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UNIT IV 

NON-LINEAR DATA STRUCTURES 

 

A tree is a finite set of one or more nodes such that there is a specially designated node 

called the Root, and zero or more non empty sub trees T1, T2....Tk, each of whose roots are 

connected by a directed edge from Root R.  

A tree is a collection of n nodes, one of which is the root, and n-1 edges. 

 

Example: Figure shows a tree T with 13 nodes, A, B, C, D, E, F, G, H, I, J, K, L, M       

The root of a tree T is the node at the top, and the children of a node are ordered from 

left to right. Accordingly, A is the root of T(Tree), and A has three children; the first child B, 

the second child C and the third child D.  

Observe that, 

a. The node C has three children.  

b. Each of the nodes B and J has two children.  

c. Each of the nodes D and H has only one child.  

d. The nodes E, F, G, K, I, L and M have no children.  

Root  

 The node at the top of the tree is called the root.  

 There is only one root in a tree.  

Example - From Fig.:4.1(b) A. 
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Observe that, 

e. The node C has three children.  

f. Each of the nodes B and J has two children.  

g. Each of the nodes D and H has only one child.  

h. The nodes E, F, G, K, I, L and M have no children.  

Root  

 The node at the top of the tree is called the root.  

 There is only one root in a tree.  

 Example - From Fig.:4.1(b) A.  

Parent  

 If there is an edge from node R to node M, then R is a Parent of M.  

 Any node (except the root) has exactly one edge running upward to another node. The 

node above it is called the parent of the node. Parents, grandparents, etc. are 

ancestors.  

 Example - From Fig.:4.1(b) B, C, D, H, J. 

Child  

 If there is an edge from node R to node M, then M is a child of R.  
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 Any node may have one or more lines running downward to other nodes. The nodes 

below a given node are called its children.  

Ancestor  

 If there is a path from node n1 to node n2, then n1 is an ancestor of n2. Parents, 

grandparents, etc. are ancestors.  

 Example - From Fig.:4.1(b) B is an ancestor of E. 

Descendants  

 If there is a path from node n1 to node n2, then n2 is a child of n1.  

 Children, grandchildren, etc. are descendants  

 Example - From Fig.:4.1(b) E is a child of B. 

Siblings  

 Children of the same parent are called as siblings.  

 Example - From Fig.:4.1(b) G, H, I are the siblings of C. 

Leaf and Internal node  

 A node that has no children is called a leaf node or simply a leaf. There can be only 

one root in a tree, but there can be many leaves.  

 A node (apart from the root) that has children is an internal node or non-leaf node.  

 Example - From Fig.:4.1(b) Leaf Nodes: E, F, G, K, I, L, M and Non-leaf Nodes: B, 

C, D 

Path  

 A path from node n1 to nk  is defined as a sequence of nodes n1, n2 nk such that ni, 

is the parent of ni+1 for i k,. The length of the path is k  1.  

 The length of the path is the number of edges on the path. There is path of length zero 

from every node to itself.  

 In a tree there is exactly one path from the Root to each node.  

 Example - From Fig.:4.1(b) A-B-E and Length is 2. 

Levels 

 The level of a particular node refers to how many generations the node is from the 

root.  

 If the root is assumed to be on level 0, then its children will be on level 1, its 

grandchildren will be on level 2, and so on.  
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 Example - From Fig.:4.1(b) 3. 

Depth  

 The depth of a node ni is the length of the unique path from the Root to ni.  

 The Root is at depth 0.  

 Example - From Fig.:4.1(b) Depth(k)=3 

Height  

 The height of a node ni is the length of the longest path from ni to leaf.  

 All leaves are at height 0.  

 The height of the tree is equal to height o the Root.  

 Example - From Fig.:4.1(b) Height(A)=3 

Degree of a node  

 The degree of a node is the number of subtrees of the node. The node with degree 0 is 

a leaf or terminal node.  

 Subtree : A nodes subtree contains all its descendants.  

Degree  

 The number of subtrees of a node is called its degree.  

 The degree of the tree is the maximum degree of any node in the tree.  

 Example - From Fig.:4.1(b) 3 

Terminal 

 Those with no children, are called terminal nodes.  

 Example - From Fig.:4.1(b) E, F, G, I, K, L, M. 

4.1.1. Implementation of Trees 

Left child right sibling data structures for general trees  

 The best way to implement a tree is linked list.  

For that each node can have the data, a pointer to each child of the node. But the number of 

children per node can vary so greatly and is not known in advance, so it is infeasible to make 

the children direct links in the data structure, because there would be too much wasted space.  

The solution is simple: Keep the children of each node in a linked list of tree nodes. so the 

structure of the general tree contains the 3 fields  

- Element  

- Pointer to the Left Child  
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- Pointer to the Next Sibling  

Example: Left Child/Right Sibling Representation of Fig.:4.1.1(a). 

 

In this representation, the Arrow that point downward is FirstChild pointers. Arrow 

that go left to right are NextSibling pointers.  

 

Definition  

A binary tree is a tree in which each node has at most two children.  

Example The below shows that a binary tree consists of a root and two subtrees, Tl and T., 
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Types of Binary Tree     

1. Skewed Binary Tree  

Skewed Binary tree is a binary tree in which all nodes other than the leaf node have only 

either the left or right child. 

If it has only a left child it is called as left skewed binary tree.  

 

2. Rooted Binary Tree 

It is a binary tree in which every node has at most two children 

3. Fully Binary Tree   A Binary Tree is a fully binary tree if it contains maximum possible 

number of nodes in all level. 
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From Fig.:1.2(c) Height(T)=3. The levels are, 

Levels Nodes 

0 1 

1 2 

2 4 

4. Perfect Binary tree 

A binary tree is a perfect binary tree in which all leaves are at the same depth. Example - 

Fig.:4.1.2(c).   

5. Complete Binary Tree 

A binary tree is said to be a complete binary tree if all its level, except possibly the last 

level have the maximum number of possible nodes at the last level appear as far as left as 

possible.  
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6. Strict Binary Tree 

Every non-terminal node in a binary tree consists of non-empty left subtree and right 

subtree then such a tree is called as strict binary tree    

 

7. Extended Binary Tree 

If each node of a tree has either 0 or 2children. In that case the nodes with 2 children are 

called  

internal nodes and the nodes with 0 children are called external nodes. 

 

4.2.1. Binary Tree Representations 

1. Array Representation (Sequential Representation):
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The elements in the tree are represented using arrays.  

For any element in position i, the left child is in position 2i, the right child is in position 

(2i + 1), and the parent is in position (i/2). 

 

Disadvantages  

- Wastage of space 

-  Insertion/deletion is a tedious process.  

2. Linked Representation:  

A binary tree every node has atmost two children, so we can keep direct pointers to the 

children. Every node in the tree structure can have 3 fields.  

i. Element  

ii. Pointer to the left subtree  

iii. Pointer to the right subtree  

It can be shown below   

 

Example 

www.AllAbtEngg.com



www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

 

 

Tree traversal is a process of moving through a tree in a specified order to process each of 

the nodes. Each of the nodes is processed only once (although it may be visited more than 

once).  

There are three standard ways of traversing a binary tree T with root R.  

1. Preorder Traversal    (Root - Left - Right) 

2. Inorder Traversal      (Left  - Root - Right) 

3. Postorder Traversal   (Left - Right - Root) 

1.  

From Fig.: 1.3(a), 

1. The preorder traversal of T is A B D E C F G.  

2. The Inorder traversal of T is D B E A F C G.   

3. The Postorder traversal is D E B F G C A.  
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 -1. These numbers 

must be indices into a symbol table where the actual elements are stored. 

 The set being represented are pairwise disjoint (if Si and Sj   

 Example, when n=10, the elements may be partitioned into three disjoint sets, S1={0,6,7,8} 

S2={1,4,9} and S3={2,3,5}. 

 

Set operations are, 

1. Disjoint set union: If Si and Sj are two sets , then their union SiUSj ={all elements such that 

x is in Si 

or Sj }. Thus, S1US2={0,6,7,8,1,4,9}.  

 

2.  Find(i) : Find the set containing element i. Thus, 3 is in set S3,and 8 is in set S1. 

 

1. S1, S2 S3
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2. 

Fig. 4.1.5(d) A forest and its eight elements, initially in different sets. 

 

Fig. 4.1.5(e)The forest after the union of trees with roots 4 & 5, 6 & 7. 

Fig. 4.1.5(f) The forest after the union of trees with roots 4 and 6. 

3. Smart Union Algorithms 
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To make the smaller tree a subtree of the larger, breaking ties by any method, an approach 

called union-by-size. The preceding three union operations were all ties, so we can consider 

that they-were peLformed by size. If the next operation is union(3, 4), the forest shown in 

Figure 24.16 forms. 
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4.3. Priority Queue (binary heap) 

This is basically designed for the purpose of implementing the job scheduling. 

Heaps have two properties, namely,  

1. Structure property  

2. Heap order property.  

Structure Property  

A heap is a binary tree that is completely filled, with the possible exception of the bottom 

level, which is filled from left to right. Such a tree is known as a complete binary tree.  
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For any element in array position i, the left child is in position 2i, the right child is in the 

cell after the left child (2i + 1), and the parent is in position i/2. 

 

Heap Order property 

In a heap, for every node X, the key in the parent of X is smaller than (or equal to) the key 

in X, with the obvious exception of the root (which has no parent).  

 

struct heap_struct  

{     

unsigned int max_heap_size;  

unsigned int size;  

element_type *elements;  

}; 

typedef struct heap_struct *PRIORITY_QUEUE;  

Basic Heap Operation  

3. Insert 

www.AllAbtEngg.com



www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

4. Delete_min  

Insert  

To insert an element x into the heap, we create a hole in the next available location, since 

otherwise the tree will not be complete.  

If x can be placed in the hole without violating heap order, then we do so and are done. 

Otherwise we slide the element that is in the whole parent node into the hole, thus bubbling the 

hole up toward the root. We continue this process until x can be placed in the hole.  

This general strategy is known as a percolate up; the new element is percolated up the heap 

until the correct location is found.  

 

Routine  

void insert( element_type x, PRIORITY_QUEUE H ) 

{  

unsigned int i;  

if( is_full( H ) )  

error("Priority queue is full");  

else  

{  
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i = ++H->size;  

while( H->elements[i/2] > x )  

{  

H->elements[i] = H->elements[i/2];  

i /= 2;  

}  

H->elements[i] = x;  

}  

}  

DeleteMin  

Delete_mins are handled in a similar manner as insertions. Finding the minimum is easy; 

the hard part is removing it. When the minimum is removed, a hole is created at the root.  

Since the heap now becomes one smaller, it follows that the last element x in the heap must 

move somewhere in the heap.  

If x can be placed in the hole, then we are done.  

We repeat this step until x can be placed in the hole. Thus, our action is to place x in its 

correct spot along a path from the root containing minimum children. 

Routine  

element_type delete_min( PRIORITY_QUEUE H )  

{  

unsigned int i, child;  

element_type min_element, last_element;  

if( is_empty( H ) )  

{  

error("Priority queue is empty"); 

return H->elements[0];  

}  

min_element = H->elements[1];  

for( i=1; i*2 <= H->size; i=child )  

{ /* find smaller child */  

child = i*2;  

if((child!=H->size)&&(H->elements[child+1]<H->elements[child])) 
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child++; /* percolate one level */  

if( last_element > H->elements[child] )  

H->elements[i] = H->elements[child];  

else  

break;  

}  

H->elements[i] = last_element;  

return min_element;  

}  

 

 

Heap applications  

The heap data structure has many applications.  

 Heapsort: One of the best sorting methods being in-place and with no quadratic worst-case 

scenarios.  
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 Selection algorithms: Finding the min, max, both the min and max, median, or even the k-

th largest element can be done in linear time (often constant time) using heaps. E.g. 

Telephone Call Processing  

 Graph algorithms: By using heaps as internal traversal data structures, run time will be 

reduced by polynomial order. Examples of such problems are Prim's minimal spanning tree 

algorithm and Dijkstra's shortest path problem.  

 Queuing Theory 

Full and almost full binary heaps may be represented in a very space-efficient way using an 

array alone. The first (or last) element will contain the root. The next two elements of the array 

contain its children. The next four contain the four children of the two child nodes, etc.  

Thus the children of the node at position n would be at positions 2n and 2n+1 in a one-

based array, or 2n+1 and 2n+2 in a zero-based array. This allows moving up or down the tree 

by doing simple index computations. Balancing a heap is done by swapping elements which are 

out of order.  

As we can build a heap from an array without requiring extra memory (for the nodes, for 

example), heapsort can be used to sort an array in-place.  

One more advantage of heaps over trees in some applications is that construction of heaps 

can be done in linear time using Tarjan's algorithm.  

 

Graph Algorithms Definition 

It is a nonlinear data structure. A graph G = (V, E) consists of a set of vertices, V, and set of 

edges E nodes and the arc 

between the nodes are referred to as Edges.  

4.4.1. Types of Graph 

1. Directed Graph (or) Digraph:  

Directed graph is a graph which consists of directed edges, where each edge in E is 

unidirectional. It is also referred as Digraph. If (v, w) 

is a directed edge then (v, w) # (w, v). 

The above graph comprised of four vertices and 

six edges:  

V={a,b,c,d} 

E={(a,b),(a,c),(b,c),(c,a),(c,d),(d,d)} 
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Adjacent Vertex :Vertex w is adjacent to v, if and only if there is an edge from vertex v 

to a and so on.  

2. Undirected Graph:  

An undirected graph is a graph, which consists of undirected edges. If (v, w) is an 

undirected edge then (v,w) = (w, v).  

consider the undirected graph G=(V1,E1) comprised of four vertices and four edges: 

V1={a,b,c,d} E1={{a,b}{a,c}{b,c},{c,d}} The graph can be represented graphically as 

shown below 

 

3. Weighted Graph  

A graph is said to be weighted graph if every edge in the graph is assigned a weight or 

value. It can be directed or undirected graph. 

 

4. Complete Graph 

A complete graph is a graph in which there is an edge between every pair of vertices. 

A complete graph with n vertices will have n (n - 1)/2 edges. 
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The above graph contains 6 vertices and 15 edges. 

5. Strongly Connected Graph and Weekly Connected Graph 

6. Acyclic Graph  

 

A directed graph which has no cycles is referred to as acyclic graph. It is abbreviated 

as DAG           (DAG - Directed Acyclic Graph). 
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Path  

A path in a graph is a sequence of vertices w1,w2,w3 i , wi+1 

  

 

 

 

 

 

 

The path from vertex v1 to v4 as v1,v2,v4 The path from vertex v1 to v5 as v1, v2,v4,v5.  

Path Length  

The length of the path is the number of edges on the path, which is equal to N-1, where 

N represents the number of vertices. The length of the above path v1 to v5 as 3 . (i.e) (V1, V2), 

(V2, V4) , (v4,v5). If there is a path from a vertex to itself, with no edges, then the path length 

is 0. 

Loop  

If the graph contains an edge (v, v) from a vertex to itself, then the path v,v is referred 

to as a loop. 

 

The edge (d,d) is called as loop.  

Simple Path  

A simple path is a path such that all vertices on the path, except possibly the first and 

the last are distinct. 
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In the above graph the path (a ,b ,c, d) is a simple path. Cycle A cycle in a graph is a 

path in which the first and last vertexes are the same. In the above graph a, b, a is a cycle A 

graph which has cycles is referred to as cyclic graph.  

Simple cycle  

A simple cycle is the simple path of length at least one that begins and ends at the 

same vertex.  

Degree  

The number of edges incident on a vertex determines its degree. The degree of the 

vertex V is written as degree (V). The above graph degree of a vertex c is 3  

Indegree and Outdegree  

The indegree of the vertex V, is the number of edges entering into the vertex V. 

Similarly the out degree of the vertex V is the number of edges exiting from that vertex V. 

 

The Indegree of vertex c as 3 The Outdegree of vertex C as 1 

4.4.2. Graph Representations 

Representation of Graph  

Graph can be represented by two ways  

i) Adjacency Matrix  

ii) Adjacency list.  

Adjacency Matrix One simple way to represents a graph is Adjacency Matrix. The 

adjacency Matrix A for a graph G = (V, E) with n vertices is an n x n matrix, such that  

Aij = 1, if there is an edge Vi to Vj  
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Aij = 0, if there is no edge.  

Example  

Adjacency Matrix for an Undirected Graph 

 

In the matrix (3,4) th data represent the presence of an edge between the vertices c and 

d.  

 

Adjacency matrix for an directed graph 

 

Adjacency Matrix for an Weighted Graph 

 

Comparing two Representation 

Space Matrix: 

Adjacency Matrix is O( )   -Static Representation 

Adjacency List is O(|V| + |E|) Dynamic Representation 

Advantage  

Simple to implement.  

Disadvantage 
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a. Takes O(n2) space to represents the graph  

b. It takes O(n2) time to solve the most of the problems.  

Adjacency List  

In this representation for each vertex a list is maintained to keep all its adjacent 

vertices. It is the standard way to represent graphs  

Example 

 

Adjacency List For a Directed Graph 

 

 

Traversing a graph is visiting each of its elements(nodes) in a systematic manner. 

Condition is, when traversing  a graph, we must be careful to avoid going round in circles. 

We do this by making all vertices which have already been visited. 

Types of Traversal, 

 Depth First Search 

 Breadth First Search 

4.4.3.1. Breadth First Traversal 

It uses a queue to keep track of which adjacent vertices might still be unproposed.  
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All unvisited vertices adjacent to v are visited after visiting the starting vertex v and narking it 

as visited. 

i. First we examine the starting node A. 

ii. Then we examine all the neighbors of A. 

iii. Then we examine all the neighbors of the neighbors of A and so on. 

iv. Here, we need to keep track of the neighbors of a node, and we need to guarantee that 

no node is processed more than one. 

v. This algorithm uses a queue to store the nodes of each level of graph as and when they 

are visited. 

vi.  These nodes are then taken one by one and their adjacent nodes are visited and so on 

until all nodes have been visited 

vii. The algorithm terminate when the queue becomes empty. 

Flow chart 
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Steps are, 

Example 
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i. Initially add A to QUEUE and add NULL to ORIGIN(array) follows: 

                          FRONT=1                                           QUEUE=A 

                          REAR=1                                              ORIGIN=0 

ii. Remove the front element A from QUEUE by setting 

FRONT:=FRONT+1 and add to QUEUE the neighbors of A as 

follows: 

            

FRONT=1              QUEUE=A 

REAR=1                 ORIGIN=0 

iii. Remove the front element F from QUEUE by setting 

FRONT:=FRONT+1 and add to QUEUE the 

neighbors of F as follows: 

                          FRONT=3      QUEUE=A, F, C, B, D 

                          REAR=5         ORIGIN=0, A, A, A, F 

 

iv. Remove the front 

element B from 

QUEUE by 

setting 

FRONT:=FRONT+1 and add to QUEUE 

the neighbors of B as follows:         

FRONT=5                                          

QUEUE=A, F, C, B, D, G 

               REAR=6                                      ORIGIN=0, A, A, A, F, B                             

B adjacent=C, G [Here C is already visited] 

v. Remove the front element B from QUEUE by setting FRONT:=FRONT+1 and add to 

QUEUE the neighbors of B as follows: 
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                          FRONT=6                                    QUEUE=A, F, C, B, D, G 

                       REAR=6                                   ORIGIN=0, A, A, A, F, B 

vi. Remove the front element G from QUEUE by setting 

FRONT:=FRONT+1 and add to QUEUE the neighbors of G as 

follows: 

    FRONT=7      QUEUE=A, F, C, B, D, G, E 

     REAR=7       ORIGIN=0, A, 

A, A, F, B, G 

vii. Remove the front 

element E from QUEUE by 

setting FRONT:=FRONT+1 

and add to QUEUE the neighbors of E as 

follows: 

                         FRONT=8                                          

QUEUE=A, F, C, B, D, G, E, H 

                        REAR=8                                             

ORIGIN=0, A, A, A, F, B, G, E 

 

H is added to QUEUE, This is the final destination.  

From the above example ORIGIN array values are required path H<-E<-G<-B<-A. 

Algorithm BFS(G). Here input is graph G=<V,E> and output is Graph G or with its 

vertices marked with consecutive integers. 

count=0 

for each vertex v1 in V  

do 

if v1 is marked with 0 

  BFS(V) 

   count=count+1  

 while the queue is not empty do 

  for i do 

   if w is marked with 0 

count=count+1
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  add w to the queue 

 remove vertex v from the front of the queue. 

Application of BFT 

i. To check whether the graph is connected or not. 

ii. To determine whether a graph is cycle. 

iii. The unweighted graph, BFS find the shortest path. 

4.4.3.2. Depth First Traversal 

It keeps trying to move forward in the graph until searching a vertex with no outgoing edges to 

unmarked vertices. 

 This done by STACK 

 The DFS algorithm works as follows: 

i. First we examine the starting node(first vertex) 

ii. Then we examine each node N along a path P which begins at first vertex. 

For example, the starting vertex V is visited first. Let w1, w2, w3 n be the vertices 

adjacent to V. Then the vertex w1 is visited next. After visiting w1 all vertices adjacent to w1 are 

visited in depth first manner before returning to traverse w2 n. 

        The algorithm terminates when no visited vertex can be reached from any of the visited 

once. 

 Example 

 

 

 

 

 

 

 

 

Suppose we want to  find and print all the nodes reachable from the 

node H (including the node H itself). The DFS(G) starting from node H is as follows: 

i. Push H on to the stack. 

STACK : H 
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ii. Pop and print the top element H and then push onto the stack all 

the neighbors of H. 

PRINT : H 

STACK : D, I 

Flow chart 
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iii. Pop and print the top element I and then push onto the stack 

all the neighbors of I. 

PRINT : I
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STACK : D, E, G 

 

 

iv. Pop and print the top element G and then push onto the stack all the neighbors of G. 

PRINT : G 

STACK : D, E, C 

- Here C is pushed onto the stack & E has  

already pushed on to the stack 

v. Pop and print the top element C and then push onto the 

stack all the neighbors of C. 

PRINT : C 

STACK : D, E, F  

vi. Pop and print the top element F and then push 

onto the stack all the neighbors of F. 

PRINT : F 

STACK : D, E 

vii.  Pop and print the top element E and then push 

onto the stack all the neighbors of E. 

PRINT : E 

STACK : D 

viii. Pop and print the top element D and then push 

onto the stack all the neighbors of D. 

PRINT : D 

STACK : EMPTY 

The stack is now empty and DFS(G) starting from H is now complete. The 

nodes which are reachable from H are: H, I, G, C, F, E, D 

Algorithm DFS(G) 

DFS(G) 

count=0 

for each vertex v1 in V do  

 if v1 is marked with 0 

dfs(v)
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   count=count+1 

  for each vertex w in v adjacency to v1 do 

   if w is marked with 0 

Efficiency of DFS (or) DFT 

i. In an adjacency matrix implementation, traversing of all successor of a node is O(n2) 

ii. In an adjacency list representation, traversing of all successor of a node is O(n+e). here n 

represent nodes  represent edge. 

Difference between BFS and DFS 

Sl. No. Breadth first Traversal Depth First Traversal 

1 It uses a queue to keep track of which 

adjacent vertices might still be 

unprocessed 

It keeps trying to move forward in the 

graph, until reaching a vertex with no 

outgoing edges to unmarked vertices. 

2 It is done by Queue It is done by Stack 

 

A graph is connected if, for any two vertices, there is a path between them. If a graph 

G is not  connected, its maximal connected subgraphs are called the connected components of 

G. 
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Data structures 
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Graph search 

Node/Edge 

management 
Storage 

Add 

vertex 

Add 

edge 

Remove 

vertex 

Remove 

edge 
Query 

Adjacency list O(|V|+|E|) O(1) O(1) O(|E|) O(|E|) O(|V|) 

incidence list O(|V|+|E|) O(1) O(1) O(|E|) O(|E|) O(|E|) 

Adjacency matrix O(|V|^2) O(|V|^2) O(1) O(|V|^2) O(1) O(1) 

incidence matrix 
O(|V|  

|E|) 
O(|V|  |E|) 

O(|V|  

|E|) 
O(|V|  |E|) O(|V|  |E|) O(|E|) 
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