
AllAbtEngg Android Application for Anna University, Polytechnic & School

UNIT V

SORTING and SEARCHING

5.1. Sorting algorithms

Sorting is a process in which records are arranged in ascending or descending order.

For example, in telephone directory the names of the subscribers and their phone numbers are

written in alphabetial order.

Criteria for Evaluating Sorts

Sorting algorithms can be compared based on several factors.

 Run-time: The number of operations performed (usually swap and compare).

 Memory: The amount of memory needed beyond what is needed to store the data to

be sorted.

 in place a constant amount of) extra

memory.

 Others use a linear amount, and some an exponential amount.

 Clearly less memory is preferred, although space/time trade-offs are possible.

 Stability: An algorithm is stable if it preserves the relative order of equal keys.

Types of Sorting

1. Insertion Sort

2. Shell Sort

3. Heap Sort

4. Merge Sort (Divide and Conquer)

5. Quick Sort(Divide and Conquer)

6. Indirect Sorting

7. Bucket Sort

5.1.1. Insertion sort

In insertion sort the element is inserted at appropriate place. For example, consider an

array of n elements. In this type, swapping of elements is done without taking any temporary

variable. The greater numbers are shifted towards the end of the array and smaller are shifted to

beginning. Here, a real life example of playing cards can be cited. We keep the cards in

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

increasing order. The card having least value is placed at the extreme left and the largest one at

the other side. In between them the other cards are managed in ascending order.

ROUTINE

Example Starting near the top of the array in the following Figure (a), we extract the 3. Then

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

the above elements are shifted down until we find the correct place to insert the 3. This process

repeats in Figure (b) with the next number. Finally, in Figure (c), we complete the sort by

inserting 2 in the correct place.

Assuming there are n elements in the array, we must index through n - 1 entries. For

each entry, we may

need to examine and shift up to n - 1 other entries, resulting in a O(n2) algorithm. The insertion

sort is an in-place sort. That is, we sort the array in-place. No extra memory is required. The

insertion sort is also a stable sort. Stable sorts retain the original ordering of keys when identical

keys are present in the input data.

5.1.2. Quick sort

Divide - Partition the array A into 2 subarrays

A[p..q] and A[q+1..r], such that each element of

A[p..q] is smaller than or equal to each element in A[q+1..r]. Need to find index q to partition

the array.

Conquer - Recursively sort A[p..q] and A[q+1..r] using Quicksort

Combine - Trivial: the arrays are sorted in place. No additional work is required to combine

themThe entire array is now sorted

Quicksort is a fast sorting algorithm, which is used not only for educational purposes,

but widely applied in practice. On the average, it has O(n log n) complexity, making quicksort

suitable for sorting big data volumes. The divide-and-conquer strategy is used in quicksort.

Below the recursion step is described:

1. Choose a pivot value. We take the value of the middle element as pivot value, but it can be

any value, which is in range of sorted values, even if it doesn't present in the array.

2. Partition. Rearrange elements in such a way, that all elements which are lesser than the

pivot go to the left part of the array and all elements greater than the pivot, go to the right

part of the array. Values equal to the pivot can stay in any part of the array. Notice, that

array may be divided in non-equal parts.

3. Sort both parts. Apply quicksort algorithm recursively to the left and the right parts.

There are two indices i and j and at the very beginning of the partition algorithm i points to

the first element in the array and j points to the last one. Then algorithm moves i forward, until

an element with value greater or equal to the pivot is found. Index j is moved backward, until

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

an element with value lesser or equal to the pivot is found. If then they are swapped and i

steps to the next position (i + 1), j steps to the previous one (j - 1). Algorithm stops, when i

becomes greater than j.

After partition, all values before i-th element are less or equal than the pivot and all

values after j-th element are greater or equal to the pivot.

On the average quicksort has O(n log n) complexity, but strong proof of this fact is not

trivial and not presented here. Still, you can find the proof in [1]. In worst case, quicksort runs

O(n2) time, but on the most "practical" data it works just fine and outperforms other O(n log n)

sorting algorithms

Elements are, 50, 30, 10, 90,80,20,40,70

Split the array into two parts.
The left sulist will contain the elements less than Pivot(i.e.) and right sublist contains elements
greater than pivot.

 50 30 10 90 80 20 40 70

i/pivot j

Step 2:

We will increment i. If A[i]<=Pivot, we will continue to increment it untill the element pointed
by i is greater than A[Low]..

 50 30 10 90 80 20 40 70

pivot i j

Step 3:

increment i as A[i]<=A [Low].

 50 30 10 90 80 20 40 70
pivot i j

Step 4:

As A[i]>A [Low], We will stop incrementing i

 50 30 10 90 80 20 40 70
pivot i j

Step 5:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

As A[i]>Pivot (i.e. 70>50). We will decrement j. We will continue to decrement j untill the
element pointed by j is less than A[Low].

 50 30 10 90 80 20 40 70
pivot i J

Step 6:

Now we cannot decrement j because 40<50. Hence we will swap A[i] and A[j] i.e 90 and 40.
 50 30 10 90 80 20 40 70

pivot i j

Step 7:

As A[i] is less than A[Low] and A[j] is greater than A[Low] we will continue incrementing i
and decrementing j, until the false conditions are obtained..

 50 30 10 40 80 20 90 70
pivot i j

Step 8:

We will stop incrementing i and stop decrementing j. As i is smaller than j we will swap 80 and

20.

 50 30 10 40 80 20 90 70
pivot i j

Step 9:

As A[i]<A[Low] and A[j]>A[Low], we will continue incrementing i and decrementing j
 50 30 10 40 20 80 90 70

pivot i j

Step 10:

As A[j]<A[Low] and j has crossed i. That is j<i, we will swap A[Low] and A[j]
 50 30 10 40 20 80 90 70

pivot i, j

 50 30 10 40 20 80 90 70
pivot j i

Step 11:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

We will now start sorting left sublist, assuming the first element of left sublist as pivot element

thus now new pivot =20

 50 30 10 40 50 80 90 70
pivot j i

Step 12:

Now we will set i and j pointer and then we will start comparing A[i] with A[Low] or A[pivot].

Similarly comparison with A[j] and A[pivot].

 20 30 10 40 50 80 90 70
pivot i j Occupied

Its
position

Step 13:

As A[i] > Pivot, hence stop incrementing i. Now as A[j]> A[Pivot], hence decrement j.

 20 30 10 40 50 80 90 70
pivot i j

Step 14:

Now j cannot be decremented because 10<20. Hence we will swap A[i] and A[j]

 20 30 10 40 50 80 90 70
pivot i j

Step 15:

As A[i]<A[Low], increment i.

 20 10 30 40 50 80 90 70
pivot i j

Step 16:

Now as A[i]>a[Low], or A[j]> A[Pivot] decrement j.

 20 10 30 40 50 80 90 70
pivot i,j

Step 17:

As A[j] < A[Low] we cannaot decrement j now. We will now swap a[Low] and A[j] as j has

crossed i and i>j

 20 10 30 40 50 80 90 70
pivot j i

Step 18:

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

As there is only one element in left sublist hence we will sort right sublist.

 10 20 30 40 50 80 90 70
 Left

sublist

 pivot Right Sublist

Step 19:

As left sublist is sorted completely we will sort right subist, assuming first element of right

sublist as pivot

 10 20 30 40 50 80 90 70

Step 20:

As A[i]> A[pivot], hence we will stop incrementing i. similarly A[j] < A[Pivot]. Hence we stop

decrementing j. Swap A[i] and A[j].

 10 20 30 40 50 80 90 70
 Pivot i j

Step 21:

As A[i] < A[Pivot], increment i

 10 20 30 40 50 80 70 90
 Pivot i j Step

22:

As A[i]>A[Pivot], decrement j.

 10 20 30 40 50 80 70 90
 Pivot i,j

Step 23:

Now swap A[Pivot] and A[j]

 10 20 30 40 50 80 70 90
 Pivot j i

Step 24:

The left now contains 70 and right sublist contains only 90. We cannot further subdivide the

list

 10 20 30 40 50 70 80 90
 Pivot

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Hence list is

 10 20 30 40 50 70 80 90
This is the sorted list

ROUTINE

}

5.1.3. Merge sort

To sort an array A[p . . r]:

Divide - Divide the n-element sequence to be sorted into two subsequences of n/2 elements

each

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

Conquer - Sort the subsequences recursively using merge sort. When the size of the sequences

is 1 there is nothing more to do.

Combine - Merge the two sorted subsequences

Example 1: n power of 2

Example 2: n not a power of 2

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

The following procedure mergesort sorts a sequence a from index lo to index hi.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

First, index m in the middle between lo and hi is determined. Then the first part of the sequence

(from lo to m) and the second part (from m+1 to hi) are sorted by recursive calls of mergesort.

Then the two sorted halves are merged by procedure merge. Recursion ends when lo = hi, i.e.

when a subsequence consists of only one element.

The main work of the Mergesort algorithm is performed by function merge. There are different

possibilities to implement this function.

First, the sequence to be sorted is decomposed into two halves (Divide). Each half is sorted

independently (Conquer). Then the two sorted halves

are merged to a sorted sequence (Combine).

Function merge is usually implemented in the following

way: The two halves are first copied into an auxiliary

array b. Then the two halves are scanned by pointers i

and j and the respective next-greatest element at each

time is copied back to array a (Figure 2).

At the end a situation occurs where one index has

reached the end of its half, while the other has not. Then, in principle, the rest of the elements of

the corresponding half have to be copied back. Actually, this is not necessary for the second

half, since (copies of) the remaining elements are already at their proper places.

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

The sorting algorithm Mergesort produces a sorted sequence by sorting its two halves and

merging them. With a time complexity of O(n log(n)) Mergesort is optimal. Similar to

Quicksort, the Mergesort algorithm is based on a divide and conquers strategy. Total time for

Merge : (n)

5.2. Searching

Searching is a technique in which the record is searched based on some key field.

There are two methods of searching

1) Linear search

2) Binary search

5.2.1. Linear search

The data is arranged in the list. At every iteration the record will be compared with the help of

the key. In this case sometimes all the elements get compared with the key value.

 The time complexity of this algorithm is O(n). The time complexity will increase

linearly with the value of n. for higher value of n the linear search is not the satisfactory

solution.

Array

 Roll no Name Marks
0 13 Parth 96

1 2 Anand 40
2 13 Lalitha 81
3 1 Madhav 50

4 12 Arun 78
5 3 Jaya 94

Fig: Represents students database for sequential search

 From the above fig the array is maintained to store the students record. the record is

not at all. If we want to search the students record whose roll number is 12 then the key roll

number we will see the every record whether it is of roll number==12. we can obtain we can

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

obtain such a record at array [4] location. Let us now implement the sequential search using

C++ program

5.2.2. Binary Search

Definition

binary search is used to quickly find a value in a sorted sequence (consider a sequence an

target value for clarity. Binary search

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

maintains a contiguous subsequence of the starting sequence where the target value is surely

located. This is called the search space. The search space is initially the entire sequence. At

each step, the algorithm compares the median value in the search space to the target value.

Based on the comparison and because the sequence is sorted, it can then eliminate half of the

search space. By doing this repeatedly, it will eventually be left with a search space consisting

of a single element, the target value.

For example, consider the following sequence of integers sorted in ascending order and say we

are looking for the number 55:

0 5 13 19 22 41 55 68 72 81 98

We are interested in the location of the target value in the sequence so we will represent the

search space as indices into the sequence. Initially, the search space contains indices 1 through

11. Since the search space is really an interval, it suffices to store just two numbers, the low and

high indices. As described above, we now choose the median value, which is the value at index

6 (the midpoint between 1 and 11): this value is 41 and it is smaller than the target value. From

this we conclude not only that the element at index 6 is not the target value, but also that no

element at indices between 1 and 5 can be the target value, because all elements at these indices

are smaller than 41, which is smaller than the target value. This brings the search space down to

indices 7 through 11:

55 68 72 81 98

Proceeding in a similar fashion, we chop off the second half of the search space and are left

with:

55 68

Depending on how we choose the median of an even number of elements we will either find 55

in the next step or chop off 68 to get a search space of only one element. Either way, we

conclude that the index where the target value is located is 7.

If the target value was not present in the sequence, binary search would empty the search space

entirely. This condition is easy to check and handle. Here is some code to go with the

description:

binary_search(A, target):

www.AllAbtEngg.com

AllAbtEngg Android Application for Anna University, Polytechnic & School

 lo = 1, hi = size(A)

 while lo <= hi:

 mid = lo + (hi-lo)/2

 if A[mid] == target:

 return mid

 else if A[mid] < target:

 lo = mid+1

 else:

 hi = mid-1

Complexity of Sorting

www.AllAbtEngg.com

