operations are the backbone of any digital computer, although solving a problem on
computer could involve an arithmetic operation too. The introduction of the mathematics of
logic by George Boole laid the foundation for the modern digital computer. He reduced the
mathematics of logic to a logic was well
established and had proved itself to be quite useful in solving all kinds of logical problem, and
also as the mathematics of logic (also known as Boolean algebra) had been reduced to a binary
notation, the binary number system had a clear edge over other number systems for use in
computer systems.

Yet another significant advantage of this number system was that all kinds of data could be
conveniently represented in terms of 0s and 1s. Also, basic electronic devices used for hardware

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

implementation could be conveniently and efficiently operated in two distinctly different
modes. For example, a bipolar transistor could be operated either in cut-off or in saturation very
efficiently.

Lastly, the circuits required for performing arithmetic operations such as addition, subtraction,
multiplication, division, etc., become a simple affair when the data involved are represented in
the form of 0s and 1s.

1.5 Octal Number System

The octal number system has a radix of 8 and therefore has eight distinct digits. All higher-
order numbers are expressed as a combination of these on the same pattern as the one followed
in the case of the binary and decimal number systems described in Sections 1.3 and 1.4. The
independent digit sare 0, 1, 2, 3, 4, 5, 6 and 7. T
example, would be 10, 11, 12,13, 14, 15, 16, 17, 20 and 21. In fact, if we omit all the numbers
containing the digits 8 or 9, or both ,from the decimal number system, we end up with an octal
number system. The place values for the different digits in the octal number system are 80, 81,
82 and so on (for the integer part) and 8 1, 8 2,8 3 and so on (for the fractional part).

1.6 Hexadecimal Number System

The hexadecimal number system is a radix-16 number system and its 16 basic digits are 0, 1, 2,
3,4, 5, 6, 7, 8, 9, A, B, C, D, E and F. The place values or weights of different digits in a mixed
hexa decimal number are 160, 161, 162 and so on (for the integer part) and 16 1, 16 2, 16 3 and so
on(for the fractional part). The decimal equivalent of A, B, C, D, E and F are 10, 11, 12, 13, 14
and 15respectively, for obvious reasons.

The hexadecimal number system provides a condensed way of representing large binary
numbers stored and processed inside the computer. One such example is in representing
addresses of different memory locations. Let us assume that a machine has 64K of memory.
Such a memory has 64K (= 216= 65 536) memory locations and needs 65 536 different
addresses. These addresses can be designated as 0 to 65 535 in the decimal number system and
00000000 00000000 to 11111111 11111111 in the binary number system. The decimal number
system is not used in computers and the binary notation here appears too cumbersome and
inconvenient to handle. In the hexadecimal number system, 65 536different addresses can be
expressed with four digits from 0000 to FFFF. Similarly, the contents of the memory when
represented in hexadecimal form are very convenient to handle.

1.7 Number Systems Some Common Terms

In this section we will describe some commonly used terms with reference to different number
systems.

1.7.1 Binary Number System

Bit
byte is a string of eight bits. The byte is the basic unit of data operated upon

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

as a single unit in computers. A computer word is again a string of bits whose size, called the
 from

computer to computer. The word length may equal one byte, two bytes, four bytes or be even
larger.

The of a binary number is obtained by complementing all its bits, i.e. by
plement of (10010110)2 is

(01101001)2. The
 of (10010110)2 is (01101010)2.

1.7.2 Decimal Number System

 binary system, in the decimal number
system we of a given decimal number
is obtained by 10
would be (7503)10. The t

10is (7504)10.

1.7.3 Octal Number System

 of a
given octal number is obtained by subtractin
complement of(562)8 would be (215)8. The

8 would be (216)8.

1.7.4 Hexadecimal Number System

The
complement of(3BF)16would be (C40)16. The is obtained by

16would be (D52)16.

1.8 Number Representation in Binary

Different formats used for binary representation of both positive and negative decimal numbers
include the sign-bit magnitude method, th
method.

1.8.1 Sign-Bit Magnitude

In the sign-bit magnitude representation of positive and negative decimal numbers, the MSB
represents gn. The
remaining bits represent the magnitude. In eight-bit representation, while MSB represents the
sign, the remaining seven bits represent the magnitude. For example, the eight-bit
representation of +9 would be 00001001, and that
representation can be used to represent decimal numbers

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1). That is, eight-bit representation can be used to represent decimal numbers in the range from
-bit magnitude format.

are
represented as 00001001 in eight-bit nota

 of 00001001. Again, n-bit notation can be used to represent numbers in the
 1)to +(2 -bit

representation of the format can be used to represent decimal numbers in the

minus sign. The remaining bits are used for
representing magnitude. Positive magnitudes are represented in the same way as in the case of
sign-
complement of their positive counterparts. For example, +9 would be represented as 00001001,

 magnitude of +9. The n-
format can be used to represent all decimal numbers in the range from +(2).

very easy to gener
a binary number and also because arithmetic operations are relatively easier to perform when

1.9 Finding the Decimal Equivalent

The decimal equivalent of a given number in another number system is given by the sum of all
the digits multiplied by their respective place values. The integer and fractional parts of the
given number should be treated separately. Binary-to-decimal, octal-to-decimal and
hexadecimal-to-decimal conversions are illustrated below with the help of examples.

1.9.1 Binary-to-Decimal Conversion

The decimal equivalent of the binary number (1001.0101)2is determined as follows:

 0 + 0 × 21 + 0 × 22 + 1 × 23 = 1 + 0 + 0 + 8 = 9

1 + 1 × 2 2 + 0 × 2 3

 + 0.0625 = 0.3125

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 2 = 9.3125

1.9.2 Octal-to-Decimal Conversion

The decimal equivalent of the octal number (137.21)8is determined as follows:

 0 + 3 × 81 + 1 × 82 = 7 + 24 + 64 = 95

 1 + 1 × 8 2 = 0.265

 8= (95.265)10

1.9.3 Hexadecimal-to-Decimal Conversion

The decimal equivalent of the hexadecimal number (1E0.2A)16is determined as follows:

 × 160 + 14 × 161 + 1 × 162 = 0 + 224 + 256 = 480

 1 + 10 × 16 2 = 0.164

 16= (480.164)10

Example

Find the decimal equivalent of the following bin
format:

(a) 00001110;

(b) 10001110.

Solution

The magnitude bits are 0001110.

The decimal equivalent = 0 × 20 + 1 × 21 + 1 × 22 + 1 × 23 + 0 × 24 + 0 × 25 + 0 × 26

 = 0 + 2 + 4 + 8 + 0 + 0 + 0 = 14

Therefore, 00001110 represents +14

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

The decimal equivalent = 0 × 20 + 1 × 21 + 0 × 22 + 0 × 23 + 1 × 24 + 1 × 25+1 × 26

 = 0 + 2 + 0 + 0 + 16 + 32 + 64 = 114

1.10 Decimal-to-Binary Conversion

As outlined earlier, the integer and fractional parts are worked on separately. For the integer
part, the binary equivalent can be found by successively dividing the integer part of the number

reverse order constitute the binary equivalent. For the fractional part, it is found by successively
multiplying the fractional part of the decimal number by 2 and recording the carry until the
result of multiplication
equivalent of the fractional part of the decimal number. If the result of multiplication does not
seem to be heading towards zero in the case of the fractional part, the process may be continued
only until the requisite number of equivalent bits has been obtained. This method of decimal
binary conversion is popularly known as the double-dabble method. The process can be best
illustrated with the help of an example.

Example

We will find the binary equivalent of (13.375)10.

Solution

Divisor Dividend Remainder
2 13
2 6 1
2 3 0
2 1 1

 0 1

10 is therefore (1101)2

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

10= (.011)2

10 = (1101.011)2

1.11 Decimal-to-Octal Conversion

The process of decimal-to-octal conversion is similar to that of decimal-to-binary conversion.
The progressive division in the case of the integer part and the progressive multiplication while
working
Again, the integer and fractional parts of the decimal number are treated separately. The process
can be best illustrated with the help of an example.

Example

We will find the octal equivalent of (73.75)10

Solution

Divisor Dividend Remainder

8 73
8 9 1
8 1 1

 0 1

10 = (111)8

0.75 × 8 = 0 with a carry of 6

10= (.6)8

10 = (111.6)8

1.12 Decimal-to-Hexadecimal Conversion

The process of decimal-to-hexadecimal conversion is also similar. Since the hexadecimal
number system has a base of 16, the progressive division and multiplication factor in this case is
16. The process is illustrated further with the help of an example.

Example

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Let us determine the hexadecimal equivalent of (82.25)10

Solution

r part = 82

Divisor Dividend Remainder
16 82
16 5 2

 0 5

10= (52)16

10 = (52.4)16

1.13 Binary Octal and Octal Binary Conversions

An octal number can be converted into its binary equivalent by replacing each octal digit with
its three-bit binary equivalent. We take the three-bit equivalent because the base of the octal
number system is 8 and it is the third power of the base of the binary number system, i.e. 2. All
we have then to remember is the three-bit binary equivalents of the basic digits of the octal
number system. A binary number can be converted into an equivalent octal number by splitting
the integer and fractional parts into groups of three bits, starting from the binary point on both
sides. The 0s can be added to complete the outside groups if needed.

Example

Let us find the binary equivalent of (374.26)8 and the octal equivalent of (1110100.0100111)2

Solution

8

2 = (011111100.010110)2

equivalent binary number should be omitted. Therefore, (011111100.010110)2 =
(11111100.01011)2

2

2 = (1 110 100.010 011 1)2

 = (001 110 100.010 011 100)2 = (164.234)8

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.14 Hex Binary and Binary Hex Conversions

A hexadecimal number can be converted into its binary equivalent by replacing each hex digit
with its four-bit binary equivalent. We take the four-bit equivalent because the base of the
hexadecimal number system is 16 and it is the fourth power of the base of the binary number
system. All we have then to remember is the four-bit binary equivalents of the basic digits of
the hexadecimal number system. A given binary number can be converted into an equivalent
hexadecimal number by splitting the integer and fractional parts into groups of four bits,
starting from the binary point on both sides. The 0s can be added to complete the outside groups
if needed.

Example

Let us find the binary equivalent of (17E.F6)16and the hex equivalent of
(1011001110.011011101)2.

Solution

The given hex number = (17E.F6)16

2

 = (000101111110.11110110)2

 = (101111110.1111011)2

have been omitted.

2

 = (10 1100 1110.0110 1110 1)2

2 = (2CE.6E8)16

1.15 Hex Octal and Octal Hex Conversions

For hexadecimal octal conversion, the given hex number is firstly converted into its binary
equivalent which is further converted into its octal equivalent. An alternative approach is firstly
to convert the given hexadecimal number into its decimal equivalent and then convert the
decimal number into an equivalent octal number. The former method is definitely more
convenient and straightforward. For octal hexadecimal conversion, the octal number may first
be converted into an equivalent binary number and then the binary number transformed into its
hex equivalent. The other option is firstly to convert the given octal number into its decimal
equivalent and then convert the decimal number into its hex equivalent. The former approach is
definitely the preferred one. Two types of conversion are illustrated in the following example.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Example

Let us find the octal equivalent of (2F.C4)16and the hex equivalent of (762.013)8

Solution

 The given hex number = (2F.C4)16.

2= (00101111.11000100)2

 = (101111.110001)2= (101 111.110 001)2 = (57.61)8.

 given octal number = (762.013)8.

8= (111 110 010.000 001 011)2

 = (111110010.000001011)2

 = (0001 1111 0010.0000 0101 1000)2= (1F2.058)16.

1.16 The Four Axioms

Conversion of a given number in one number system to its equivalent in another system has
been discussed at length in the preceding sections. The methodology has been illustrated with
solved examples. The complete methodology can be summarized as four axioms or principles,
which, if understood properly, would make it possible to solve any problem related to
conversion of a given number in one number system to its equivalent in another number system.
These principles are as follows:

1. Whenever it is desired to find the decimal equivalent of a given number in another number
system, it is given by the sum of all the digits multiplied by their weights or place values.
The integer and fractional parts should be handled separately. Starting from the radix point,
the weights of different digits are r0, r1, r2 for the integer part and r 1, r 2, r 3 for the
fractional part, where r is the radix of the number system whose decimal equivalent needs
to be determined.

2. To convert a given mixed decimal number into an equivalent in another number system, the
integer part is progressively divided by r and the remainders noted until the result of
division yields a zero quotient. The remainders written in reverse order constitute the
equivalent. r is the radix of the transformed number system. The fractional part is
progressively multiplied by r and the carry recorded until the result of multiplication yields
a zero or when the desired number of bits has been obtained. The carrys written in forward
order constitute the equivalent of the fractional part.

3. The octal binary conversion and the reverse process are straightforward. For octal binary
conversion, replace each digit in the octal number with its three-bit binary equivalent. For
hexadecimal binary conversion, replace each hex digit with its four-bit binary equivalent.
For binary octal conversion, split the binary number into groups of three bits, starting from

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

the binary point, and, if needed, complete the outside groups by adding 0s, and then write
the octal equivalent of these three-bit groups. For binary hex conversion, split the binary
number into groups of four bits, starting from the binary point, and, if needed, complete the
outside groups by adding 0s, and then write the hex equivalent of the four-bit groups.

4. For octal hexadecimal conversion, we can go from the given octal number to its binary
equivalent and then from the binary equivalent to its hex counterpart. For hexadecimal
octal conversion, we can go from the hex to its binary equivalent and then from the binary
number to its octal equivalent.

Example

Assume an arbitrary number system having a radix of 5 and 0, 1, 2, L and M as its independent
digits.

Determine:

(a) the decimal equivalent of (12LM.L1);

(b) the total number of possible four-digit combinations in this arbitrary number system.

Solution

(a) The decimal equivalent of (12LM) is given by

M × 50 + L × 51 + 2 × 52 + 1 × 53 = 4 × 50 + 3 × 51 + 2 × 52 + 1 × 53(L = 3 M = 4)

= 4 + 15 + 50 + 125 = 194

The decimal equivalent of (L1) is given by

 L × 5 1 + 1 × 5 2 = 3 × 5 1 + 5 2 = 0 64

Combining the results, (12LM.L1)5 = (194.64)10.

(b) The total number of possible four-digit combinations = 54 = 625.

Example

 decimal
equivalents of that octal number.

Solution

8.

2 = (10101001011)2.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2 = (101 0100 1011)2 = (0101 0100 1011)2= (54B)16.

e, the hex equivalent of (2513)8= (54B)16 and the binary equivalent of (2513)8=
(10101001011)2.

1.17 Floating-Point Numbers

Floating-point notation can be used conveniently to represent both large as well as small
fractional or mixed numbers. This makes the process of arithmetic operations on these numbers
relatively much easier. Floating-point representation greatly increases the range of numbers,
from the smallest to the largest, that can be represented using a given number of digits.
Floating-point numbers are in general expressed in the form

 N = m × be (1.1)

where m is the fractional part, called the significand or mantissa, e is the integer part, called the
exponent, and b is the base of the number system or numeration. Fractional part m is a p-digit
number of the form (±d. dddd dd), with each digit d being an integer between 0 and b 1
inclusive. If the leading digit of m is nonzero, then the number is said to be normalized.

Equation (1.1) in the case of decimal, hexadecimal and binary number systems will be written
as follows:

Decimal system

N = m × 10e(1.2)

Hexadecimal system

 N = m × 16e(1.3)

Binary system

 N = m × 2e(1.4)

For example, decimal numbers 0.0003754 and 3754 will be represented in floating-point
notation as 3.754 × 10 4 and 3.754 × 103 respectively. A hex number 257.ABF will be
represented as2.57ABF × 162. In the case of normalized binary numbers, the leading digit,
which is the most thus does not need to be stored explicitly.

Also, while expressing a given mixed binary number as a floating-point number, the radix point
is so shifted as to have the most significant bit immediately to the right of the radix point as a

 the mantissa and the exponent can have a positive or a negative value.

The mixed binary number (110.1011)2 will be represented in floating-point notation as
.1101011× 23 = .1101011e + 0011. Here, .1101011 is the mantissa and e + 0011 implies that the
exponent is+3. As another example, (0.000111)2
being the mantissa 2 may be

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

5
 to represent the mantissas using eight bits, then .1101011 and

.111 would be represented as .11010110and .11100000.

1.18Binary Codes

The present chapter is an extension of the previous chapter on number systems. In the previous
chapter, beginning with some of the basic concepts common to all number systems and an
outline on the familiar decimal number system, we went on to discuss the binary, the
hexadecimal and the octal number systems. While the binary system of representation is the
most extensively use done in digital systems, including computers, octal and hexadecimal
number systems are commonly used for representing groups of binary digits. The binary coding
system, called the straight binary code and discussed in the previous chapter, becomes very
cumbersome to handle when used to represent larger decimal numbers. To overcome this
shortcoming, and also to perform many other special functions, several binary codes have
evolved over the years. Some of the better-known binary codes, including those used efficiently
to represent numeric and alphanumeric data, and the codes used to perform special functions,
such as detection and correction of errors, will be detailed in this chapter.

1.19 Binary Coded Decimal

The binary coded decimal (BCD) is a type of binary code used to represent a given decimal
number in an equivalent binary form. BCD-to-decimal and decimal-to-BCD conversions are
very easy and straight forward. It is also far less cumbersome an exercise to represent a given
decimal number in an equivalent BCD code than to represent it in the equivalent straight binary
form discussed in the previous chapter.

The BCD equivalent of a decimal number is written by replacing each decimal digit in the
integer and fractional parts with its four-bit binary equivalent. As an example, the BCD
equivalent of (23.15)10is written as (0010 0011.0001 0101)BCD. The BCD code described above
is more precisely known as the 8421 BCD code, with 8, 4, 2 and 1 representing the weights of
different bits in the four-bit groups, starting from MSB and proceeding towards LSB. This
feature makes it a weighted code, which means that each bit in the four-bit group representing a
given decimal digit has an assigned

 Table 1.1 BCD codes.

Decimal 8421 BCD code 4221 BCD code 5421 BCD code

0 0000 0000 0000

1 0001 0001 0001

2 0010 0010 0010

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

3 0011 0011 0011

4 0100 1000 0100

5 0101 0111 1000

6 0110 1100 1001

7 0111 1101 1010

8 1000 1110 1011

9 1001 1111 1100

weight. Other weighted BCD codes include the 4221 BCD and 5421 BCD codes. Again, 4, 2, 2
and1 in the 4221 BCD code and 5, 4, 2 and 1 in the 5421 BCD code represent weights of the
relevant bits. Table 1.1 shows a comparison of 8421, 4221 and 5421 BCD codes. As an
example, (98.16)10will be written as 1111 1110.0001 1100 in 4221 BCD code and 1100
1011.0001 1001 in 5421 BCD code. Since the 8421 code is the most popular of all the BCD
codes, it is simply referred to as the BCD code.

1.19.1 BCD-to-Binary Conversion

A given BCD number can be converted into an equivalent binary number by first writing its
decimal equivalent and then converting it into its binary equivalent. The first step is
straightforward, and these cond step was explained in the previous chapter. As an example, we
will find the binary equivalent of the BCD number 0010 1001.0111 0101:

be determined to be 11101 for the integer part and .11 for
the fractional part.

BCD= (11101.11)2.

1.19.2 Binary-to-BCD Conversion

The process of binary-to-BCD conversion is the same as the process of BCD-to-binary
conversion executed in reverse order. A given binary number can be converted into an
equivalent BCD number by first determining its decimal equivalent and then writing the
corresponding BCD equivalent. As an example, we will find the BCD equivalent of the binary
number 10101011.101:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.19.3 Higher-Density BCD Encoding

In the regular BCD encoding of decimal numbers, the number of bits needed to represent a
given decimal number is always greater than the number of bits required for straight binary
encoding of the same. For example, a three-digit decimal number requires 12 bits for
representation in conventional BCD format. However, since 210> 103, if these three decimal
digits are encoded together, only 10bits would be needed to do that. Two such encoding
schemes are Chen-Ho encoding and the densely packed decimal. The latter has the advantage
that subsets of the encoding encode two digits in the optimal seven bits and one digit in four
bits like regular BCD.

1.19.4 Packed and Unpacked BCD Numbers

In the case of unpacked BCD numbers, each four-bit BCD group corresponding to a decimal
digit is stored in a separate register inside the machine. In such a case, if the registers are eight
bits or wider, the register space is wasted.

In the case of packed BCD numbers, two BCD digits are stored in a single eight-bit register.
The process of combining two BCD digits so that they are stored in one eight-bit register
involves shifting the number in the upper register to the left 4 times and then adding the
numbers in the upper and lower registers. The process is illustrated by showing the storage of

-bit register as: 0000 0101.

-bit register as: 0000 0111.

n of the contents of the digit 5 and digit 7 registers now reads: 0101 0111.

1.20 Excess-3 Code

The excess-3 code is another important BCD code. It is particularly significant for arithmetic
operations as it overcomes the shortcomings encountered while using the 8421 BCD code to
add two decimal digits whose sum exceeds 9. The excess-3 code has no such limitation, and it
considerably simplifies arithmetic operations. Table 1.2 lists the excess-3 code for the decimal
numbers 0 9.

The excess-3 code for a g
digit in the given number and then replacing each digit of the newly found decimal number by

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Table 1.2Excess-3 code equivalent of decimal numbers.

Decimal number Excess-3 code Decimal number Excess-3 code

0 0011 5 1000

1 0100 6 1001

2 0101 7 1010

3 0110 8 1011

4 0111 9 1100

its four-
produces a carry, as is the case with the digits 7, 8 and 9, that carry should not be taken forward.
The result of addition should be taken as a single entity and subsequently replaced with its
excess-3 code equivalent. As an example, let us find the excess-3 code for the decimal number
597:

-bit binary equivalents are 1000, 1100 and 1010 respectively.

-3 code for 597 is therefore given by: 1000 1100 1010 = 100011001010.

Also, it is normal practice to represent a given decimal digit or number using the maximum
number of digits that the digital system is capable of handling. For example, in four-digit
decimal arithmetic, 5 and 37 would be written as 0005 and 0037 respectively. The
corresponding 8421 BCD equivalents would be 0000000000000101 and 0000000000110111
and the excess-3 code equivalents would be0011001100111000 and 0011001101101010.

Corresponding to a given excess-3 code, the equivalent decimal number can be determined by
first splitting the number into four-bit groups, starting from the radix point, and then
subtracting0011 from each four-bit group. The new number is the 8421 BCD equivalent of the
givenexcess-3 code, which can subsequently be converted into the equivalent decimal number.
As an example, following these steps, the decimal equivalent of excess-3 number
01010110.10001010 would be 23.57.

Another significant feature that makes this code attractive for performing arithmetic operations
is that the complement of the excess-3 code of a given decimal number yields the excess-3 code

a decimal number A achieves A B, the excess-3 code can be used effectively for both addition
and subtraction of decimal numbers.

Example

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Find (a) the excess-3 equivalent of (237.75)10and (b) the decimal equivalent of the excess-3
number110010100011.01110101.

Solution

(a) Integer part = 237. The excess-3 code for (237)10is obtained by replacing 2, 3 and 7 with the
four-bit binary equivalents of 5, 6 and 10 respectively. This gives the excess-3 code for
(237)10as: 0101 0110 1010 = 010101101010.

Fractional part = .75. The excess-3 code for (.75)10 is obtained by replacing 7 and 5 with the
four-bit binary equivalents of 10 and 8 respectively. That is, the excess-3 code for (.75)10 =
.10101000.

Combining the results of the integral and fractional parts, theexcess-3code for(237.75)10 =
010101101010.10101000.

(b) The excess-3 code = 110010100011.01110101 = 1100 1010 0011.0111 0101.

Subtracting 0011 from each four-bit group, we obtain the new number as: 1001 0111
0000.01000010.

Therefore, the decimal equivalent = (970.42)10.

1.21 Gray Code

The Gray code was designed by Frank Gray at Bell Labs and patented in 1953. It is an weighted
binary code in which two successive values differ only by 1 bit. Owing to this feature, the
maximum error that can creep into a system using the binary Gray code to encode data is much
less than the worst-case error encountered in the case of straight binary encoding. Table 1.3 lists
the binary and Gray code equivalents of decimal numbers 0 15. An examination of the four-
bit Gray code numbers, as listed in Table 1.3, shows that the last entry rolls over to the first
entry. That is, the last and the first entry also differ by only 1 bit. This is known as the cyclic
property of the Gray code. Although there can be more than one Gray code for a given word
length, the term was first applied to a specific binary code for non-negative integers and called
the binary-reflected Gray code or simply the Gray code.

 There are various ways by which Gray codes with a given number of bits can be
remembered. One such way is to remember that the least significant bit follows a repetitive

1111,) and soon. We can also generate the n-
the Gray code bits to obtain the first 2
reflected Gray code numbers. The reflected Gray code
is nothing but the code written in reverse order. The process of generation of higher-bit Gray
codes using the reflect-and-prefix method is illustrated in Table 1.4. The columns of bits
between those representing the Gray codes give the intermediate step of writing the code
followed by the same written in reverse order.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 Table 1.3Gray code.

Decimal Binary Gray Decimal Binary Gray

0 0000 0000 8 1000 1100

1 0001 0001 9 1001 1101

2 0010 0011 10 1010 1111

3 0011 0010 11 1011 1110

4 0100 0110 12 1100 1010

5 0101 0111 13 1101 1011

6 0110 0101 14 1110 1001

7 0111 0100 15 1111 1000

 Table 1.4Generation of higher-bit Gray code numbers.

One-bit Gray code Two-bit Gray code Three-bit Gray code Four-bit Gray code

0 0 00 00 000 000 0000

1 1 01 01 001 001 0001

 1 11 11 011 011 0011

 0 10 10 010 010 0010

 10 110 110 0110

 11 111 111 0111

 01 101 101 0101

 00 100 100 0100

 100 1100

 101 1101

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 111 1111

 110 1110

 010 1010

 011 1011

 001 1001

 000 1000

1.21.1 Binary Gray Code Conversion

A given binary number can be converted into its Gray code equivalent by going through the
following steps:

1. Begin with the most significant bit (MSB) of the binary number. The MSB of the Gray code
equivalent is the same as the MSB of the given binary number.

2. The second most significant bit, adjacent to the MSB, in the Gray code number is obtained
by adding the MSB and the second MSB of the binary number and ignoring the carry, if any.
That is

3. The third most significant bit, adjacent to the second MSB, in the Gray code number is
obtained by adding the second MSB and the third MSB in the binary number and ignoring the
carry, if any.

4. The process continues until we obtain the LSB of the Gray code number by the addition of
the LSB and the next higher adjacent bit of the binary number.

The conversion process is further illustrated with the help of an example showing step-by-step
conversion of (1011)2 into its Gray code equivalent:

Binary 1011

Gray code1- - -

Binary1011

Gray code11- -

Binary1011

Gray code111-

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Binary1011

Gray code1110

1.21.2 Gray Code Binary Conversion

A given Gray code number can be converted into its binary equivalent by going through the
following steps:

1. Begin with the most significant bit (MSB). The MSB of the binary number is the same as the
MSB of the Gray code number.

2. The bit next to the MSB (the second MSB) in the binary number is obtained by adding the
MSB in the binary number to the second MSB in the Gray code number and disregarding the
carry, if any.

3. The third MSB in the binary number is obtained by adding the second MSB in the binary
number to the third MSB in the Gray code number. Again, carry, if any, is to be ignored.

4. The process continues until we obtain the LSB of the binary number.

The conversion process is further illustrated with the help of an example showing step-by-step
conversion of the Gray code number 1110 into its binary equivalent:

Gray code1110

Binary1- - -

Gray code1110

Binary10 - -

Gray code1110

Binary101-

Gray code1110

Binary1011

1.22 Alphanumeric Codes

Alphanumeric codes, also called character codes, are binary codes used to represent
alphanumeric data. The codes write alphanumeric data, including letters of the alphabet,
numbers, mathematical symbols and punctuation marks, in a form that is understandable and
processable by a computer. These codes enable us to interface input output devices such as
keyboards, printers, VDUs, etc., with the computer. One of the better-known alphanumeric
codes in the early days of evolution of computers, when punched cards used to be the medium
of inputting and outputting data, is the 12-bit Hollerith code. The Hollerith code was used in

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

those days to encode alphanumeric data on punched cards. The code has, however, been
rendered obsolete, with the punched card medium having completely vanished from the scene.
Two widely used alphanumeric codes include the ASCII and the EBCDIC codes. While the
former is popular with microcomputers and is used on nearly all personal computers and
workstations, the latter is mainly used with larger systems.

Traditional character encodings such as ASCII, EBCDIC and their variants have a limitation
interms of the number of characters they can encode. In fact, no single encoding contains
enough characters so as to cover all the languages of the European Union. As a result, these
encodings do not permit multilingual computer processing. Unicode, developed jointly by the
Unicode Consortium and the International Standards Organization (ISO), is the most complete
character encoding scheme that allows text of all forms and languages to be encoded for use by
computers.

1.23Digital Arithmetic

Having discussed different methods of numeric and alphanumeric data representation in the first
two chapters, the next obvious step is to study the rules of data manipulation. Two types of
operation that are performed on binary data include arithmetic and logic operations. Basic
arithmetic operations include addition, subtraction, multiplication and division. AND, OR and
NOT are the basic logic functions. While the rules of arithmetic operations are covered in the
present chapter, those related to logic operations will be discussed in the next chapter.

1.24 Basic Rules of Binary Addition and Subtraction

The basic principles of binary addition and subtraction are similar to what we all know so well
in
produces the sa
decimal number system, the result is the next higher digit or number, as the case may be. For
example, 6 + 1 in decimal mal
number system. Also, 7 + 1 in octal

 binary addition as follows:

1. 0 + 0 = 0.

2. 0 + 1 = 1.

3. 1 + 0 = 1.

Table 1.5 summarizes the sum and carry outputs of all possible three-bit combinations. We have
taken three-bit combinations as, in all practical situations involving the addition of two larger
bit

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 Table 1.5Binary addition of three bits.

A B Carry-
in (Cin)

Sum Carry-
out (Co)

A B Carry-
in (Cin)

Sum Carry-
out (Co)

0 0 0 0 0 1 0 0 1 0
0 0 1 1 0 1 0 1 0 1
0 1 0 1 0 1 1 0 0 1
0 1 1 0 1 1 1 1 1 1

numbers, we need to add three bits at a time. Two of the three bits are the bits that are part of
the two binary numbers to be added, and the third bit is the carry-in from the next less
significant bit column.

The basic principles of binary subtraction include the following:

of 1 from the next more significant bit.

The above-mentioned rules can also be explained by recalling rules for subtracting decimal

explains the first two rules.
immediately preceding digit or number as the answer. In general, the subtraction operation of
larger-bit binary numbers also involves three bits, including the two bits involved in the
subtraction, called the minuend(the upper bit) and the subtrahend (the lower bit), and the
borrow-in. The subtraction operation produces the difference output and borrow-out, if any.
Table 1.6 summarizes the binary subtraction operation. The entries in Table 1.6 can be
explained by recalling the basic rules of binary subtraction mentioned above, and that the
subtraction operation involving three bits, that is, the minuend (A) , the subtrahend (B) and the
borrow-in (Bin), produces a difference output equal to (A B Bin). It may be mentioned here
that, in the case of subtraction of larger-bit binary numbers, the least significant bit column
always involves two bits to produce a difference output bit and the borrow-out

 Table 1.6Binary subtraction.

Inputs Outputs

Minuend Subtrahend Borrow-in Difference Borrow-out

0 0 0 0 0
0 0 1 1 1

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

bit. The borrow-out bit produced here becomes the borrow-in bit for the next more significant
bit column, and the process continues until we reach the most significant bit column. The
addition and subtraction of larger-bit binary numbers is illustrated with the help of examples in
sections 3.2 and 3.3respectively.

1.25 Addition of Larger-Bit Binary Numbers

The addition of larger binary integers, fractions or mixed binary numbers is performed column
wise in just the same way as in the case of decimal numbers. In the case of binary numbers,
however, we follow the basic rules of addition of two or three binary digits, as outlined earlier.
The process of adding two larger-bit binary numbers can be best illustrated with the help of an
example.

Consider two generalized four-bit binary numbers (A3, A2, A1, A0) and (B3, B2, B1, B0), with A0

and B0representing the LSB and A3 and B3 representing the MSB of the two numbers. The
addition of these two numbers is performed as follows. We begin with the LSB position. We
add the LSB bits and record the sum S0 below these bits in the same column and take the carry
C0, if any, to the next column of bits. For instance, if A0 = 1 and B0= 0, then S0 = 1 and C0 = 0.
Next we add the bits A1 and B1and the carry C0 from the previous addition. The process
continues until we reach the MSB bits. The four steps are shown ahead. C0, C1, C2 and C3 are
carrys, if any, produced as a result of adding first, second, third and fourth column bits
respectively, starting from LSB and proceeding towards MSB. A similar procedure is followed
when the given numbers have both integer as well as fractional parts:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.25

binary numbers. It forms the basis of arithmetic circuits in modern computers. When the
decimal numbers to be
numbers, following the basic laws of binary addition, gives correct results. Final carry obtained,
if any, while adding MSBs should be disregarded. To illustrate this, we will consider the
following four different cases:

1. Both the numbers are positive.

2. Larger of the two numbers is positive.

3. The larger of the two numbers is negative.

4. Both the numbers are negative.

Case 1

mplement of +37 in eight-bit representation = 00100101.

-bit representation = 00010010.

2 is (+55), which is the correct answer.

Case 2

-18.

-bit representation = 00100101.

-bit representation = 11101110.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2 is +19, which is the correct answer.

Case 3

ed as follows:

2

systems.

Case 4

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

ecimal equivalent of (11001001)2

correct answer.

addition when the expected result of addition lies in the r to +(2 1), n being
the number of bits used to represent the numbers. As an example, eight-
arithmetic cannot be used to perform addition if the result of addition lies outside the range

 Different s
arithmetic are summarized as follows:

2. Do the addition using basic rules of binary addition.

3. Disregard the final carry, if any.

4.

Example

Perform the following addition operations:

1. (275.75)10+ (37.875)10

2. (AF1.B3)16+ (FFF.E)16

Solution

1. As a first step, the two given decimal numbers will be converted into their equivalent binary
numbers (decimal-to-binary conversion has been covered at length in Chapter 1, and therefore
the decimal-to-binary conversion details will not be given here):

 (275.75)10= (100010011.11)2 and (37.875)10= (100101.111)2

The two binary numbers can be rewritten as (100010011.110)2 and (000100101.111)2 to have
the same number of bits in their integer and fractional parts. The addition of two numbers is
performed as follows:

The decimal equivalent of (100111001.101)2 is (313.625)10.

2. (AF1.B3)16 = (101011110001.10110011)2 and (FFF.E)16 = (111111111111.1110)2.
(111111111111.1110)2 can also be written as (111111111111.11100000)2 to have the same

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

number of bits in the integer and fractional parts. The two numbers can now be added as
follows:

The hexadecimal equivalent of (1101011110001.10010011)2 is (1AF1.93)16, which is equal to
the hex addition of (AF1.B3)16and (FFF.E)16.

Example

Find out whether 16-

Solution

The addition of decimal numbers 14 276 and 18 490 would yield 32 766. 16-
15 to +(215

inside the allowable range. Therefore, 16-bit arithmetic can be used to add the given numbers.

Example

Add 118 and 32 firstly using eight- -bit

Solution

n eight-

-

y in the ninth bit position, is
01101010. Now, the decimal equivalent of (01101010)2

range of eight- -
when the expecte 7 to + (27 -

-

he final carry in the 17th position,
produces 1111111101101010. The decimal equivalent of (1111111101101010)2

complement -
produced the correct result, as the expected result lies within the range of 16-
notation.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.26 Subtraction of Larger-Bit Binary Numbers

Subtraction is also done column wise in the same way as in the case of the decimal number
system. In the first step, we subtract the LSBs and subsequently proceed towards the MSB.
Wherever the subtrahend (the bit to be subtracted) is larger than the minuend, we borrow from
the next adjacent
steps of subtracting (1001)2from (1100)2.

is taken to the LSB position to make
 MSB

 of
mixed numbers is also done in the same manner. The above-mentioned steps are summarized as
follows:

1.26

disregarding the carry, if any, achieves subtraction. The process is illustrated by considering six
different cases:

1. Both minuend and subtrahend are positive. The subtrahend is the smaller of the two.

2. Both minuend and subtrahend are positive. The subtrahend is the larger of the two.

3. The minuend is positive. The subtrahend is negative and smaller in magnitude.

4. The minuend is positive. The subtrahend is negative and greater in magnitude.

5. Both minuend and subtrahend are negative. The minuend is the smaller of the two.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

6. Both minuend and subtrahend are negative. The minuend is the larger of the two.

Case 1

with the final carry disregarded.

2 is +10, which is the correct answer.

Case 2

imal equivalent of (11110110)2

which is the correct answer.

Case 3

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

2 is +38, which is the correct answer.

Case 4

m +14.

2 is +38, which is the correct answer.

Case 5

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

ecimal equivalent of (11110110)2

correct answer.

Case 6

with the final carry disregarded.

ecimal equivalent of (00001010)2
correct answer.

notation, only with the MSB indicating the sign and the remaining bits indicating the

the straight binary
complement of their straight binary

 indicates a negative sign.

summarized as follows:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1. Represent the m

4. Disregard the final carry, if any.

notation can be used to perform subtraction when the expected result of
subtraction lin to +(2 1), n being the number of bits used to
represent the numbers.

Example

Subtract (1110.011)2 from (11011.11)2 using basic rules of binary subtraction and verify the
result by showing equivalent decimal subtraction.

Solution

The minuend and subtrahend are first modified to have the same number of bits in the integer
and fractional parts. The modified minuend and subtrahend are (11011.110)2 and (01110.011)2
respectively:

The decimal equivalents of (11011.110)2 and (01110.011)2 are 27.75 and 14.375 respectively.
Their difference is 13.375, which is the decimal equivalent of (01101.011)2.

Example

Subtract (a) (64)10from (+ 32)10and (b) (29.A)16from (4F.B)16

Solution:

 (a) (+32)10 omplement notation = (00100000)2.

 10 omplement notation = (11000000)2.

 10= (01000000)2.

 (+32)10 10is determined by 10to (+32)10.

Therefore, the addition of (00100000)2 to (01000000)2 should give the result. The
operation is shown as follows:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

The decimal equivalent of (01100000)2 is +96, which is the correct answer as
96.

 (b) The minuend = (4F.B)16= (01001111.1011)2.

 2.

 The subtrahend = (29.A)16= (00101001.1010)2.

 ment notation = (00101001.1010)2.

 rahend = (11010110.0110)2.

(4F.B)16 16

subtrahend to the minuend.

Since the result is a complement notation is the same as it
would be in the case of the straight binary code.

The hex equivalent of the resulting binary number = (26.1)16, which is the
correct answer.

1.27 Binary Multiplication

The basic rules of binary multiplication are governed by the way an AND gate functions when
the two bits to be multiplied are fed as inputs to the gate. Logic gates are discussed in detail in
the next chapter. As of now, it would suffice to say that the result of multiplying two bits is the
same as the output of the AND gate with the two bits applied as inputs to the gate. The basic
rules of multiplication are listed as follows:

1. 0 × 0 = 0.

2. 0 × 1 = 0.

3. 1 × 0 = 0.

4. 1 × 1 = 1.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

One of the methods for multiplication of larger-bit binary numbers is similar to what we are
-

add and right- algorithm to do binary multiplication as it is comparatively much more
convenient to implement than -
are briefly described below. Also, binary multiplication of mixed binary numbers is done by
performing multiplication without considering the binary point. Starting from the LSB, the
binary point is then placed after n bits, where n is equal to the sum of the number of bits in the
fractional parts of the multiplicand and multiplier.

1.27.1 Repeated Left-Shift and Add Algorithm

- -product is the sum
of several partial products, with the number of partial products being equal to the number of bits
in the multiplier binary number. This is similar to the case of decimal multiplication. Each
successive partial product after the first is shifted one digit to the left with respect to the
immediately preceding partial product. In the case of binary multiplication too, the first partial
product is obtained by multiplying the multiplicand binary number by the LSB of the multiplier
binary number. The second partial product is obtained by multiplying the multiplicand binary
number by the next adjacent higher bit in the multiplier binary number and so on. We begin

proceed towards the MSB of the multiplier and obtain various partial products. The second
partial product is shifted one bit position to the left relative to the first partial product; the third
partial product is shifted one bit position to the left relative to the second partial product and so
on. The addition of all partial products gives the final answer. If the multiplicand and multiplier
have different signs, the end result has a negative sign, otherwise it is positive. The procedure is
further illustrated by showing (23)10 × (6)10multiplication.

 The decimal equivalent
of (10001010) is (138) , which is the correct result.

1.27.2 Repeated Add and Right-Shift Algorithm

equal to the number of bits in the mult
another same-sized bit sequence, which is the same as the multiplicand if the LSB of the

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

one bit position to the right, and the bit shifted out is recorded. The vacant MSB position is

if the next adjacent higher bit in the multiplier same as the multiplicand if it is a

sequence is obtained. The process continues until all multiplier bits are exhausted. The result of
the last addition together with the recorded bits constitutes the result of multiplication. We will
illustrate the procedure by doing (23)10 × (6)10multiplication again, this time by using the

-

10 = (10111)2 and the multiplier = (6)10 = (110)2. The multiplication
process is shown in Table 1.7.

2 × (110)2 = (10001010)2.

Table 1.7Multiplication using the repeated add and right-shift algorithm.

Example

Multiply (a) (100.01)2 × (10.1)2by using -
(2B)16× (3)16 -
equivalent decimal multiplication.

Solution

(a) As a first step, we will multiply (10001)2 by (101)2. The process is shown as follows:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

The multiplication result is then given by placing the binary point three bits after the LSB,
which gives (1010.101) as the final result. Also, (100.01)2 = (4.25)10and (10.1)2 = (2.5)10.
Moreover, (4.25)10 × (2.5)10= (10.625)10 and (1010.101)2 equals (10.625)10, which verifies the
result.

 (b) (2B)16= 00101011 = 101011 and (3)16 = 0011 = 11.

Different steps involved in the multiplication process are shown in Table 3.4.

The result of multiplication is therefore (10000001)2. Also, (2B)16= (43)10 and (3)16 = (3)10.

Therefore, (2B)16 × (3)16= (129)10. Moreover, (10000001)2 = (129)10, which verifies the result.

1.28 Binary Division

While binary multiplication is the process of repeated addition, binary division is the process of
-shift

and

Table 1.8Example.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

-
suitably illustrated in the following sections.

1.28.1 Repeated Right-Shift and Subtract Algorithm

The algorithm is similar to the case of conventional division with decimal numbers. At the
outset, starting from MSB, we begin with the number of bits in the dividend equal to the
number of bits in the divisor and check whether the divisor is smaller or greater than the
selected number of bits in
quotient column. If it is smaller, we subtract the diviso
in the quotient column. If it is greater and
step, we include the next adjacent bit in the dividend bits, shift the divisor to the right by one bit
position and again make a similar check like the one made in the first step. If it is smaller and
we have made the subtraction, then in the second step we append the next MSB of the dividend
to the remainder, shift the divisor one bit to the right and again make a similar check. The
options are again the same. The process continues until we have exhausted all the bits in the
dividend. We will illustrate the algorithm with the help of an example. Let us consider the
division of (100110)2 by (1100)2. The sequence of operations needed to carry out the above
division is shown in Table 1.9. The quotient = 011 and the remainder = 10.

Table 1.9Binary division using the repeated right-shift and subtract algorithm.

Table 1.10Binary division using the repeate subtract and left-shift algorithm.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.28.2 Repeated Subtract and Left-Shift Algorithm

The procedure can again be best illustrated with the help of an example. Let us consider solving
the above problem using this algorithm. The steps needed to perform the division are as
follows. We begin with the first four MSBs of the dividend, four because the divisor is four bits
long. In the first step, we subtract the divisor from the dividend. If the subtraction requires

present case there exists a borrow in the MSB
column. If there is a borrow, the divisor is added to the result of subtraction. In doing so, the
final carry, if any, is ignored. The next MSB is appended to the result of the first subtraction if
there is no borrow, or to the result of subtraction, restored by adding the divisor, if there is a
borrow. By appending the next MSB, the remaining bits of the dividend are one bit position
shifted to the left. It is again compared with the divisor, and the process is repeated. It goes on
until we have exhausted all the bits of the dividend. The final remainder can be further
processed by successively appending 0s and trying subtraction to get fractional part bits of the
quotient. The different steps are summarized in Table 1.10. The quotient = 011 and the
remainder = 10.

Example

- 2 by (1011)2. Determine
both the integer and the fractional parts of the quotient. The fractional part may be determined
up to three bit places.

Solution

The sequence of operations is given in Table 3.7. The operations are self-explanatory.

2 = (53)10 and (1011)2 = (11)10.

10 divided by (11)10 gives (4.82)10.

2 = (4.75)10, which matches with the expected result to a good approximation.

Table 1.11Example

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Example

- 2 by (100)2 to determine
both the integer and fractional parts of the quotient. Verify the result by showing equivalent
decimal division. Determine the fractional part to two bit places.

Solution

The sequence of operations is given in Table1.12. The operations are self-explanatory.

e quotient = (1000.11)2 = (8.75)10.

2 = (35)10 and (100)2 = (4)10.

10 divided by (4)10 gives (8.75)10 and hence is verified.

Example

Divide (AF)16by (09)16

the signs of the given numbers, assuming that we are working in eight-
arithmetic.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Solution

16.

its

Table 1.12Example.

16 = (51)16.

16 = 01010001 = 1010001.

16.

16 = 00001001.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

- algorithm is

given in Table 3.9.

16.

of (09)16, i.e. (F7)16.

16 divided by (09)16 gives (F7)16.

1.29 Boolean Algebra and Simplification Techniques

Boolean algebra is mathematics of logic. It is one of the most basic tools available to the logic
designer and thus can be effectively used for simplification of complex logic expressions. Other
useful and widely used techniques based on Boolean theorems include the use of Karnaugh
maps in what is known as the mapping method of logic simplification and the tabular method
given by Quine McCluskey. In this chapter, we will have a closer look at the different
postulates and theorems of Boolean algebra and their applications in minimizing Boolean
expressions. We will also discuss at length the mapping and tabular methods of minimizing
fairly complex and large logic expressions.

1.30 Introduction to Boolean Algebra

Boolean algebra, quite interestingly, is simpler than ordinary algebra. It is also composed of a
set of symbols and a set of rules to manipulate these symbols. However, this is the only
similarity between the two. The differences are many. These include the following:

1. In ordinary algebra, the letter symbols can take on any number of values including infinity. In
Boolean algebra, they can take on either of two values, that is, 0 and 1.

2. The values assigned to a variable have a numerical significance in ordinary algebra, whereas
in its Boolean counterpart they have a logical significance.

in For instance,
A + Bin ordinary algebra is read as A plus B, while the same in Boolean algebra is read as A
OR B. Basic logic operations such as AND, OR and NOT have already been discussed at length
in Chapter 4.

4. More specifically, Boolean algebra captures the essential properties of both logic operations
such as AND, OR and NOT and set operations such as intersection, union and complement. As
an illustration, the logical assertion that both a statement and its negation cannot be true has a
counterpart in set theory, which says that the intersection of a subset and its complement is a
null(or empty) set.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

5. Boolean algebra may also be defined to be a set A supplied with two binary operations of
logical AND logical OR (V), a unary operation of logical NOT (¬) and two elements,
namely logical FALSE (0) and logical TRUE (1). This set is such that, for all elements of this
set, the postulates or axioms relating to the associative, commutative, distributive, absorption
and complementation properties of these elements hold good. These postulates are described in
the following pages.

1.30.1 Variables, Literals and Terms in Boolean Expressions

Variables are
. For instance, in expression (1.1), A, B and C are the three variables. In expression (1.2), P,

Q, R and S are the variables:

(1.1)

(1.2)

The complement of a variable is not considered as a separate variable. Each occurrence of a
variable or its complement is called a literal. In expressions (1.1) and (1.2) there are eight and
seven literals respectively. A term is the expression formed by literals and operations at one
level. Expression (1.1)has five terms including four AND terms and the OR term that combines
the first-level AND terms.

1.30.2 Equivalent and Complement of Boolean Expressions

Two given Boolean expressions are said to be equivalent
the other equ
the complement
vice versa. The complement of a given Boolean expression is obtained by complementing each
literal, changing
give some Boolean expressions and their complements:

Given Boolean expression

(1.3)

Corresponding complement

(1.4)

Given Boolean expression

(1.5)

Corresponding complement

(1.6)

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

When OR
its Boolean expressions
and is implied merely by writing the literals in juxtaposition. For instance, A.B would normally
be written as AB.

1.30.3 Dual of a Boolean Expression

unchanged.

The examples below give some Boolean expressions and the corresponding dual expressions:

Given Boolean expression

(1.7)

Corresponding dual

(1.8)

Given Boolean expression

(1.9)

Corresponding dual

(1.10)

Duals of Boolean expressions are mainly of interest in the study of Boolean postulates and
theorems. Otherwise, there is no general relationship between the values of dual expressions.
That is, both of
The fact that the dual of a given logic equation is also a valid logic equation leads to many more
useful laws of Boolean algebra. The principle of duality has been put to ample use during the
discussion on postulates and theorems of Boolean algebra. The postulates and theorems, to be
discussed in the paragraphs to follow, have been presented in pairs, with one being the dual of
the other.

Example

Find (a) the dual of and (b) the complement of

Solution

(a) The dual of is given by

(b) The complement of is given by

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Example

Simplify

Solution

1.31 Postulates of Boolean Algebra

The following are the important postulates of Boolean algebra:

1.

2.

3.

4. = 0 and = 1.

Many theorems of Boolean algebra are based on these postulates, which can be used to simplify
Boolean expressions. These theorems are discussed in the next section.

1.32 Theorems of Boolean Algebra

The theorems of Boolean algebra can be used to simplify many a complex Boolean expression
and also to transform the given expression into a more useful and meaningful equivalent
expression. The theorems are presented as pairs, with the two theorems in a given pair being the

 method, the validity of the expression is tested for all possible
combinations of values of the variables involved. Also, since the validity of the theorem is
based on its being true for all possible combinations of values of variables, there is no reason
why a variable cannot be replaced with its complement, or vice versa, without disturbing the
validity. Another important point is that, if a given expression is valid, its dual will also be
valid. Therefore, in all the discussion to follow in this section, only one of the theorems in a
given pair will be illustrated with a proof. Proof of the other being its dual is implied.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.32

(a) 0.X = 0 and (b) 1 + X = 1
(1.11)

where X is not necessarily a single variable it could be a term or even a large expression.

Theorem 1(a) can be proved by substituting all possible values of X, that is, 0 and 1, into the
given expression and checking whether the LHS equals the RHS:

X = 0.0 = 0 = RHS.

Thus, 0.X = 0 irrespective of the value of X, and hence the proof.

Theorem 1(b) can be proved in a similar manner. In general, according to theorem 1,
0.(Boolean expression) = 0 and 1 + (Boolean expression) = 1. For example,

and , where A, B and C are Boolean variables.

1.32

 (a) 1.X = X and (b) 0 + X = X
(1.12)

where X could be a variable, a term or even a large expression. According to this theorem,
ANDing a akes no difference to the expression:

Also, 1.(Boolean expression) = Boolean expression and 0 + (Boolean expression) = Boolean
expression. For example,

1.32.3 Theorem 3 (Idempotent or Identity Laws)

 (a) X.X.X .X = Xand (b) X + X + X + · · · + X = X (1.13)

Theorems 3(a) and (b) are known by the name of idempotent laws, also known as identity laws.
Theorem 3(a) is a direct outcome of an AND gate operation, whereas theorem 3(b) represents
an ORgate operation when all the inputs of the gate have been tied together. The scope of
idempotent laws can be expanded further by considering X to be a term or an expression. For
example, let us apply idempotent laws to simplify the following Boolean expression:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.32.4 Theorem 4 (Complementation Law)

 (a) and (b) (1.14)

According to this theorem, in general, any Boolean expression when ANDed to its complement
yield as
expression:

 Therefore,

 Therefore,

Hence, theorem 4(a) is proved. Since theorem 4(b) is the dual of theorem 4(a), its proof is
implied.

The example below further illustrates the application of complementation laws:

 and

Example

Simplify the following:

 .

Solution

 is the complement of and is the complement of

1.32.5 Theorem 5 (Commutative Laws)

 (a) and (b) (1.15)

Theorem 5(a) implies that the order in which variables are added or ORed is immaterial. That
is, the result of A OR B is the same as that of B OR A. Theorem 5(b) implies that the order in
which variables are ANDed is also immaterial. The result of A AND B is same as that of B
AND A.

1.32.6 Theorem 6 (Associative Laws)

 (a) X + (Y + Z) = Y + (Z + X) = Z + (X + Y)

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

and

 (b) X. (Y.Z) = Y. (Z.X) = Z. (X.Y)
(1.16)

Theorem 6(a) says that, when three variables are being ORed, it is immaterial whether we do
this by ORing the result of the first and second variables with the third variable or by ORing the
first variable with the result of ORing of the second and third variables or even by ORing the
second variable with the result of ORing of the first and third variables. According to theorem
6(b), when three variables are being ANDed, it is immaterial whether you do this by ANDing
the result of ANDing of the first and second variables with the third variable or by ANDing the
result of ANDing of the second and third variables with the first variable or even by ANDing
the result of ANDing of the third and first variables with the second variable.

For example,

Also

Theorems 6(a) and (b) are further illustrated by the logic diagrams in Figs (a) and (b).

Figure Associative laws.

1.32.7 Theorem 7 (Distributive Laws)

 (1.17)

Theorem 7(b) is the dual of theorem 7(a). The distribution law implies that a Boolean
expression can always be expanded term by term. Also, in the case of the expression being the
sum of two or more than two terms having a common variable, the common variable can be

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

taken as common as in the case of ordinary algebra. Table gives the proof of theorem 7(a) using
the method of perfect induction. Theorem 7(b) is the dual of theorem 7(a) and therefore its
proof is implied. Theorems 7(a) and (b) are further illustrated by the logic diagrams in Figs

6.2(a) and (b). As an illustration, theorem 7(a) can be used to simplify
 as follows:

 =

Table Proof of distributive law.

Figure Distributive laws.

Theorem 7(b) can be used to simplify) as follows:

) =

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.32.8 Theorem 8

This is a special case of theorem 7 as

This theorem, however, has another very interesting interpretation. Referring to theorem 8(a),
there are two two-variable terms in the LHS expression. One of the variables, Y , is present in
all possible combinations in this expression, while the other variable, X, is a common factor.
The expression then reduces to this common factor. This interpretation can be usefully
employed to simplify many a complex Boolean expression.

As an illustration, let us consider the following Boolean expression:

In the above expression, variables B, C and D are present in all eight possible combinations,
and variable A is the common factor in all eight product terms. With the application of theorem

8(a), this expression reduces to A. Similarly, with the application of theorem 8(b),

also reduces to A as the variables B and C
are present in all four possiblecombinations in sum terms and variable A is the common factor
in all the terms.

1.32.9 Theorem 9

 (1.18)

Theorem 9(b) is the dual of theorem 9(a) and hence stands proved.

1.32.10 Theorem 10 (Absorption Law or Redundancy Law)

 (1.19)

The proof of absorption law is straightforward:

Theorem 10(b) is the dual of theorem 10(a) and hence stands proved.

The crux of this simplification theorem is that, if a smaller term appears in a larger term, then
the larger term is redundant. The following examples further illustrate the underlying concept:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

and

1.32.11 Theorem 11

and

(1.20)

Table gives the proof of theorem 11(a) using the method of perfect induction. Theorem 11(b) is
the dual of theorem 11(a) and hence stands proved. A useful interpretation of this theorem is
that, when

Table Proof of theorem 11(a).

a smaller term appears in a larger term except for one of the variables appearing as a
complement in the larger term, the complemented variable is redundant.

As an example, can be simplified as follows:

1.32.12 Theorem 12 (Consensus Theorem)

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

and

 (1.21)

Table shows the proof of theorem 12(a) using the method of perfect induction. Theorem 12(b)
is the dual of theorem 12(a) and hence stands proved.

A useful interpretation of theorem 12 is as follows. If in a given Boolean expression we can
identify two terms with one having a variable and the other having its complement, then the
term that is formed by the product of the remaining variables in the two terms in the case of a
sum-of-products expression

Table Proof of theorem 12(a).

or by the sum of the remaining variables in the case of a product-of-sums expression will be
redundant. The following example further illustrates the point:

If we consider the first two terms of the Boolean expression, B C D becomes redundant. If we
consider the first and third terms of the given Boolean expression, A C D becomes redundant.

Example

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.32

According to the first theorem the complement of a sum equals the product of complements,
while according to the second theorem the complement of a product equals the sum of

While the first theorem can be interpreted to say that a multi-input NOR gate can be
implemented as a multi-input bubbled AND gate, the second theorem, which is the dual of the
first, can be interpreted to say that a multi-input NAND gate can be implemented as a multi-
input bubbled OR gate.

us assume that all variables are in a logic

Therefore, LHS = RHS.

Now, let us assume that any one of the n variables, say X1, is in a logic HIGH state:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Therefore, again LHS = RHS.

1.32.14 Theorem 14 (Transposition Theorem)

This theorem can be applied to any sum-of-products or product-of-sums expression having two
terms, provided that a given variable in one term has its complement in the other. Table gives
the proof of theorem 14(a) using the method of perfect induction. Theorem 14(b) is the dual of
theorem 14(a)and hence stands proved.

As an example,

Incidentally, the first expression is the representation of a two-input EX-OR gate, while the
second expression gives two forms of representation of a two-input EX-NOR gate.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Table Proof of theorem 13(a).

1.32.15 Theorem 15

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.32.16 Theorem 16

1.32.17 Theorem 17 (Involution Law)

Example

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Example

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Example

1.33 Simplification Techniques

In this section, we will discuss techniques other than the application of laws and theorems of
Boolean algebra discussed in the preceding paragraphs of this chapter for simplifying or more
precisely minimizing a given complex Boolean expression. The primary objective of all
simplification procedures is to obtain an expression that has the minimum number of terms.
Obtaining an expression with the minimum number of literals is usually the secondary
objective. If there is more than one possible solution with the same number of terms, the one
having the minimum number of literals is the choice.

The techniques to be discussed include:

(a) the Quine McCluskey tabular method;

(b) the Karnaugh map method.

Before we move on to discuss these techniques in detail, it would be relevant briefly to describe
sum-of-products and product-of-sums Boolean expressions. The given Boolean expression will

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

be in either of the two forms, and the objective will be to find a minimized expression in the
same or the other form.

1.33.1 Sum-of-Products Boolean Expressions

A sum-of-products expression contains the sum of different terms, with each term being either a
single literal or a product of more than one literal. It can be obtained from the truth table
directly by considering those input combinations that
such input combination produces a term. Different terms are given by the product of the
corresponding literals. The sum of all terms gives the expression. For example, the truth table in
Table can be represented by the Boolean expression

when , and when , and
are ANDed. Other terms can be explained similarly. A sum-of-products expression is also
known as a minterm expression.

Table truth table of boolean expression of equation

1.33.2 Product-of-Sums Expressions

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.33.3 Expanded Forms of Boolean Expressions

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.33.4 Canonical Form of Boolean Expressions

and Nomenclature

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Example

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.34 Quine McCluskey Tabular Method

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Example

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.35 Karnaugh Map Method

1.35.1 Construction of a Karnaugh Map

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Two-variable Karnaugh map.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Three-variable Karnaugh map.

Figure Four-variable Karnaugh map.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Different styles of row and column identification.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Two-variable Karnaugh maps.

Figure Three-variable Karnaugh maps.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Four-variable Karnaugh maps.

Figure Group formation in minterm and maxterm Karnaugh maps.

1.36 Logic Gates and Related Devices

Logic gates are electronic circuits that can be used to implement the most elementary logic
expressions, also known as Boolean expressions. The logic gate is the most basic building block
of combinational logic. There are three basic logic gates, namely the OR gate, the AND gate
and the NOT gate. Other logic gates that are derived from these basic gates are the NAND gate,
the NOR gate, the EXCLUSIVE-OR gate and the EXCLUSIVE-NOR gate. This chapter deals
with logic gates and some related devices such as buffers, drivers, etc., as regards their basic
functions. The treatment of the subject matter is mainly with the help of respective truth tables
and Boolean expressions. The chapter is adequately illustrated with the help of solved

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

examples. Towards the end, the chapter contains application-relevant information in terms of
popular type numbers of logic gates from different logic families and their functional
description to help application engineers in choosing the right device for their application.
Different logic families used to hardware-implement different logic functions in the form of
digital integrated circuits are discussed in the following chapter.

1.37 Positive and Negative Logic

represented by two different voltage levels or two different current levels. If the more
positive of the two voltage or

 the logic system is referred to as a positive logic system. If

 the logic system is referred to as a negative logic
system. The following examples further illustrate this concept.

If the two voltage levels are 0 V and +5 V, then in the positive logic system the 0 V represents a

a

It is interesting to note, as we will discover in the latter part of the chapter, that a positive OR is
a negative AND. That is, OR gate hardware in the positive logic system behaves like an AND
gate in the negative logic system. The reverse is also true. Similarly, a positive NOR is a
negative NAND, and vice versa.

1.38 Truth Table

A truth table lists all possible combinations of input binary variables and the corresponding
outputs of a logic system. The logic system output can be found from the logic expression,
often referred to as the Boolean expression that relates the output with the inputs of that very
logic system. When the number of input binary variables is only one, then there are only two

is two, there can be four possible input
combinations, i.e. 00, 01, 10and 11. Figure (b) shows the truth table of the two-input logic
system represented by Fig. 4.1(a). The logic system of Fig. 4.1(a) is such that Y = 0 only when
both A = 0 and B = 0. For all other possible input combinations, output Y = 1. Similarly, for
three input binary variables, the number of possible input combinations becomes eight, i.e. 000,
001, 010, 011, 100, 101, 110 and 111. This statement can be generalized to say that, if a logic
circuit has n binary inputs, its truth table will have 2n possible input combinations, or in other
words 2n rows. Figure shows the truth table of a three-input logic circuit, and it has 8 (= 23
rows. Incidentally, as we will see later in the chapter, this is the truth table of a three-input AND
gate. It may be mentioned here that the truth table of a three-input AND gate as given in Fig. is

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

drawn following the positive logic system, and also that, in all further discussion throughout the
book, we will use a positive logic system unless otherwise specified.

Figure Two-input logic system.

Figure Truth table of a three-input logic system

1.39 Logic Gates

The logic gate is the most basic building block of any digital system, including computers. Each
one of the basic logic gates is a piece of hardware or an electronic circuit that can be used to
implement some basic logic expression. While laws of Boolean algebra could be used to do
manipulation with binary variables and simplify logic expressions, these are actually
implemented in a digital system with the help of electronic circuits called logic gates. The three
basic logic gates are the OR gate, the AND gate and the NOT gate.

1.39.1 OR Gate

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

An OR gate performs an ORing operation on two or more than two logic variables. The OR
operation on two independent logic variables A and B is written as Y = A + B and reads as Y
equals A OR Band not as A plus B. An OR gate is a logic circuit with two or more inputs and
one output. The output of an OR gate is LOW only when all of its inputs are LOW. For all other
possible input combinations, the output is HIGH. This statement when interpreted for a positive
logic system

shows the circuit symbol and the truth table of a two-input OR gate. The operation of a two-
input OR gate is explained by the logic expression

 Y = A + B

As an illustration, if we have four logic variables and we want to know the logical output of (A
+B + C + D, then it would be the output of a four-input OR gate with A, B, C and D as its
inputs.

Figure Two-input OR gate.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure (a) Three-input OR gate, (b) four-input OR gate and (c) the truth table of a three-
input OR gate.

Figures (a) and (b) show the circuit symbol of three-input and four-input OR gates.
Figure(c)shows the truth table of a three-input OR gate. Logic expressions explaining the
functioning of three-input and four-input OR gates are Y = A + B + C and Y = A + B + C + D.

Example

How would you hardware-implement a four-input OR gate using two-input OR gates only?

Solution

Figure(a) shows one possible arrangement of two-input OR gates that simulates a four-input
ORgate. A, B, C and D are logic inputs and Y 3 is the output. Figure(b) shows another possible
arrangement. In the case of Fig.(a), the output of OR gate 1 is Y 1 = (A + B). The second

Figure Example.

OR gate produces the output Y 2 = (Y 1 + C) = (A + B + C). Similarly, the output of OR gate 3
isY 3 = (Y 2 + D) = (A + B + C + D). In the case of Fig.(b), the output of OR gate 1 is Y 1 = (A
+ B). The second OR gate produces the output Y 2 = (C + D). Output Y 3 of the third OR gate
is given by (Y 1 + Y 2) = (A + B + C + D).

Example

Draw the output waveform for the OR gate and the given pulsed input waveforms of Fig.(a).

Solution

Figure (b) shows the output waveform. It can be drawn by following the truth table of the OR
gate.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Example.

1.39.2 AND Gate

An AND gate is a logic circuit having two or more inputs and one output. The output of an
AND gate is HIGH only when all of its inputs are in the HIGH state. In all other cases, the
output is LOW. When interpreted for a positive logic system, this means that the output of the

-input AND gate are shown in Figs

(a) and (b) respectively. Figures (a)and (b) show the logic symbols of three-input and four-input
AND gates respectively. Figure(c)gives the truth table of a four-input AND gate.

The AND operation on two independent logic variables A and B is written as Y = A B and
reads as Y equals A AND B and not as A multiplied by B. Here, A and B are input logic
variables and Y is the output. An AND gate performs an ANDing operation:

Figure Two-input AND gate.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure (a) Three-input AND gate, (b) four-input AND gate and (c) the truth table of a
four-input AND gate.

two-input AND gate, Y = A B;

-input AND gate, Y = A B C;

-input AND gate, Y = A B C D.

If we interpret the basic definition of OR and AND gates for a negative logic system, we have
an interesting observation. We find that an OR gate in a positive logic system is an AND gate in
a negative logic system. Also, a positive AND is a negative OR.

Example

Show the logic arrangement for implementing a four-input AND gate using two-input AND
gates only.

Solution

Figure shows the hardware implementation of a four-input AND gate using two-input AND
gates. The output of AND gate 1 is Y 1 = A B. The second AND gate produces an output Y 2
given byY 2 = Y 1 C = A B C. Similarly, the output of AND gate 3 is Y = Y 2.D = A B C D
and hence the result.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure Implementation of a four-input AND gate using two-input AND gates.

1.39.3 NOT Gate

A NOT gate is a one-input, one-output logic circuit whose output is always the complement of
the input. That is, a LOW input produces a HIGH output, and vice versa. When interpreted for a

 shows the circuit
symbol and the truth table.

The NOT operation on a logic variable X is denoted as . That is, if X is the input to a

NOT circuit, then its output Y is given by and reads as Y equals NOT X. Thus, if X
= 0 Y = 1 and if X = 1 Y = 0.

Figure (a) Circuit symbol of a NOT circuit and (b) the truth table of a NOT circuit.

Example

For the logic circuit arrangements of Figs (a) and (b), draw the output waveform.

Solution

In the case of the OR gate arrangement of Fig. (a), the output will be permanently in logic

inverter. In the case of the AND gate arrangement of Fig.(b), the output will be permanently in

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

the inverter.

Figure Example.

1.39.4 EXCLUSIVE-OR Gate

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure (a) Circuit symbol of a two-input EXCLUSIVE-OR gate, (b) the truth table of a
two-input EXCLUSIVE-OR gate and (c) the truth table of a four-input EXCLUSIVE-OR
gate

1.39.5 NAND Gate

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure (a) Two-input NAND implementation using an AND gate and a NOT circuit, (b)
the circuit symbol of a two-input NAND gate and (c) the truth table of a two-input NAND
gate.

1.39.6 NOR Gate

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Figure (a) Two-input NOR implementation using an OR gate and a NOT circuit, (b) the
circuit symbol of a two-input NOR gate and (c) the truth table of a two-input NOR gate.

1.39.7 EXCLUSIVE-NOR Gate

Figure (a) Circuit symbol of a two-input EXCLUSIVE-NOR gate and (b) the truth table
of a two-input EXCLUSIVE-NOR gate.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.40 Universal Gates

1.40.1 NAND Gate is a Universal Gate

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.40.2 NOR Gate is a Universal Gate

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.41 Equivalent Gates

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.42 Two-Level Implementations

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

1.43 Two marks Questions and Answers

1. Define Digital Systems.

A System which is processing discrete or digital signal is called as Digital System.

2. What is meant by bit?

A Binary digit is called bit.

3. What is the best example of digital system?
Digital computer is the best example of a digital system.

4. Define Radix.
It specifies the number of symbols used for corresponding number system. .

5. Define Nibble and Byte.

www.AllAbtEngg.com

