
www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Problem is a sequence of steps to be done, such as reading, calculating and printing. A number

of functions are written to accomplish this task.

A typical program structure for POP is shown Fig. 1.1.1(a).

Fig.1.1.1(a). Typical structure of POP

 POP is an approach in which a list of instructions were written for the computer to follow,

and organizing these instructions into groups known as functions. It uses a flowchart to organize

these actions and to represent the flow of control from one action to another action. In a multi

function program, many important data are placed as global so that they may be accessed by all

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

the functions. Each function has its own local data. Fig. 1.1.1(b) shows the relationship of data

and functions in a POP.

1. When there is a change in the function the global data will change. Global data are more

vulnerable to an inadvertent change by a function. In a large program it is very difficult to

identify the data which is used by a function.

2. When the external data structure is revised it is necessary to revise all functions that access

the data.

3. Functions correspond to the elements of the problem as they are action-oriented, they does

not model real world problems

Fig.1.1.1(b). Relationship of data and functions in POP

OOP is an approach that provides a way of modularizing programs by creating partitioned

memory area for both data and functions that can be used as templates for creating copies of

such modules on demand.

Important object oriented concepts are namely:

1. Objects

2. Classes

3. Inheritance

4. Data Abstraction

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

5. Data Encapsulation

6. Polymorphism

7. Dynamic Binding

8. Reusability and Message Passing

 Object is the basic unit of object-oriented programming.

 Objects are identified by its unique name.

 An object represents a particular instance of a class.

 There can be more than one instance of an object. Each instance of an object can hold its

own relevant data.

 An Object is a collection of data members and associated member functions. It is also

known as methods.

 Classes are data types based on which objects are created. Objects with similar properties

and methods are grouped together to form a Class. Thus a Class represents a set of

individual objects.

 Characteristics of an object are represented in a class as Properties (Attributes).

 The actions that can be performed by objects are functions of the class and they are referred

to as Methods (Functions). For example if we have a Class of Cars under which Santro

Xing, Alto and WaganR represents individual Objects. In this context each Car Object will

have its own, Model, Year of Manufacturing, Colour, Top Speed, Engine Power etc., which

form Properties of the Car class and the associated actions i.e., object. Functions like

Start, Move, Stop form the Methods of Car Class.

 No memory is allocated when a class is created. Memory is allocated only when an object

is created, i.e., when an instance of a class is created.

 Inheritance is the process of forming a new class from an existing class or base class. The

base class is also known as parent class or super class, A new class that is formed from

parent class is called derived class. Derived class is also known as a child class or sub

class.

 Advantage : Inheritance helps in reducing the overall code size of the program, which is an

important concept in object-oriented programming.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 Data Abstraction increases the power of programming language by creating user defined

data types.

 Data Abstraction also represents the needed information in the program without presenting

the details.

 Data Encapsulation combines data and functions into a single unit called Class.

 When using Data Encapsulation, data is not accessed directly; it is only accessible through

the functions present inside the class.

 Data Encapsulation enables the important concept of data hiding possible.

 Polymorphism, a Greek term, means the ability to take more than one form.

 Polymorphism allows the routines to use variables of different types at different times.

 Polymorphism refers to a single functional or multi-functional operator performing in

different ways. (Operator Overloading).

 Binding refers to the linking of a procedure call to the code which is to be executed in a

response to the call.

 Dynamic binding means that the time of the call at run-time.

 An OOPS consists of a set of objects that communicate with each other.

 The process of programming in an object-oriented language, involves the following steps:

a. Creating classes that define objects and their behavior,

b. Creating objects from class definitions,

c. Establishing communication among objects.

 This term refers to the ability for multiple programmers to use the same written and

debugged existing class of data. This is a time saving method and adds code efficiency to

the language.

1. Emphasis is on data rather than procedure.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

2. Programs are divided into what are known as objects.

3. Data structures are designed such that they characterize the objects.

4. Functions that operate on the data of an object are tied together in the data structure.

5. Data is hidden and cannot be accessed by external functions.

6. Objects may communicate with each other through function.

7. New data and functions can be easily added whenever necessary.

8. Follows bottom up approach in program design.

1. Through inheritance, we can eliminate redundant code extend the use of existing Classes.

2. We can build programs from the standard working modules that communicate with one

another, rather than having to start writing the code from scratch. This leads to saving of

development time and higher productivity.

3. The principle of data hiding helps the programmer to build secure program that cannot be

invaded by code in other parts of a programs.

4. It is possible to have multiple instances of an object to co-exist without any interference.

5. It is possible to map object in the problem domain to those in the program.

6. It is easy to partition the work in a project based on objects.

7. The data-centered design approach enables us to capture more details of a model can

implemental form.

8. Object-oriented system can be easily upgraded from small to large system.

9. Message passing techniques for communication between objects makes it to interface

descriptions with external systems much simpler.

10. Software complexity can be easily managed.

1. Real-time Systems

2. Simulation and Modeling

3. Object-Oriented Databases

4. Hypertext, hypermedia and expertext

5. Artificial intelligence and expert system

6. Neural networks and parallel programming

7. Decision support and office automation systems

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

8. CIM/CAM/CAD systems

Difference between C and C++

C C++

Procedural programming language Object-oriented programming anguage

Global variable can be declared It is an error to declare a variable as global

Function prototypes are optional All functions must be prototyped.

Local variables can be declared only Local variables can be declared any where

the start of a c program in a c++ program.

C makes use of top down approach of

problem solving

C makes use of bottom up approach of

problem solving

The input and output is done using scanf

and printf

The input and output is done using cin and

cout

I/O operations are supported by stdio.h

header file

I/O operations are supported by iostream.h

header file

C does not support inheritance,

polymorphism , classes and objects

C supports inheritance, polymorphism ,

classes and objects

The data type specifier / format specifier

(%d, %c, % f) is required in printf and

scanf

The data type specifier / format specifier is

not required in printf and scanf

The smallest individual units are known as tokens.

1. Keywords

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

2. Identifiers

3. Constants

4. Strings

5. Operators

These are reserved identifiers. The C++ Keywords are,

asm

auto

break

case

extern

protected

export

dynamic_cast

reinterpret_cast

double

else

default

catch

float

public

try

throw

mutable

new

operator

inline

char

for

register

typedef

typename

true

Switch

template

sizeof

class

friend

return

union

const_cast

wchar_t

while

struct

void

cast

goto

short

unsigned

false

explicit

long

do

delete

continue

if

signed

virtual

static_cast

namespace

volatile

static

int

enum

private

this

bool

using

typeid

 Identifiers refer to the names of variables, functions, arrays, classes, etc. created by the

a. Only alphabetic characters, digits and underscores are permitted.

b. The name cannot start with a digit.

c. Uppercase and lowercase letters are distinct

d. A declared keyword cannot be used as a variable name.

It refers to fixed values that do not change during the execution of a program.

Constants, like variables, contain data type. Integer constants are represented as decimal

notation, octal notation, and hexadecimal

notation.

- Decimal notation is represented with a

number.

- Octal notation is represented with the

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

number preceded by a zero character.

- A hexadecimal number is preceded with the characters 0x.

- Example 80 represent decimal 0115 represent octal 0x167 represent hexadecimal

- By default, the integer constant is represented with a number.

- The unsigned integer constant is represented with an appended character u.

- The long integer constant is represented with character or unsigned.

- Signed integers are used to signify positive and negative number.

- Unsigned integers signify only positive numbers or zero.

- For example it is declared as unsigned short int a; signed int z; By default, unspecified

integers signify a signed integer. For example: int a; is declared a signed integer It is

possible to initialize values to variables: data type variable name = value; Example: int

a=0; int b=5;

Member types

value_type Char

traits_type char_traits<char>

allocator_type allocator<char>

Reference char&

const_reference const char&

Pointer char *

const_pointer const char*

Iterator a random access iterator to char (convertible to const_iterator)

const_iterator a random access iterator to const char

reverse_iterator reverse_iterator<iterator>

const_reverse_iterator reverse_iterator<const_iterator>

difference_type ptrdiff_t

size_type size_t

Member Functions

Constructor Construct string object(public member function)

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Destructor String destructor(public member function)

Operator= String assignment (public member function)

Iterators

Begin Return iterator to beginning(public member function)

End Return iterator to end(public member function)

Rbegin
Return reverse iterator to reverse beginning (public member

function)

Rend
Return reverse iterator to reverse end (public member

function)

Cbegin Return const_iterator to beginning (public member function)

Cend Return const_iterator to end (public member function)

Crbegin
Return const_reverse_iterator to reverse beginning (public

member function)

Crend
Return const_reverse_iterator to reverse end (public member

function)

Capacity

Size Return length of string (public member function)

Length Return length of string (public member function)

Max_size Return maximum size of string (public member function)

Resize Resize string (public member function)

Capacity Return size of allocated storage (public member function)

Reverse Request a change in capacity (public member function)

Clear Clear string (public member function)

Empty Test if string is empty (public member function)

Shrink_to_fit Shrink to fit (public member function)

Element Access

operator[] Get character of string(public member function)

At Get character in string(public member function)

Back Access last character(public member function)

Front Access first character(public member function)

Modifiers

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Operator+= Append to string(public member function)

Append Append to string(public member function)

push_back Append character to string(public member function)

Assign Assign content to string(public member function)

Insert Insert into string(public member function)

Erase Erase characters from string(public member function)

Replace Replace portion of string(public member function)

Swap Swap string values(public member function)

pop_back Delete last character(public member function)

String operations

c_str Get C string equivalent(public member function)

Data Get string data(public member function)

get_allocator Get allocator(public member function)

Copy
Copy sequence of characters from string(public member

function)

Find Find content in string(public member function)

Rfind
Find last occurrence of content in string(public member

function)

find_first_of Find character in string(public member function)

find_last_of Find character in string from the end(public member function)

find_first_not_of Find absence of character in string(public member function)

find_last_not_of Find character in string from the end(public member function)

Substr
Find non-matching character in string from the end(public

member function)

Compare Compare strings(public member function)

Member constants

Npos Maximum value for size_t(public static member function)

Non-Member function overloads

operator+ Concatenate strings (function)

relational operators Relational operators for string(function)

Swap Exchanges the values of two strings(function)

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

operator>> Extract string from stream(function)

operator<< Insert string into stream(function)

Getline Get line from stream into string(function)

:: Scope

resolution

operator

::variable-name Access to the global version

of a variable

Member Dereferencing Operators

::* Pointer-to-

member

declaratory

expression::*expression

To declare a pointer to the

member of a class

.* Pointer-to-

member

operator

expression.*expression

return the value of a specific

class member for the object

specified on the left side of

the expression. The right

side must specify a member

of the class.

->* Pointer-to-

member

operator

expression->*expression

Memory Management Operators

New Memory

allocation

operator

pointer-variable=new data-

type

To create object of any type

Delete Memory release

operator

delete[size] pointer-variable To release the memory space

for re-usege

Manipulators

Endl Line feed

operator

 Used to output statement

setw Field width cout<<setw(5)<<sum<<endl All numbers to be printed

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

operator right-justified

Type Cast Operator

 Cast Cast operator type-name(expression) Type conversion of variables

and expressions

i. Basic Data Types

Char 1 -128 to127 This data type is used to

represent a single character

unsigned char 1 0 to255 This data type is used to

represent an unsigned

character

signed char 1 -128 to127 This data type is used to

represent an signed character

Int 2 -32768 to32767 This data type is used to

represent integer

unsigned int 2 0 to 65535 This data type is used to

represent an unsigned integer

signed int 2 -31768 to 32767 This data type is used to

represent an signed integer

short int 2 -31768 to 32767 This data type is used to

represent short integer.

unsigned short int 2 0 to 65535 This data type is used to

represent unsigned short

integer

signed short int 2 -32768 to32767 This data type is used to

represent signed short integer

long int 4 -2147483648 to

2147483647

This data type is used to

represent long integer

signed long int 4 -2147483648 to This data type is used to

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

A variable is the storage location in memory that is stored by its value. A variable is identified

or denoted by a variable-name. The variable-name is a sequence of one or more letters, digits or

underscore, for example: character _

Rules for defining a variable name:

2147483647 represent signed long integer

unsigned long int 4 0 to 4294967295 This data type is used to

represent unsigned long

integer

Float 4 3.4E-38 to 3.4E+38 This data type is used to

represent floating point

number.

Double 8 1.7E-308 to 1.7E+308 This data type is used to

represent double precision

floating point number

long double 10 3.4E-4932 to 1.1E+4932 This data type is used to

represent double precision

floating point number.

Bool True or False This data type is used to

represent boolean value

ii. User-Defined Data Types

Structure and Classes : struct, union

Enumerated Data Types :

enum

E.g.enum

shape{circle,rectangle};

A way for attaching names to

numbers.

iii. Derived Data Types

Arrays Collection of similar data-

type

Functions performs a process

Pointers int *ip; Returns the address

Type Compatibility sizeof(int) Assigned to one another

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

1. A variable name can have one or more letters or digits or underscore for example character

_.

2. White space, punctuation symbols or other characters are not permitted to denote variable

name.

3. A variable name must begin with a letter.

4. Variable names cannot be keywords or any reserved words of the C++ programming

language.

5. C++ is a case-sensitive language. Variable names written in capital letters differ from

variable names with the same name but written in small letters. For example, the variable-

name A differs from the variable-name a.

 The syntax for declaring variable names is,

 The date type can be int or float or any of the data types listed above. A variable name is

given based on the rules for defining variable name (refer above rules). Example: int a;

 Dynamic Initialization of variables:

 C++ permits initialization of variables at run time.

 E.g.

Constant Expression Constant values

Integral Expression Produces integer results m*n-5

Float Expression Produces floating-point results x+y/10

Pointer Expression Produces address values &m

Relational Expression Produces bool type of results x<=y

Logical Expression Combine two or more relational

Expression and produces bool results

a>b && a>c

Bitwise Expression To manipulate data at bit level x<<3 shift 3-bit

position to the left

x>>3 shift 3-bit

position to the right

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Special Assignment Expression

Chained Assignment Chain format variable assignment float a=12.34, b=12.34

Embedded Assignment Embed the variables y=50; x=y+10;

Compound Assignment Combination of assignment operator

with a binary arithmetic operator

x=x+10; written as,

x+=10;

A pointer contains the memory address of a variable In this sense, a variable name directly

references a value, and a pointer indirectly references a value. Referencing a value through a c

 The reference variable provides a kind of a link to the original variable and becomes

alias for the original variable..

 Syntax:

 E.g. float total=100; float &sum=total;

Four storage class specifiers are,extern, static, register, auto. The first two specifiers result in

static storage. Other two specifiers result in automatic storage.

The variables should be initialized. Two types of Initialization,

i. Normal Initialization. e.g. int i=0;

ii. Runtime Initialization e.g. get the values from the user through the variables.

It is of three types: Fig.1.2.13(a)Sequence

1. Sequence structure : Simple Statements

2. Selection structure : if and switch

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

3. Loop or iteration or repetition structure

 13

 The if keyword is used to execute a statement or block only if a condition is fulfilled.

Structure

 Its form is,

- where condition is the expression

that is being evaluated.

13

 If this condition is true,

statement is executed. If it is

false, statement is ignored

continues right after this conditional structure. Fig.1.2.13(b)if...else statement

 13

 Multiple-branching statement of if.

 Format is,

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Fig.1.2.13(c) switch statement Fig.1.2.14(b) while loop

Fig.1.2.14(a)

- its functionality is simply to repeat statement while the condition set in expression is

true.

Fig.1.2.14(c)

while loop

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

- It works in the following way:

1. Initialization is executed. Generally it is an initial value setting for a counter variable.

This is executed only once.

2. Condition is checked. If it is true the loop continues, otherwise the loop ends and

statement is skipped (not executed).

 Statement is executed. As usual, it can be either a single statement or a block enclosed

in braces {}

 Finally, whatever is specified in the increase field is executed and the loop gets back to

step

Classes represent real world entities that have both data type properties (characteristics) and

associated operations (behavior). Class is the collection of objects.

The syntax of a class definition is shown below:

The keywords private, protected and public are called access specifiers.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 Structures

An array is an aggregate of elements of the same type. A struct is an aggregate of elements of

(nearly) arbitrary types. For example:

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Variables of type address can be declared exactly as other variables, and the individual

members can be accessed using the. (dot) operator. For example:

The notation used for initializing arrays can also be used for initializing variables of structure

types. For example:

Using a constructor is usually better, however. Note that jd .state could not be initialized by the

string " NJ " . Strings are terminated by the character ´\ 0 ´. Hence, " NJ " has three characters

 one more than will fit into jd.state .

Structure objects are often accessed through pointers using the -> (structure pointer

dereference) operator. For example:

When p is a pointer, p->m is equivalent to (*p).m.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Objects of structure types can be assigned, passed as function arguments, and returned as the

result from a function. For example:

Two structures are different types even when they have the same members. For example,

are two different types, so

Structure types are also different from fundamental types, so

Every must have a unique definition in a program.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 member

functions are defined at global namespace scope.

 With

member functions and can be referenced by name.

 members are referenced through one of the handles on

an object an object name, a reference to an object or a pointer to an object. The type of

the object, reference or pointer specifies the interface (i.e., the member functions)

accessible to the client.

 Member functions of a class can be overloaded, but only by other member functions of that

class. To overload a member function, simply provide in the class definition. This also

 Variables declared in a member function have local scope and are known only to that

function.

 If a member function defines a variable with the same name as a variable with class scope,

the class-scope variable is hidden by the block-scope variable in the local scope.

 A hidden variable can be accessed by preceding the variable name with the class

name followed by the scope resolution operator (::).

 Hidden global variables can be accessed with the scope resolution operator. The dot

 to

 The arrow member selection operator (->) is preceded by a pointer to an object to

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 A reference is an alias, or an alternate name to an existing variable. For example, suppose

you make peter a reference (alias) to paul, you can refer to the person as either peter or

paul.

 The main use of references is acting as function formal parameters to support pass-by-

reference. In an reference variable is passed into a function, the function works on the

original copy (instead of a clone copy in pass-by-value). Changes inside the function are

reflected outside the function.

 A reference is similar to a pointer. In many cases, a reference can be used as an alternative

to pointer, in particular, for the function parameter.

A pointer variable (or pointer in short) is basically the same as the other variables, which can

store a piece of data. Unlike normal variable which stores a value (such as an int, a double, a

char), a pointer stores a memory address

A computer memory location has an address and holds content. The address is a numerical

number (often expressed in hexadecimal), which is hard for programmers to use directly.

Typically, each address location holds 8-bit (i.e., 1-byte) of data.

A variable is a named location that can store a value of a particular type. Instead of numerical

addresses, names (or identifiers) are attached to certain addresses.

The syntax of declaring a pointer is to place a * in front of the name.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

The address-of operator (&) operates on a variable, and returns the address of the variable. For

example, if number is an int variable, &number returns the address of the variable number.

For example,

int number = 88; // An int variable with a value

int * pNumber; // Declare a pointer variable called pNumber pointing to an int (or

int pointer)

pNumber = &number; // Assign the address of the variable number to pointer

pNumber

 int * pAnother = &number; // Declare another int pointer and init to address of the

variable number

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

To denote the address-of operator in an expression using &. An additional meaning of & in

declaration to declare a reference variable.

Difference between the meaning of symbol & is in an expression and in a declaration.

When it is used in an expression, & denotes the address-of operator, which returns the

address of a variable, e.g., if number is an int variable, &number returns the address of the

variable number (this has been described in the above section).

However, when & is used in a declaration (including function formal parameters), it is part of

the type identifier and is used to declare a reference variable (or reference or alias or alternate

name). It is used to provide another name, or another reference, or alias to an existing variable.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

A reference works as a pointer. A reference is declared as an alias of a variable. It stores the

address of the variable, as illustrated:

Pointers and references are equivalent, except:

1. A reference is a name constant for an address. You need to initialize the reference during

declaration.

int & iRef; // Error: 'iRef' declared as reference but not initialized

Once a reference is established to a variable, you cannot change the reference to reference

another variable.

2. To get the value pointed to by a pointer, you need to use the dereferencing operator *

(e.g., if pNumber is a int pointer, *pNumber returns the value pointed to by pNumber. It

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

is called dereferencing or indirection). To assign an address of a variable into a pointer,

you need to use the address-of operator & (e.g., pNumber = &number). On the other

hand, referencing and dereferencing are done on the references implicitly. For example,

if refNumber is a reference (alias) to another int variable, refNumber returns the value of

the variable. No explicit dereferencing operator * should be used. Furthermore, to assign

an address of a variable to a reference variable, no address-of operator & is needed.

For example,

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Passing the Return-value as Reference

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

If an initializer is specified for an object, that initializer determines the initial value of an object.

If no initializer is specified, a global, namespace or local static object (collectively called static

objects) is initialized to 0 of the appropriate type. For example,

Local variables (sometimes called automatic objects) and objects created on the free store

(sometimes

called dynamic objects or heap objects) are not initialized by default. For example:

Members of arrays and structures are default initialized or not depending on whether the array

or structure is static. User Defined Types may have default initialization defined. More

complicated objects require more than one value as an initializer. This is handled by initialize

lists delimited by { and } for C style initialization of arrays and structures. For User Defined

Types with constructors, function style argument lists are used. For example:

The main use of constructors is to initialize objects.

General Syntax of Constructor

Constructor is a special member function that takes the same name as the class name. The

syntax generally is as given below:

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

The default constructor for a class X has the form X::X() In the above example the arguments is

optional. The constructor is automatically invoked when an object is created.

Declaration and Definition of a Constructor

It is defined like other member functions of the class, i.e., either inside the class definition or

outside the class definition.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

1. These are called automatically when the objects are created.

2. All objects of the class having a constructor are initialized before some use.

3. These should be declared in the public section for availability to all the functions.

4. Return type (not even void) cannot be specified for constructors.

5. These cannot be inherited, but a derived class can call the base class constructor.

6. These cannot be static.

7. Default and copy constructors are generated by the compiler wherever required. Generated

constructors are public.

8. These can have default arguments as other C++ functions.

9. A constructor can call member functions of its class. \

10. An object of a class with a constructor cannot be used as a member of a union.

11. A constructor can call member functions of its class.

12. We can use a constructor to create new objects of its class type by using the syntax.

1. Default constructors : This constructor has no arguments in it. Default Constructor is also

called as no argument constructor.

2. Parameterized constructors : A parameterized constructor is just one that has parameters

specified in it.

3. Copy constructors : The purpose of the copy constructor is to initialize a new object with

data copied from another object of the same class.

For example to invoke a copy constructor the programmer writes:

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

4.

It performing the role of member data initialization, constructors are no different from other

functions. This included overloading also.

For example, consider the following program with overloaded constructors for the rectangle

class

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

5.

The constructor can be allocate the memory for the objects using new operator

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Objects can be initialized at run time (dynamically).

The main use of destructors is to release dynamic allocated memory. Destructors are used to

free memory, release resources and to perform other clean up. Destructors are automatically

called when an object is destroyed.

- In the above, the symbol tilda ~ represents a destructor which precedes the name of the

class.

 Special Characteristics of Destructors

1. These are called automatically when the objects are destroyed.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

2. Destructor functions follow the usual access rules as other member functions.

3. These de-initialize each object before the object goes out of scope.

4. No argument and return type (even void) permitted with destructors.

5. These cannot be inherited.

6. Static destructors are not allowed.

7. Address of a destructor cannot be taken.

8. A destructor can call member functions of its class.

9. An object of a class having a destructor cannot be a member of a union.

For example

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Constructors and destructors are called implicitly by the compiler. The order in which these

function calls occur depends on the order in which execution enters and leaves the scopes where

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

the objects are instantiated. Generally, destructor calls are made in the reverse order of the

corresponding constructor calls, but the storage classes of objects can alter the order in which

destructors are called.

Classes represent real world entities that have both data type properties (characteristics) and

associated operations (behavior). Class is the collection of objects.

Classes are data types based on which objects are created. Objects with similar properties and

methods are grouped together to form a Class. Thus a Class represents a set of individual

objects. Characteristics of an object are represented in a class as Properties (Attributes).

For example, a class that represents a bank account might contain one member function to

deposit money to an account, another to withdraw money from an account and a third to inquire

The syntax of a class definition is shown below :

The keywords private, protected and public are called access specifiers.

The class specification can be done in two part :

i. Class definition. It describes both data members and member functions.

ii. Class method definitions. It describes how certain class member functions are coded.

The member functions can be coded in two ways :

i. Inside class definition

ii. Outside class definition using scope resolution operator (::),

- lified_name) is written as shown:

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

The syntax for a member function definition outside the class definition is :

Declaration of Objects as Instances of a Class

The objects of a class are declared after the class definition. Object Name creation is Class

name followed by object name. i.e

 local variables and can be

used only from the line of their declaration in the function to closing right brace (}) of the

 A local variable must be declared before it can be used in a function. A local variable

 When a function terminates, the values of its local variables are lost.

 A class normally consists of one or more member functions that manipulate the attributes

that belong to a particular object of the class. Attributes are represented as variables in a

class definition. Such variables are called data members and are declared inside a class

definition but outside -function definitions.

 Each object of a class maintains its own copy of its attributes in memory. These attributes

exist throughout the life of the object.

 set functions are sometimes called mutators and get functions are also called accessors.

After defining a class and creating class variables i.e., object can access the data members and

member functions of the class. Example:

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

When a data is declared as private inside a class, then it is not accessible from outside the class.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

A function that is not a member or an external class will not be able to access the private data.

A programmer may have a situation where he or she would need to access private data from

non-member functions and external classes. For handling such cases, the concept of Friend

functions is a useful tool.

 ss

the non-public (and public) members of the class. Standalone functions, entire classes or

member functions of other classes may be declared to be friends of another class.

 A friend declaration can appear anywhere in the class.

 To declare a function as a friend of a class, precede the function prototype in the class

definition with keyword friend.

 The friend function is written as any other normal function, except the function declaration

of these functions is preceded with the keyword friend.

 The friend function must have the class to which it is declared as friend passed to it in

argument.

 General Syntax for friend function

 Some important points to note while using friend functions in C++:

1. The keyword friend is placed only in the function declaration of the friend function and

not in the function definition. .

2. It is possible to declare a function as friend in any number of classes. .

3. When a class is declared as a friend, the friend class has access to the private data of the

class that made this a friend.

4. A friend function, even though it is not a member function, would have the rights to

access the private members of the class. .

5. It is possible to declare the friend function as either private or public. .

6. The function can be invoked without the use of an object. The friend function has its

argument as objects, seen in example below.

Example to understand the friend function:

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

In C++ , a class can be made a friend to another class. For example,

The dynamic memory is allocation is done using an operator new. The syntax is,

Each object of a class has its own copy of all the data members of the class. In certain cases,

only one copy of a variable should be shared by all objects of a class.

 -

shared by all instances, not a property of a specific object of the class).

 Static data members have class scope and can be declared public, private or protected.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 To access a public static class member when no objects of the class exist, simply prefix the

class name and the scope resolution operator (::) to the name of the data member.

 A member function should be declared static (p. 438) if it does not access non-static data

members or non-static member functions of the class. Unlike non-static member functions,

a static member function does not have a this pointer, because static data members and

static member functions exist independently of any objects of a class.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

The static data member is defined outside the class as :

We can also initialize the static data member at the time of its definition as:

A static member function can access only the static members of a class.

 A class with the main purpose of holding objects is commonly called a container.

Providing suitable containers for a given task and supporting them with useful fundamental

operations are important steps in the construction of any program.

 Much computing involves creating collections of various forms of objects and then

manipulating such collections. Reading characters into a string and printing out the string is

a simple example.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 The containers are divided into three major categories

1. Sequence Containers Vector, Deque, list

2. Associative Containers set, multiset, map. multimap

3. Container Adapters stack, queue, priority_queue

A built in array of (name, number) pairs would seem to be a suitable starting point:

However, a builtin array has a fixed size. If we choose a large size, we waste space; if we

choose a smaller size, the array will overflow. In either case, we will have to write low level

memorymanagement code. The standard library provides a vector that takes care of that:

The vector member function size() gives the number of elements.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Note the use of parentheses in the definition of phone_book . We made a single object of type

vector <Entry> and supplied its initial size as an initializer. This is very different from declaring

a builtin array:

The standard library vector does not provide range checking by default. For example:

Here, a Vec is like a vector , except that it throws an exception of type out_of_range if a

subscript is out of range.

The at() operation is a vector subscript operation that throws an exception of type out_of_range

if its argument is out of the vector s range.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Insertion and deletion of phone book entries could be common. Therefore, a list could be more

appropriate than a vector for representing a simple phone book. For example:

Adding elements to a l i s t is easy:

A map is a container of pairs of values. For example:

In other contexts, a map is known as an associative array or a dictionary.

When indexed by a value of its first type (called the key) a map returns the corresponding value

of the second type (called the value or the mapped type). For example:

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

If no match was found for the key s , a default value is returned from the phone_book . The

default

value for an integer type in a map is 0 .

A ma p, a list , and a vector can each be used to represent a phone book. However, each has

strengths and weaknesses. For example, subscripting a vector is cheap and easy. On the other

hand, inserting an element between two elements tends to be expensive. A list has exactly the

opposite properties. A map resembles a list of (key,value) pairs except that it is optimized for

finding values based on keys.

The standard library provides some of the most general and useful container types to allow the

programmer to select a container that best serves the needs of an application:

Container Standard

vector <T> A variablesized Vector

list<T> A doublylinked List

queue<T> A queue

stack<T> A stack

deque <T> A double ended Queue

priority_queue<T> A queue sorted by value

set<T> A set

multiset<T> A set in which a value can occur many times

map<key,val > An associative array

multimap< key,val> A map in which a key can occur many times

 Iterators are used to point to first-class container elements.

 Iterators hold state information sensitive to the particular containers on which they operate;

thus, iterators are implemented appropriately for each type of container.

 For example, the dereferencing operator (*) dereferences an iterator so that you can use the

element to which it points. The ++ operation on an iterator next

element (much as incrementing a pointer into an array aims the pointer at the next array

element).

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 An object of type iterator refers to a container element that can be modified. An object of

type const_iterator refers to a container element that cannot be modified.

 Using istream_iterator for Input and ostream_iterator for Output

Fig. 1.12.2 | Input and output stream iterators.

Figure 1.12.2.1(a) shows the categories of STL iterators. Each category provides a specific set

of functionality. Figure 1.12.2.1(b) illustrates the hierarchy of iterator categories.

Category Description

Input Used to read an element from a container

Output Used to write an element to a container.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Forward Combines the capabilities of input and output iterators and retains their

position in the container

Bidirectional Combines the capabilities of a forward iterator with the ability to move in

the backward direction

random access Combines the capabilities of a bidirectional iterator with the ability to

directly access any element of the container

Figure 1.12.2.1(a). Categories of STL iterators

Fig. 1.12.2.1(b) Hierarchy of iterator categories

Container Type of Iterator Support

Sequence containers (first class)

vector

deque

list

random access

random access

bidirectional

Associative containers (first class)

set

multiset

map

multimap

bidirectional

bidirectional

bidirectional

bidirectional

Container adapters

stack

queue

priority_queue

no iterators supported

no iterators supported

no iterators supported

input output

Forward

Bidirectional

Random Access

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Fig. 1.12.2.1(c) Iterator types supported by each container.

Figure 1.12.2.2(a) shows the predefined iterator typedefs that are found in the class definitions

of the STL containers. Figure 1.12.2.2(b) shows some Iterator Operations

Predefined typedefs for iterator

types

Direction of ++ Capability

iterator

const_iterator

reverse_iterator

const_reverse_iterator

forward

forward

backward

backward

read/write

read

read/write

read

Fig. 1.12.2.2(a) Iterator typedefs.

Iterator operation Description

All iterators

++p

p++

Preincrement an iterator,

 Postincrement an iterator

Input iterators

*p

p = p1

p == p1

p != p1

Dereference an iterator

Assign one iterator to another

Compare iterators for equality

Compare iterators for inequality

Output iterators

*p

p = p1

Dereference an iterator

Assign one iterator to another

Forward iterators

Forward iterators provide all the functionality of both input iterators and output

iterators.

Bidirectional iterators

--p

p

Predecrement an iterator

Postdecrement an iterator

Random-access iterators

p +=i Increment the iterator p by i positions

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

p -= i

p + i or i + p

p i

p - p1

p[i]

p < p1

p <= p1

p > p1

p >= p1

Decrement the iterator p by i positions

Expression value is an iterator positioned at p incremented by i

positions

Expression value is an iterator positioned at p decremented by i

positions

Expression value is an integer representing the distance between

two elements in the same container.

Return a reference to the element offset from p by i positions

Return true if iterator p is less than iterator p1 (i.e., iterator p is

before

iterator p1 in the container); otherwise, return false.

Return true if iterator p is less than or equal to iterator p1 (i.e.,

iterator p

is before iterator p1 or at the same location as iterator p1 in the

container); otherwise, return false.

Return true if iterator p is greater than iterator p1 (i.e., iterator p

is after

iterator p1 in the container); otherwise, return false.

Return true if iterator p is greater than or equal to iterator p1

(i.e., iterator

p is after iterator p1 or at the same location as iterator p1 in the

container);otherwise, return false.

Fig. 1.12.2.2(b) Iterator operations for each type of iterator. I

 A proxy class that allows you to hide even the private data of a class.

 Providing clients of your class with a proxy class that knows only the public interface to

ithout giving the clients access

to your

 When a class definition uses only a pointer or reference to an object of another class, the

class header for that other class (which would ordinarily reveal the private data of that

class) is not required to be included with #include. You can simply declare that other class

as a data type with a forward class declaration before the type is used in the file.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 The implementation file containing the member functions for a proxy class is the only file

that includes the header for the class whose private data we would like to hide.

 The implementation file containing the member functions for the proxy class is provided to

the client as a precompiled object code file along with the header that includes the function

prototypes of the services provided by the proxy class. Example,

 Creation of Proxy classes

1. Myclass.h

2. MySInterface.h

3. MyInterface.cpp

4. Test.cpp

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

A function is overloaded when same name is given to different function. However, the two

functions with the same name will differ at least in one of the following:

a. The number of parameters

b. The data type of parameters

c. The order of appearance

These three together are referred to as the function signature.

For example if we have two functions :

void foo(int i,char a); void boo(int j,char b);

- Their signature is the same (int ,char) but a function void moo(int i,int j) ; has a

signature (int, int) which is different.

While overloading a function, the return types of the functions need to be the same. In general

functions are overloaded when :

1. Functions differ in function signature.

2. Return type of the functions is the same.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

To create new definitions to existing operators. In other words a single operator can perform

several functions as desired by programmers.

The general syntax for defining an operator overloading is as follows:

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Example

#include<iostream.h>

#include<string.h>

#include<conio.h>

const int bufsize=50;

class string

{

private:

 char str[bufsize];

public:

 string()

 {

 strcpy(str," ");

 }

 string(char*mystr)

 {

 strcpy(str,mystr);

 }

 void echo()

 {

 cout<<str;

 }

 string operator+(string s)

 {

 string temp=str;

 strcat(temp.str,s.str);

 return temp;

 }

};

void main()

{

clrscr();

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

string str1=" stud";

 string str2=" ent";

 string str3;

cout<<"\n before str3=str1=str2;.";

 cout<<"\n str1=";

 str1.echo();

 cout<<"\nstr2=";

 str2.echo();

 cout<<"\n str3=";

 str3.echo();

 str3=str1+str2;

 cout<<"\n\n After str3=str1+str2:..";

 cout<<"\n str1=";

 str1.echo();

 cout<<"\n str2=";

 str2.echo();

 cout<<"\n str3=";

 str3.echo();

 getch();

}

OUTPUT

Before str3=str1=str2;

str1=stud

str2=ent

str3=

After str3=str1+str2:

str1=stud

str2=ent

str3=student

i. Unary Operators

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

ii. Binary Operator

As the name implies takes operate on only one operand. Some unary operators are namely

1. ++ - Increment operator

2. -- - Decrement Operator

3. ! - Not operator

4. - - unary minus.

The important steps involved in defining an operator overloading in case of unary operators are

namely:

1. Inside the class the operator overloaded member function is defined with the return data

type as member function or a friend function.

2. If the function is a member function then the number of arguments taken by the operator

member function is none.

3. If the function defined for the operator overloading is a friend function then it takes one

argument.

Example

#include<iostream.h>

#include<conio.h>

class unary

{

private:

 int x,y,z;

 public:

 unary(void)

 {

 cout<<"Enter Any Three Integer Nos.:";

 cin>>x>>y>>z;

 }

 void display(void)

 {

cout<<"The Three Nos. are:"<<x<<" ,"<< y<<","<<z;

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 }

 void operator--()

 {

 x=--x;

 y=--y;

 z=--z;

 }

 void operator++()

 {

 x=++x;

 y=++y;

 z=++z;

}

};

void main()

{

clrscr();

 unary s;

 s.display();

 --s;

 cout<<endl"The Decremented Values"<<endl;

 s.display();

 ++s;

 cout<< endl<<"The Incremented Values"<<endl;

 s.display();

 getch();

}

Output:

Enter Any Three Integer Nos. :

4 7 9

The Three Nos. Are : 4 , 7 , 9

The Decremented Values

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

The Three Nos. Are : 3 , 6 , 8

The Incremented Values

The Three Nos. Are : 4 , 7 , 9

ii. Binary Operator Overloading

The arithmetic operators, comparison operators, and arithmetic assignment operators come

under this category.

Example

#include <iostream.h>

#include<conio.h>

class complex

{

 float x;

 float y;

 public:

 complex(){}

 complex(float real,float image)

 {

 x=real;

 y=image;

 }

 complex operator +(complex);

 void display(void);

};

complex complex::operator+(complex c)

{

complex temp;

 temp.x=x+c.x;

 temp.y=y+c.y;

 return(temp);

}

void complex::display(void)

{

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

cout<<x<<"+j"<<y;

}

int main()

{

 clrscr();

 complex c1,c2,c3;

 c1=complex(2.5,3.5);

 c2=complex(1.6,2.7);

 c3=c1+c2;

 cout<<"c1 =";

 c1.display();

 cout<<"c2 =";

 c2.display();

 cout<<"c3 =";

 c3.display();

 getch();

 return 0;

}

OUTPUT

c1=2.5+j3.5

c2=1.6+j2.7

c3=4.1+j6.2

www.AllAbtEngg.com

