
www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA
Notes Available @

Syllabus

 Question Papers
 Results and Many more…

Available in /AllAbtEngg Android App too, Check www.SmartPoet.Net & www.PhotoShip.Net

CS8451 DESIGN AND ANALYSIS OF ALGORITHM

2Mark Questions with Answers

UNIT-V

COPING WITH THE LIMITATIONS OF ALGORITHM POWER

1. What are the limitations of algorithm power?

There are many algorithms for solving a variety of different problems. They are very

powerful instruments, especially when they are executed by modern computers.

The power of algorithms is because of the following reasons:

• There are some problems cannot be solved by any algorithm.

• There are some problems can be solved algorithmically but not in polynomial time.

• There are some problems can be solved in polynomial time by some algorithms, but

there are usually lower bounds on their efficiency.

Algorithms limits are identified by the following:

• Lower-Bound Arguments

• Decision Trees

• P, NP and NP-Complete Problems

2. What are lower-bound arguments?

We can look at the efficiency of an algorithm two ways. We can establish its asymptotic

efficiency class (say, for the worst case) and see where this class stands with respect to the

hierarchy of efficiency classes.

Lower bounds means estimating the minimum amount of work needed to solve the

problem. We present several methods for establishing lower bounds and illustrate them with

specific examples.

1. Trivial Lower Bounds

2. Information-Theoretic Arguments

3. Adversary Arguments

4. Problem Reduction

 In analyzing the efficiency of specific algorithms in the preceding, we should distinguish

between a lower-bound class and a minimum number of times a particular operation needs to

be executed.

3. Define Trivial Lower Bounds.

The simplest method of obtaining a lower-bound class is based on counting the

number of items in the problem’s input that must be processed and the number of output items

that need to be produced. Since any algorithm must at least “read” all the items it needs to

process and “write” all its outputs, such a count yields a trivial lower bound.

http://www.allabtengg.com/
http://www.smartpoet.net/
http://www.photoship.net/

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA
Notes Available @

Syllabus

 Question Papers
 Results and Many more…

Available in /AllAbtEngg Android App too, Check www.SmartPoet.Net & www.PhotoShip.Net

4. Define Information-Theoretic Arguments.

The information-theoretical approach seeks to establish a lower bound based on the

amount of information it has to produce by algorithm.

5. Define Adversary Arguments.

Adversary Argument is a method of proving by playing a role of adversary in which

algorithm has to work more for adjusting input consistently.

Consider the Game of guessing number between positive integer 1 and n by asking a

person (Adversary) with yes/no type answers for questions. After each question at least

onehalf of the numbers reduced. If an algorithm stops before the size of the set is reduced to

1, the adversary can exhibit a number.

Any algorithm needs [log2 n] iterations to shrink an n-element set to a one-element set

by halving and rounding up the size of the remaining set. Hence, at least [log2 n] questions

need to be asked by any algorithm in the worst case. This example illustrates the adversary

method for establishing lower bounds.

6. Define Problem Reduction.

Problem reduction is a method in which a difficult unsolvable problem P is reduced to

another solvable problem B which can be solved by a known algorithm.

A similar reduction idea can be used for finding a lower bound. To show that problem

P is at least as hard as another problem Q with a known lower bound, we need to reduce Q

to P (not P to Q!). In other words, we should show that an arbitrary instance of problem Q can

be transformed to an instance of problem P, so any algorithm solving P would solve Q as

well. Then a lower bound for Q will be a lower bound for P.

7. Define decision trees.

Important algorithms like sorting and searching are based on comparing items of their

inputs. The study of the performance of such algorithm is called a decision tree. As an

example, Figure presents a decision tree of an algorithm for finding a minimum of three

numbers. Each internal node of a binary decision tree represents a key comparison indicated

in the node.

Decision tree for finding a minimum of three numbers.

8. Define tractable and intractable.

Problems that can be solved in polynomial time are called tractable, and problems

that cannot be solved in polynomial time are called intractable.

http://www.allabtengg.com/
http://www.smartpoet.net/
http://www.photoship.net/

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA
Notes Available @

Syllabus

 Question Papers
 Results and Many more…

Available in /AllAbtEngg Android App too, Check www.SmartPoet.Net & www.PhotoShip.Net

9. Define Hamiltonian circuit problem.

Determine whether a given graph has a Hamiltonian circuit—a path that starts and

ends at the same vertex and passes through all the other vertices exactly once.

10. Define Traveling salesman problem.

Find the shortest tour through n cities with known positive integer distances between

them (find the shortest Hamiltonian circuit in a complete graph with positive integer weights).

Applications

• Vehicle routing.

• Discrete optimization

• Computer network problem

• Airport tour.

• Sonnet ring

• Power cable

11. Define Knapsack problem.

Find the most valuable subset of n items of given positive integer weights and values

that fit into a knapsack of a given positive integer capacity.

12. Define Partition problem.

Given n positive integers, determine whether it is possible to partition them into two

disjoint subsets with the same sum.

13. Define Bin-packing problem.

Given n items whose sizes are positive rational numbers not larger than 1, put them

into the smallest number of bins of size 1.

14. Define Graph-coloring problem.

For a given graph, find its chromatic number, which is the smallest number of colors

that need to be assigned to the graph’s vertices so that no two adjacent vertices are assigned

the same color. Every Planner graph is 4 colorable.

15. Define Integer linear programming problem.

Find the maximum (or minimum) value of a linear function of several integer-valued

variables subject to a finite set of constraints in the form of linear equalities and inequalities.

16. Define deterministic and nondeterministic algorithm.

A nondeterministic algorithm is a two-stage procedure that takes as its input an

instance I of a decision problem and does the following.

1. Nondeterministic (“guessing”) stage: An arbitrary string S is generated that can

be thought of as a candidate solution to the given instance.

2. Deterministic (“verification”) stage: A deterministic algorithm takes both I and S

as its input and outputs yes if S represents a solution to instance I. (If S is not a solution

to instance I , the algorithm either returns no or is allowed not to halt at all.)

http://www.allabtengg.com/
http://www.smartpoet.net/
http://www.photoship.net/

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA
Notes Available @

Syllabus

 Question Papers
 Results and Many more…

Available in /AllAbtEngg Android App too, Check www.SmartPoet.Net & www.PhotoShip.Net

Finally, a nondeterministic algorithm is said to be nondeterministic polynomial if the time

efficiency of its verification stage is polynomial.

17. Define Class P.

Class P is a class of decision problems that can be solved in polynomial time by

deterministic algorithms. This class of problems is called polynomial class.

Examples:

• Searching

• Element uniqueness

• Graph connectivity

• Graph acyclicity

• Primality testing

18. Define Class NP.

Class NP is the class of decision problems that can be solved by nondeterministic

polynomial algorithms. This class of problems is called nondeterministic polynomial.

Examples: Integer factorization problem, graph isomorphism problem,

All NP-complete problem (travelling salesman problem, Boolean satisfiability problem).

19. Define Class NP-Hard. / List out the properties of NP-Hard Problems.

A problem is NP-hard if an algorithm for solving it can be translated into one for solving

any NP-problem (nondeterministic polynomial time) problem. Therefore NP-hard means "at

least as hard as any NP-problem," although it might, in fact, be harder.

There are no polynomial-time algorithms for NP-hard problems.

Traveling salesman and knapsack problems are NP-hard problems.

20. Define NP-complete.

A decision problem D is said to be NP-complete if it is hard as any problem in NP.

1. It belongs to class NP

2. Every problem in NP is polynomially reducible to D

Examples:

Capacitated minimum spanning tree, Route inspection problem (also called Chinese

postman problem), Clique problem, Maximum independent set, Minimum spanning tree,

Complete coloring, Bandwidth problem, Clique cover problem, Graph homomorphism

problem, Graph coloring, Graph partition into subgraphs of specific types (triangles,

isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-

complete.

21. Compare class P and NP problems.

Class P Class NP

Class P is a class of decision

problems that can be solved in

polynomial time by deterministic

algorithms.

Class NP is the class of decision

problems that can be solved by

nondeterministic polynomial

algorithms.

http://www.allabtengg.com/
http://www.smartpoet.net/
http://www.photoship.net/

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA
Notes Available @

Syllabus

 Question Papers
 Results and Many more…

Available in /AllAbtEngg Android App too, Check www.SmartPoet.Net & www.PhotoShip.Net

This class of problems is called

polynomial class.

This class of problems is called

nondeterministic polynomial class.

Subset of Class NP Super set of Class P

Examples:

• Searching

• Element uniqueness

• Graph connectivity

• Graph acyclicity

• Primality testing

Examples:

• Travelling salesman problem

• Boolean satisfiability problem

• Knapsack problem

22. Compare class NP hard and NP complete problems.

Class NP Hard Class NP Complete

Class of problems hard to solve A decision problem D is said to be

NP-complete if it is hard as any

problem in NP.

 1. It belongs to class NP

 2. Every problem in NP is

polynomially reducible to D

We can not solve all Class NP

Complete problems in polynomial

time

We can solve all Class NP Complete

problems in

polynomial time

Super set of Class NP Complete Subset of Class NP hard

Examples:

• Travelling Sales Person

• Halting problem

• SAT problem

Examples:

• Travelling Sales Person

• 3- SAT problem

23. Compare class Deterministic and non deterministic algorithms.

A deterministic algorithm is an algorithm which, given a particular input, will always

produce the same output, with the underlying machine always passing through the same

sequence of states.

A nondeterministic algorithm is a two-stage procedure that takes as its input an

instance I of a decision problem and does the following.

1. Nondeterministic (“guessing”) stage: An arbitrary string S is generated that can

be thought of as a candidate solution to the given instance.

2. Deterministic (“verification”) stage: A deterministic algorithm takes both I and S

as its input and outputs yes if S represents a solution to instance I. (If S is not a solution

to instance I , the algorithm either returns no or is allowed not to halt at all.)

Finally, a nondeterministic algorithm is said to be nondeterministic polynomial if the time

efficiency of its verification stage is polynomial.

http://www.allabtengg.com/
http://www.smartpoet.net/
http://www.photoship.net/

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA
Notes Available @

Syllabus

 Question Papers
 Results and Many more…

Available in /AllAbtEngg Android App too, Check www.SmartPoet.Net & www.PhotoShip.Net

24. Define Cook's theorem.

In computational complexity theory, the Cook–Levin theorem, also known as Cook's

theorem, states that the Boolean satisfiability problem is NP-complete. That is, any problem

in NP can be reduced in polynomial time by a deterministic algorithm (Turing machine) to the

problem of determining whether a Boolean formula is satisfiable. E.g SAT-3 problem.

25. Define backtracking.

Backtracking is a general algorithmic technique that considers searching every

possible combination in order to solve an optimization problem. Backtracking is also known

as depthfirst search or branch and bound. By inserting more knowledge of the problem, the

search tree can be pruned to avoid considering cases that don't look promising. While

backtracking is useful for hard problems to which we do not know more efficient solutions.

Backtracking is a general algorithm for finding all (or some) solutions to some

computational problems, notably constraint satisfaction problems, that incrementally builds

candidates to the solutions, and abandons each partial candidate c ("backtracks") as soon as

it determines that c cannot possibly be completed to a valid solution.

Backtracking examples.

• n-Queens Problem

• Hamiltonian Circuit Problem

• Subset-Sum Problem

26. Define Branch and bound. ®

Branch and bound (BB or B&B) is an algorithm design paradigm for discrete and

combinatorial optimization problems, as well as general real valued problems. A branch-and

bound algorithm consists of a systematic enumeration of candidate solutions by means of

state space search: the set of candidate solutions is thought of as forming a rooted tree with

the full set at the root. The algorithm explores branches of this tree, which represent subsets

of the solution set. Before enumerating the candidate solutions of a branch, the branch is

checked against upper and lower estimated bounds on the optimal solution, and is discarded

if it cannot produce a better solution than the best one found so far by the algorithm.

The algorithm depends on the efficient estimation of the lower and upper bounds of a

region/branch of the search space and approaches exhaustive enumeration as the size

(ndimensional volume) of the region tends to zero.

Branch-and-Bound Examples:

• Assignment Problem

• Knapsack Problem

• Traveling Salesman Problem

•

27. List out Exact Solution technique.

Exhaustive search (brute force)-

• useful only for small instances

Dynamic programming

• applicable to some problems (e.g., the knapsack problem)

Backtracking

• eliminates some unnecessary cases from consideration

http://www.allabtengg.com/
http://www.smartpoet.net/
http://www.photoship.net/

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA
Notes Available @

Syllabus

 Question Papers
 Results and Many more…

Available in /AllAbtEngg Android App too, Check www.SmartPoet.Net & www.PhotoShip.Net

• yields solutions in reasonable time for many instances but worst case is still

exponential

Branch-and-bound

• further refines the backtracking idea for optimization problems

28. List out coping techniques with the Limitations of Algorithm Power.

Backtracking

• n-Queens Problem

• Hamiltonian Circuit Problem

• Subset-Sum Problem

Branch-and-Bound

• Assignment Problem

• Knapsack Problem

• Traveling Salesman Problem

Approximation Algorithms for NP-Hard Problems

• Approximation Algorithms for the Traveling Salesman Problem

• Approximation Algorithms for the Knapsack Problem

Algorithms for Solving Nonlinear Equations

• Bisection Method

• False Position Method

• Newton’s Method

29. Define Backtracking

• Backtracking is a more intelligent variation approach.

• The principal idea is to construct solutions one component at a time and evaluate

such partially constructed candidates as follows.

• If a partially constructed solution can be developed further without violating the

problem’s constraints, it is done by taking the first remaining legitimate option for the

next component.

• If there is no legitimate option for the next component, no alternatives for any remaining

component need to be considered. In this case, the algorithm backtracks to replace

the last component of the partially constructed solution with its next option.

• It is convenient to implement this kind of processing by constructing a tree of choices

being made, called the state-space tree.

• Depth first node generation with bounding function is called backtracking. The

backtracking algorithm has its virtue the ability to yield the answer with far fewer than

m trials

• Backtracking techniques are applied to solve the following problems

• Hamiltonian Circuit Problem

• Subset-Sum Problem

• n-Queens Problem

http://www.allabtengg.com/
http://www.smartpoet.net/
http://www.photoship.net/

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA
Notes Available @

Syllabus

 Question Papers
 Results and Many more…

Available in /AllAbtEngg Android App too, Check www.SmartPoet.Net & www.PhotoShip.Net

30. Define N-Queens Problem.

The problem is to place n queens on an n × n chessboard so that no two queens attack

each other by being in the same row or in the same column or on the same diagonal.

31. Find a solution 8 queens problem.

There is solution to place 8 queens in 8 × 8 chessboard.

32. Define Hamiltonian circuit problem.

A Hamiltonian circuit (also called a Hamiltonian cycle, Hamilton cycle, or Hamilton

circuit) is a graph cycle (i.e., closed loop) through a graph that visits each node exactly once.

A graph possessing a Hamiltonian cycle is said to be a Hamiltonian graph.

33. Given an application for knapsack problem?

The knapsack problem is problem combinatorial optimization. It derives its name from

the maximum problem of choosing possible essential that can fit too bag to be carried on trip.

A similar problem very often appears business, combinatory, complexity theory, cryptography

and applied mathematics.

34. Define subset sum problem.

Subset sum problem is problem, which is used to find a subset of a given set

S={S1,S2,S3,…….Sn} of positive integers whose sum is equal to given positive integer d. The

subset-sum problem finds a subset of a given set A = {a1, . . . , an} of n positive integers whose

sum is equal to a given positive integer d. For example, for A = {1, 2, 5, 6, 8} and d = 9, there

are two solutions: {1, 2, 6} and {1, 8}. Of course, some instances of this problem may have no

solutions.

35. What is heuristic?

A heuristic is common sense rule drawn from experience rather than from

mathematically proved assertion. For example, going to the nearest unvisited city in the

travelling salesman problem is good example for heuristic.

36. State the concept of branch and bound method?

The branch and bound method refers to all state space search methods in which all

children of the E-Node are generated before any other live node can become the E-node.

http://www.allabtengg.com/
http://www.smartpoet.net/
http://www.photoship.net/

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA
Notes Available @

Syllabus

 Question Papers
 Results and Many more…

Available in /AllAbtEngg Android App too, Check www.SmartPoet.Net & www.PhotoShip.Net

Some problems can be solved by Branch-and-Bound are:

1. Assignment Problem

2. Knapsack Problem

3. Traveling Salesman Problem

37. Give the upper bound and lower bound of matrix multiplication algorithm?

Upper bound: The given algorithm does n*n*n multiplication hence at most n*n*n

multiplication are necessary. Lower bound: It has been proved in the literature that at least n*n

multiplication are necessary.

38. What is state space tree?

Backtracking and branch bound are based on the construction of a state space tree,

whose nodes reflect specific choices made for a solution’s component. Its root represents an

initial state before the search for a solution begins. The nodes of the first level the tree

represent the made for the first component of solution, the nodes of the second level represent

the Choices for the second components & so on

39. What is promising and non promising node?

A node state space tree is said to be promising, if it corresponds to a partially

constructed solution that may still lead to complete solution. Otherwise, node is called non-

promising.

40. What are the additional items are required for branch and bound compare to

backtracking technique?

Compared to backtracking, branch and bound requires 2 additional items.

1) A way to prove, for every node of node of state space tree, a bound on the best

value of the objective function on any solution that can be obtain d by adding further

components to the partial solution represented by the node.

2) The value of the best solution seen so far.

41. Differentiate backtracking and branch bound techniques.

• Backtracking is applicable only to non-optimization problems.

• Backtracking generates state space tree depth first manner.

• Branch and bound is applicable only to optimization problem.

• Branch and bound generated a node of state space tree using best first rule.

42. What is called all pair shortest path problem?

Given a weighted connected graph, the all pairs shortest paths problem is to find the

distances from each vertex to all other vertices.

43. When do you say a tree as minimum spanning tree?

A spanning tree is said to be minimum spanning tree when the weight of the spanning

tree is smallest, where the weight of a tree is defined as the sum of the weight of all its edges.

http://www.allabtengg.com/
http://www.smartpoet.net/
http://www.photoship.net/

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA
Notes Available @

Syllabus

 Question Papers
 Results and Many more…

Available in /AllAbtEngg Android App too, Check www.SmartPoet.Net & www.PhotoShip.Net

44. How will you construct an optimal binary search tree?

A binary search tree is one of the most important data structures in computer sciences.

Its principal applications are to implement a dictionary, a set of elements with the operations

of searching, insertion and deletion. If probabilities of searching for elements of a set are

known as optimal binary search tree, for which the average number of comparisons in a search

is the smallest possible.

45. What is the runtime of shortest path algorithm?

The runtime of shortest path algorithm is Θ((n+|E|) log n)

46. Define Nearest-Neighbor Algorithm

The following well-known greedy algorithm is based on the nearest-neighbor heuristic:

always go next to the nearest unvisited city.

Step 1 Choose an arbitrary city as the start.

Step 2 Repeat the following operation until all the cities have been visited: go to the

unvisited city nearest the one visited last (ties can be broken arbitrarily).

Step 3 Return to the starting city.

47. Define Knapsack Problem (Approximation Algorithm)

The knapsack problem is one well-known NP-hard problem. Given n items of known

weights w1, . . . , wn and values v1, . . . , vn and a knapsack of weight capacity W, find the most

valuable subset of the items that fits into the knapsack.

48. Define Greedy algorithm for the discrete knapsack problem

Step 1 Compute the value-to-weight ratios ri = vi/wi, i = 1, . . . , n, for the items given.

Step 2 Sort the items in nonincreasing order of the ratios computed in Step 1.(Ties can

be broken arbitrarily.)

Step 3 Repeat the following operation until no item is left in the sorted list: if the current

item on the list fits into the knapsack, place it in the knapsack and proceed to the next

item; otherwise, just proceed to the next item.

49. Define Greedy Algorithm for the Continuous Knapsack Problem

Step 1 Compute the value-to-weight ratios vi/wi, i = 1, . . . , n, for the items given.

Step 2 Sort the items in nonincreasing order of the ratios computed in Step 1. (Ties

can be broken arbitrarily.)

Step 3 Repeat the following operation until the knapsack is filled to its full capacity or

no item is left in the sorted list: if the current item on the list fits into the knapsack in its

entirety, take it and proceed to the next item; otherwise, take its largest fraction to fill

the knapsack to its full capacity and stop.

50. What do you mean by accuracy ratio and performance ratio of approximation

algorithm?

We can quantify the accuracy of an approximate solution Sa to a problem of minimizing some

function f by the size of the relative error (re) of this approximation,

 Re(Sa)=
𝑓(𝑆𝑎)−𝑓(𝑆∗)

𝑓(𝑆′)

http://www.allabtengg.com/
http://www.smartpoet.net/
http://www.photoship.net/

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA
Notes Available @

Syllabus

 Question Papers
 Results and Many more…

Available in /AllAbtEngg Android App too, Check www.SmartPoet.Net & www.PhotoShip.Net

where s* is an exact solution to the problem. Alternatively, re(sa) = f (sa)/f (s*) − 1, we can

simply use the accuracy ratio

 r(Sa) =
𝑓(𝑆𝑎)

𝑓(𝑆∗)

as a measure of accuracy of sa. Note that for the sake of scale uniformity, the accuracy ratio

of approximate solutions to maximization problems is usually computed as

 r(sa) =
𝑓(𝑆∗)

𝑓(𝑆𝑎)

to make this ratio greater than or equal to 1, as it is for minimization problems.

http://www.allabtengg.com/
http://www.smartpoet.net/
http://www.photoship.net/

