
www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

UNIT IV

NON-LINEAR DATA STRUCTURES

A tree is a finite set of one or more nodes such that there is a specially designated node

called the Root, and zero or more non empty sub trees T1, T2....Tk, each of whose roots are

connected by a directed edge from Root R.

A tree is a collection of n nodes, one of which is the root, and n-1 edges.

Example: Figure shows a tree T with 13 nodes, A, B, C, D, E, F, G, H, I, J, K, L, M

The root of a tree T is the node at the top, and the children of a node are ordered from

left to right. Accordingly, A is the root of T(Tree), and A has three children; the first child B,

the second child C and the third child D.

Observe that,

a. The node C has three children.

b. Each of the nodes B and J has two children.

c. Each of the nodes D and H has only one child.

d. The nodes E, F, G, K, I, L and M have no children.

Root

 The node at the top of the tree is called the root.

 There is only one root in a tree.

Example - From Fig.:4.1(b) A.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Observe that,

e. The node C has three children.

f. Each of the nodes B and J has two children.

g. Each of the nodes D and H has only one child.

h. The nodes E, F, G, K, I, L and M have no children.

Root

 The node at the top of the tree is called the root.

 There is only one root in a tree.

 Example - From Fig.:4.1(b) A.

Parent

 If there is an edge from node R to node M, then R is a Parent of M.

 Any node (except the root) has exactly one edge running upward to another node. The

node above it is called the parent of the node. Parents, grandparents, etc. are

ancestors.

 Example - From Fig.:4.1(b) B, C, D, H, J.

Child

 If there is an edge from node R to node M, then M is a child of R.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 Any node may have one or more lines running downward to other nodes. The nodes

below a given node are called its children.

Ancestor

 If there is a path from node n1 to node n2, then n1 is an ancestor of n2. Parents,

grandparents, etc. are ancestors.

 Example - From Fig.:4.1(b) B is an ancestor of E.

Descendants

 If there is a path from node n1 to node n2, then n2 is a child of n1.

 Children, grandchildren, etc. are descendants

 Example - From Fig.:4.1(b) E is a child of B.

Siblings

 Children of the same parent are called as siblings.

 Example - From Fig.:4.1(b) G, H, I are the siblings of C.

Leaf and Internal node

 A node that has no children is called a leaf node or simply a leaf. There can be only

one root in a tree, but there can be many leaves.

 A node (apart from the root) that has children is an internal node or non-leaf node.

 Example - From Fig.:4.1(b) Leaf Nodes: E, F, G, K, I, L, M and Non-leaf Nodes: B,

C, D

Path

 A path from node n1 to nk is defined as a sequence of nodes n1, n2 nk such that ni,

is the parent of ni+1 for i k,. The length of the path is k 1.

 The length of the path is the number of edges on the path. There is path of length zero

from every node to itself.

 In a tree there is exactly one path from the Root to each node.

 Example - From Fig.:4.1(b) A-B-E and Length is 2.

Levels

 The level of a particular node refers to how many generations the node is from the

root.

 If the root is assumed to be on level 0, then its children will be on level 1, its

grandchildren will be on level 2, and so on.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 Example - From Fig.:4.1(b) 3.

Depth

 The depth of a node ni is the length of the unique path from the Root to ni.

 The Root is at depth 0.

 Example - From Fig.:4.1(b) Depth(k)=3

Height

 The height of a node ni is the length of the longest path from ni to leaf.

 All leaves are at height 0.

 The height of the tree is equal to height o the Root.

 Example - From Fig.:4.1(b) Height(A)=3

Degree of a node

 The degree of a node is the number of subtrees of the node. The node with degree 0 is

a leaf or terminal node.

 Subtree : A nodes subtree contains all its descendants.

Degree

 The number of subtrees of a node is called its degree.

 The degree of the tree is the maximum degree of any node in the tree.

 Example - From Fig.:4.1(b) 3

Terminal

 Those with no children, are called terminal nodes.

 Example - From Fig.:4.1(b) E, F, G, I, K, L, M.

4.1.1. Implementation of Trees

Left child right sibling data structures for general trees

 The best way to implement a tree is linked list.

For that each node can have the data, a pointer to each child of the node. But the number of

children per node can vary so greatly and is not known in advance, so it is infeasible to make

the children direct links in the data structure, because there would be too much wasted space.

The solution is simple: Keep the children of each node in a linked list of tree nodes. so the

structure of the general tree contains the 3 fields

- Element

- Pointer to the Left Child

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

- Pointer to the Next Sibling

Example: Left Child/Right Sibling Representation of Fig.:4.1.1(a).

In this representation, the Arrow that point downward is FirstChild pointers. Arrow

that go left to right are NextSibling pointers.

Definition

A binary tree is a tree in which each node has at most two children.

Example The below shows that a binary tree consists of a root and two subtrees, Tl and T.,

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Types of Binary Tree

1. Skewed Binary Tree

Skewed Binary tree is a binary tree in which all nodes other than the leaf node have only

either the left or right child.

If it has only a left child it is called as left skewed binary tree.

2. Rooted Binary Tree

It is a binary tree in which every node has at most two children

3. Fully Binary Tree A Binary Tree is a fully binary tree if it contains maximum possible

number of nodes in all level.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

From Fig.:1.2(c) Height(T)=3. The levels are,

Levels Nodes

0 1

1 2

2 4

4. Perfect Binary tree

A binary tree is a perfect binary tree in which all leaves are at the same depth. Example -

Fig.:4.1.2(c).

5. Complete Binary Tree

A binary tree is said to be a complete binary tree if all its level, except possibly the last

level have the maximum number of possible nodes at the last level appear as far as left as

possible.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

6. Strict Binary Tree

Every non-terminal node in a binary tree consists of non-empty left subtree and right

subtree then such a tree is called as strict binary tree

7. Extended Binary Tree

If each node of a tree has either 0 or 2children. In that case the nodes with 2 children are

called

internal nodes and the nodes with 0 children are called external nodes.

4.2.1. Binary Tree Representations

1. Array Representation (Sequential Representation):

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

The elements in the tree are represented using arrays.

For any element in position i, the left child is in position 2i, the right child is in position

(2i + 1), and the parent is in position (i/2).

Disadvantages

- Wastage of space

- Insertion/deletion is a tedious process.

2. Linked Representation:

A binary tree every node has atmost two children, so we can keep direct pointers to the

children. Every node in the tree structure can have 3 fields.

i. Element

ii. Pointer to the left subtree

iii. Pointer to the right subtree

It can be shown below

Example

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Tree traversal is a process of moving through a tree in a specified order to process each of

the nodes. Each of the nodes is processed only once (although it may be visited more than

once).

There are three standard ways of traversing a binary tree T with root R.

1. Preorder Traversal (Root - Left - Right)

2. Inorder Traversal (Left - Root - Right)

3. Postorder Traversal (Left - Right - Root)

1.

From Fig.: 1.3(a),

1. The preorder traversal of T is A B D E C F G.

2. The Inorder traversal of T is D B E A F C G.

3. The Postorder traversal is D E B F G C A.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 -1. These numbers

must be indices into a symbol table where the actual elements are stored.

 The set being represented are pairwise disjoint (if Si and Sj

 Example, when n=10, the elements may be partitioned into three disjoint sets, S1={0,6,7,8}

S2={1,4,9} and S3={2,3,5}.

Set operations are,

1. Disjoint set union: If Si and Sj are two sets , then their union SiUSj ={all elements such that

x is in Si

or Sj }. Thus, S1US2={0,6,7,8,1,4,9}.

2. Find(i) : Find the set containing element i. Thus, 3 is in set S3,and 8 is in set S1.

1. S1, S2 S3

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

2.

Fig. 4.1.5(d) A forest and its eight elements, initially in different sets.

Fig. 4.1.5(e)The forest after the union of trees with roots 4 & 5, 6 & 7.

Fig. 4.1.5(f) The forest after the union of trees with roots 4 and 6.

3. Smart Union Algorithms

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

To make the smaller tree a subtree of the larger, breaking ties by any method, an approach

called union-by-size. The preceding three union operations were all ties, so we can consider

that they-were peLformed by size. If the next operation is union(3, 4), the forest shown in

Figure 24.16 forms.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

4.3. Priority Queue (binary heap)

This is basically designed for the purpose of implementing the job scheduling.

Heaps have two properties, namely,

1. Structure property

2. Heap order property.

Structure Property

A heap is a binary tree that is completely filled, with the possible exception of the bottom

level, which is filled from left to right. Such a tree is known as a complete binary tree.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

For any element in array position i, the left child is in position 2i, the right child is in the

cell after the left child (2i + 1), and the parent is in position i/2.

Heap Order property

In a heap, for every node X, the key in the parent of X is smaller than (or equal to) the key

in X, with the obvious exception of the root (which has no parent).

struct heap_struct

{

unsigned int max_heap_size;

unsigned int size;

element_type *elements;

};

typedef struct heap_struct *PRIORITY_QUEUE;

Basic Heap Operation

3. Insert

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

4. Delete_min

Insert

To insert an element x into the heap, we create a hole in the next available location, since

otherwise the tree will not be complete.

If x can be placed in the hole without violating heap order, then we do so and are done.

Otherwise we slide the element that is in the whole parent node into the hole, thus bubbling the

hole up toward the root. We continue this process until x can be placed in the hole.

This general strategy is known as a percolate up; the new element is percolated up the heap

until the correct location is found.

Routine

void insert(element_type x, PRIORITY_QUEUE H)

{

unsigned int i;

if(is_full(H))

error("Priority queue is full");

else

{

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

i = ++H->size;

while(H->elements[i/2] > x)

{

H->elements[i] = H->elements[i/2];

i /= 2;

}

H->elements[i] = x;

}

}

DeleteMin

Delete_mins are handled in a similar manner as insertions. Finding the minimum is easy;

the hard part is removing it. When the minimum is removed, a hole is created at the root.

Since the heap now becomes one smaller, it follows that the last element x in the heap must

move somewhere in the heap.

If x can be placed in the hole, then we are done.

We repeat this step until x can be placed in the hole. Thus, our action is to place x in its

correct spot along a path from the root containing minimum children.

Routine

element_type delete_min(PRIORITY_QUEUE H)

{

unsigned int i, child;

element_type min_element, last_element;

if(is_empty(H))

{

error("Priority queue is empty");

return H->elements[0];

}

min_element = H->elements[1];

for(i=1; i*2 <= H->size; i=child)

{ /* find smaller child */

child = i*2;

if((child!=H->size)&&(H->elements[child+1]<H->elements[child]))

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

child++; /* percolate one level */

if(last_element > H->elements[child])

H->elements[i] = H->elements[child];

else

break;

}

H->elements[i] = last_element;

return min_element;

}

Heap applications

The heap data structure has many applications.

 Heapsort: One of the best sorting methods being in-place and with no quadratic worst-case

scenarios.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 Selection algorithms: Finding the min, max, both the min and max, median, or even the k-

th largest element can be done in linear time (often constant time) using heaps. E.g.

Telephone Call Processing

 Graph algorithms: By using heaps as internal traversal data structures, run time will be

reduced by polynomial order. Examples of such problems are Prim's minimal spanning tree

algorithm and Dijkstra's shortest path problem.

 Queuing Theory

Full and almost full binary heaps may be represented in a very space-efficient way using an

array alone. The first (or last) element will contain the root. The next two elements of the array

contain its children. The next four contain the four children of the two child nodes, etc.

Thus the children of the node at position n would be at positions 2n and 2n+1 in a one-

based array, or 2n+1 and 2n+2 in a zero-based array. This allows moving up or down the tree

by doing simple index computations. Balancing a heap is done by swapping elements which are

out of order.

As we can build a heap from an array without requiring extra memory (for the nodes, for

example), heapsort can be used to sort an array in-place.

One more advantage of heaps over trees in some applications is that construction of heaps

can be done in linear time using Tarjan's algorithm.

Graph Algorithms Definition

It is a nonlinear data structure. A graph G = (V, E) consists of a set of vertices, V, and set of

edges E nodes and the arc

between the nodes are referred to as Edges.

4.4.1. Types of Graph

1. Directed Graph (or) Digraph:

Directed graph is a graph which consists of directed edges, where each edge in E is

unidirectional. It is also referred as Digraph. If (v, w)

is a directed edge then (v, w) # (w, v).

The above graph comprised of four vertices and

six edges:

V={a,b,c,d}

E={(a,b),(a,c),(b,c),(c,a),(c,d),(d,d)}

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Adjacent Vertex :Vertex w is adjacent to v, if and only if there is an edge from vertex v

to a and so on.

2. Undirected Graph:

An undirected graph is a graph, which consists of undirected edges. If (v, w) is an

undirected edge then (v,w) = (w, v).

consider the undirected graph G=(V1,E1) comprised of four vertices and four edges:

V1={a,b,c,d} E1={{a,b}{a,c}{b,c},{c,d}} The graph can be represented graphically as

shown below

3. Weighted Graph

A graph is said to be weighted graph if every edge in the graph is assigned a weight or

value. It can be directed or undirected graph.

4. Complete Graph

A complete graph is a graph in which there is an edge between every pair of vertices.

A complete graph with n vertices will have n (n - 1)/2 edges.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

The above graph contains 6 vertices and 15 edges.

5. Strongly Connected Graph and Weekly Connected Graph

6. Acyclic Graph

A directed graph which has no cycles is referred to as acyclic graph. It is abbreviated

as DAG (DAG - Directed Acyclic Graph).

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Path

A path in a graph is a sequence of vertices w1,w2,w3 i , wi+1

The path from vertex v1 to v4 as v1,v2,v4 The path from vertex v1 to v5 as v1, v2,v4,v5.

Path Length

The length of the path is the number of edges on the path, which is equal to N-1, where

N represents the number of vertices. The length of the above path v1 to v5 as 3 . (i.e) (V1, V2),

(V2, V4) , (v4,v5). If there is a path from a vertex to itself, with no edges, then the path length

is 0.

Loop

If the graph contains an edge (v, v) from a vertex to itself, then the path v,v is referred

to as a loop.

The edge (d,d) is called as loop.

Simple Path

A simple path is a path such that all vertices on the path, except possibly the first and

the last are distinct.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

In the above graph the path (a ,b ,c, d) is a simple path. Cycle A cycle in a graph is a

path in which the first and last vertexes are the same. In the above graph a, b, a is a cycle A

graph which has cycles is referred to as cyclic graph.

Simple cycle

A simple cycle is the simple path of length at least one that begins and ends at the

same vertex.

Degree

The number of edges incident on a vertex determines its degree. The degree of the

vertex V is written as degree (V). The above graph degree of a vertex c is 3

Indegree and Outdegree

The indegree of the vertex V, is the number of edges entering into the vertex V.

Similarly the out degree of the vertex V is the number of edges exiting from that vertex V.

The Indegree of vertex c as 3 The Outdegree of vertex C as 1

4.4.2. Graph Representations

Representation of Graph

Graph can be represented by two ways

i) Adjacency Matrix

ii) Adjacency list.

Adjacency Matrix One simple way to represents a graph is Adjacency Matrix. The

adjacency Matrix A for a graph G = (V, E) with n vertices is an n x n matrix, such that

Aij = 1, if there is an edge Vi to Vj

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Aij = 0, if there is no edge.

Example

Adjacency Matrix for an Undirected Graph

In the matrix (3,4) th data represent the presence of an edge between the vertices c and

d.

Adjacency matrix for an directed graph

Adjacency Matrix for an Weighted Graph

Comparing two Representation

Space Matrix:

Adjacency Matrix is O() -Static Representation

Adjacency List is O(|V| + |E|) Dynamic Representation

Advantage

Simple to implement.

Disadvantage

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

a. Takes O(n2) space to represents the graph

b. It takes O(n2) time to solve the most of the problems.

Adjacency List

In this representation for each vertex a list is maintained to keep all its adjacent

vertices. It is the standard way to represent graphs

Example

Adjacency List For a Directed Graph

Traversing a graph is visiting each of its elements(nodes) in a systematic manner.

Condition is, when traversing a graph, we must be careful to avoid going round in circles.

We do this by making all vertices which have already been visited.

Types of Traversal,

 Depth First Search

 Breadth First Search

4.4.3.1. Breadth First Traversal

It uses a queue to keep track of which adjacent vertices might still be unproposed.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

All unvisited vertices adjacent to v are visited after visiting the starting vertex v and narking it

as visited.

i. First we examine the starting node A.

ii. Then we examine all the neighbors of A.

iii. Then we examine all the neighbors of the neighbors of A and so on.

iv. Here, we need to keep track of the neighbors of a node, and we need to guarantee that

no node is processed more than one.

v. This algorithm uses a queue to store the nodes of each level of graph as and when they

are visited.

vi. These nodes are then taken one by one and their adjacent nodes are visited and so on

until all nodes have been visited

vii. The algorithm terminate when the queue becomes empty.

Flow chart

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Steps are,

Example

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

i. Initially add A to QUEUE and add NULL to ORIGIN(array) follows:

 FRONT=1 QUEUE=A

 REAR=1 ORIGIN=0

ii. Remove the front element A from QUEUE by setting

FRONT:=FRONT+1 and add to QUEUE the neighbors of A as

follows:

FRONT=1 QUEUE=A

REAR=1 ORIGIN=0

iii. Remove the front element F from QUEUE by setting

FRONT:=FRONT+1 and add to QUEUE the

neighbors of F as follows:

 FRONT=3 QUEUE=A, F, C, B, D

 REAR=5 ORIGIN=0, A, A, A, F

iv. Remove the front

element B from

QUEUE by

setting

FRONT:=FRONT+1 and add to QUEUE

the neighbors of B as follows:

FRONT=5

QUEUE=A, F, C, B, D, G

 REAR=6 ORIGIN=0, A, A, A, F, B

B adjacent=C, G [Here C is already visited]

v. Remove the front element B from QUEUE by setting FRONT:=FRONT+1 and add to

QUEUE the neighbors of B as follows:

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 FRONT=6 QUEUE=A, F, C, B, D, G

 REAR=6 ORIGIN=0, A, A, A, F, B

vi. Remove the front element G from QUEUE by setting

FRONT:=FRONT+1 and add to QUEUE the neighbors of G as

follows:

 FRONT=7 QUEUE=A, F, C, B, D, G, E

 REAR=7 ORIGIN=0, A,

A, A, F, B, G

vii. Remove the front

element E from QUEUE by

setting FRONT:=FRONT+1

and add to QUEUE the neighbors of E as

follows:

 FRONT=8

QUEUE=A, F, C, B, D, G, E, H

 REAR=8

ORIGIN=0, A, A, A, F, B, G, E

H is added to QUEUE, This is the final destination.

From the above example ORIGIN array values are required path H<-E<-G<-B<-A.

Algorithm BFS(G). Here input is graph G=<V,E> and output is Graph G or with its

vertices marked with consecutive integers.

count=0

for each vertex v1 in V

do

if v1 is marked with 0

 BFS(V)

 count=count+1

 while the queue is not empty do

 for i do

 if w is marked with 0

count=count+1

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 add w to the queue

 remove vertex v from the front of the queue.

Application of BFT

i. To check whether the graph is connected or not.

ii. To determine whether a graph is cycle.

iii. The unweighted graph, BFS find the shortest path.

4.4.3.2. Depth First Traversal

It keeps trying to move forward in the graph until searching a vertex with no outgoing edges to

unmarked vertices.

 This done by STACK

 The DFS algorithm works as follows:

i. First we examine the starting node(first vertex)

ii. Then we examine each node N along a path P which begins at first vertex.

For example, the starting vertex V is visited first. Let w1, w2, w3 n be the vertices

adjacent to V. Then the vertex w1 is visited next. After visiting w1 all vertices adjacent to w1 are

visited in depth first manner before returning to traverse w2 n.

 The algorithm terminates when no visited vertex can be reached from any of the visited

once.

 Example

Suppose we want to find and print all the nodes reachable from the

node H (including the node H itself). The DFS(G) starting from node H is as follows:

i. Push H on to the stack.

STACK : H

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

ii. Pop and print the top element H and then push onto the stack all

the neighbors of H.

PRINT : H

STACK : D, I

Flow chart

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

iii. Pop and print the top element I and then push onto the stack

all the neighbors of I.

PRINT : I

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

STACK : D, E, G

iv. Pop and print the top element G and then push onto the stack all the neighbors of G.

PRINT : G

STACK : D, E, C

- Here C is pushed onto the stack & E has

already pushed on to the stack

v. Pop and print the top element C and then push onto the

stack all the neighbors of C.

PRINT : C

STACK : D, E, F

vi. Pop and print the top element F and then push

onto the stack all the neighbors of F.

PRINT : F

STACK : D, E

vii. Pop and print the top element E and then push

onto the stack all the neighbors of E.

PRINT : E

STACK : D

viii. Pop and print the top element D and then push

onto the stack all the neighbors of D.

PRINT : D

STACK : EMPTY

The stack is now empty and DFS(G) starting from H is now complete. The

nodes which are reachable from H are: H, I, G, C, F, E, D

Algorithm DFS(G)

DFS(G)

count=0

for each vertex v1 in V do

 if v1 is marked with 0

dfs(v)

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 count=count+1

 for each vertex w in v adjacency to v1 do

 if w is marked with 0

Efficiency of DFS (or) DFT

i. In an adjacency matrix implementation, traversing of all successor of a node is O(n2)

ii. In an adjacency list representation, traversing of all successor of a node is O(n+e). here n

represent nodes represent edge.

Difference between BFS and DFS

Sl. No. Breadth first Traversal Depth First Traversal

1 It uses a queue to keep track of which

adjacent vertices might still be

unprocessed

It keeps trying to move forward in the

graph, until reaching a vertex with no

outgoing edges to unmarked vertices.

2 It is done by Queue It is done by Stack

A graph is connected if, for any two vertices, there is a path between them. If a graph

G is not connected, its maximal connected subgraphs are called the connected components of

G.

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Data structures

www.AllAbtEngg.com

www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

Graph search

Node/Edge

management
Storage

Add

vertex

Add

edge

Remove

vertex

Remove

edge
Query

Adjacency list O(|V|+|E|) O(1) O(1) O(|E|) O(|E|) O(|V|)

incidence list O(|V|+|E|) O(1) O(1) O(|E|) O(|E|) O(|E|)

Adjacency matrix O(|V|^2) O(|V|^2) O(1) O(|V|^2) O(1) O(1)

incidence matrix
O(|V|

|E|)
O(|V| |E|)

O(|V|

|E|)
O(|V| |E|) O(|V| |E|) O(|E|)

www.AllAbtEngg.com

