www.AllAbtEngg.com

UNIT- IV
 Topic : 1 Algebraic Structures

1)Define Binary Operation with Example:

Let A be any non-empty sets. The binary operation $*$ is a function from $A \times A$ i.e. a rule which assigns to every pair $(a, b) \in A \times A$, a unique element $a * b \in A$.

Example:

Usual addition, multiplication are binary operation defined on the set of real numbers.
Matrix addition and Matrix multiplication are binary operation on the set of 2×2 real matrices.

2) Define Algebraic System with Example:

A non-empty set A together with one or more n-ary operations $*$ defined on it, is called an algebraic system or algebraic structure or Algebra.
We denote it by ($\mathrm{A}, *$)

Note: $+,-, \cdot, x, *, U, \cap$ etc.., are some of binary operations.

Properties of Binary operations:

Let the binary operation be $*: A \times A \rightarrow A$.
Then we have the following properties

1) Closure Property:

$$
a * b \in A \quad \text { for } a l l a, b \in A .
$$

2) Associativity:

$$
(a * b) * c=a *(b * c) \text { for all } a, b, c \in A .
$$

3) Identity element:

www.AllAbtEngg.com

$a * e=e * a=a$, for all $a \in A$, where e is called the identity element.
4) Inverse element:

If $a * b=b * a=e$, then b is called the inverse of a and it is denoted by a^{-1}, (i.e. $b=a^{-1}$).
5) Commutative:

$$
a * b=b * a \quad \text { for } a l l a, b \in A .
$$

6) Distributive properties: for all $a, b, c \in A$.
(i) $a *(b \cdot c)=(a * b) \cdot(a * c) \quad$ [Left distributive law]
(ii) $(b \cdot c) * a=(b * a) \cdot(c * a) \quad[R i g h t ~ d i s t r i b u t i v e ~ l a w] ~$
7) Cancellation properties: for all $a, b, c \in A$
(i) $\mathrm{a} * \mathrm{~b}=\mathrm{a} * \mathrm{c} \Rightarrow \mathrm{b}=\mathrm{c} \quad$ [Left cancellation law]
(ii) $\mathrm{b} * \mathrm{a}=\mathrm{c} * \mathrm{a} \Rightarrow \mathrm{b}=\mathrm{c} \quad$ [Right cancellation law]

Note:
If the binary operations defined on G is + and x, then we have the following table

	Properties	For all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in(\mathrm{G},+$)	For all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in(\mathrm{G}, \mathrm{x})$
1.	Closure	$a+b \in G$	$a \times b \in G$
2.	Associativity	$(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c})$	($\mathrm{a} \times \mathrm{b}$) $\times \mathrm{c}=\mathrm{a} \times(\mathrm{b} \times \mathrm{c})$
3.	Identity element	$a+0=0+a=a \text {, Here } 0 \text { is }$ Additive Identity	$a \times 1=1 \times a=a$, Here 1 is Multiplicative Identity
4.	Inverse element	$a+(-a)=0,$ Here (-a) is Additive inverse	$a{ }^{1}={ }_{a}^{1} \mathrm{x} a=1, \quad$ Here ${ }^{1}$ is multiplicative inverse a
5.	Commutative	$a+b=b+a$	$\mathrm{a} \times \mathrm{b}=\mathrm{b} \times \mathrm{a}$

www.AllAbtEngg.com

Notation:

\mathbb{Z} or \boldsymbol{I}	The set of all integer.
\mathbb{Q}	The set of all rational number.
\mathbb{R}	The set of all real number.
\mathbb{R}^{+}	The set of all positive real number.
\mathbb{Q}^{+}	The set of all positive rational number.
\mathbb{C}	The set of all complex number.

Example 1:

The set of integers \mathbb{Z} with the binary operations + and x is an algebraic system since it satisfies all the above properties.

Example 2:

The set of real numbers \mathbb{R} with binary operations + and x is an algebraic system.

3) Define Semi group with Example:

Definition: If a non-empty set S together with the binary operation * satisfying the following two properties.
(a) Closure property
(b) Associative property
is called a semigroup. It is denoted by $(\mathrm{S}, *)$.

Example:

1. Let X be any non-empty set. Then the set of all functions from X to X is the set X^{x}, is a semigroup w.r.to $*$, the composition of functions.
2. ($I,+$) (I, \times) are semigroups, where + is the usual addition and \times is the usual multiplication.
3. $(P(A), \cap)$ and $(P(A), U)$ are semigroups. Where $P(A)$ is the powerset of A (the set of all subsets of A).
4. $N=\{0,1,2 \ldots\}$ then $(N,+),(N, x)$ are semigroups. N is not a semigroup w.r.to the operation subtraction.

www.AllAbtEngg.com

Solved Examples:

1. Show that the set of all natural numbers N is a semigroup w.r.to operation $*$ defined by $a * b=\max \{a, b\}$.

Solution:

N is closed under the operation * .
For $a, b, c \in N$

$$
\begin{align*}
& a *(b * c)=\max \{a, \max \{b, c\}\}=\max \{a, b, c\} \tag{1}\\
& (a * b) * c=\max \{\max \{a, b\}, c\} \\
& (a * b) * c=\max \{a, b, c\} \tag{2}
\end{align*}
$$

From (1) and (2),

$$
(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c}), \forall \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{~N}
$$

$\therefore \quad *$ is associative.
$\therefore(\mathrm{N}, *)$ is a semigroup.
2. Show that the set of rational numbers Q is a semigroup for the operation $*$ defined $b y \operatorname{a}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$.
Solution: Q is closed for $*$.

$$
\begin{align*}
& a *(b * c)=a *(b+c-b c) \\
&=a+b+c-b c-a(b+c-b c) \\
&=a+b+c-a b-b c-c a+a b c \tag{1}\\
&(a * b) * c=(a+b-a b) * c \\
&=a+b-a b+c-(a+b-a b) c \\
&=a+b+c-a b-a c-b c+a b c \tag{2}
\end{align*}
$$

From (1) and (2),

$$
(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c}), \forall \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{Q}
$$

$\therefore *$ is associative.
$\therefore(\mathrm{Q}, *)$ is a semigroup.

www.AllAbtEngg.com

3. Show that the set of rational numbers Q is a semigroup for operation * defined by $\mathrm{a} * \mathrm{~b}=\frac{\mathrm{d}}{2} \forall \mathrm{a}, \mathrm{b} \in \mathrm{Q}$

Solution: Q is closed for *.
$\mathrm{a} *(\mathrm{~b} * \mathrm{c})=\mathrm{a} * \frac{b c}{2}=\frac{a b c}{4}$
$(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\frac{b}{2} * \mathrm{c}=\frac{a b c}{4}$
$(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c}), \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Q}$
$\therefore *$ is associative.
$\therefore(\mathrm{Q}, *)$ is a semigroup.
4. Let $(\mathrm{A}, *)$ be a semigroup. Show that for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in A if $\mathrm{a} * \mathrm{c}=\mathrm{c} * \mathrm{a}$ and then $\mathrm{b} * \mathrm{c}=\mathrm{c} * \mathrm{~b}$ then $(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{c} *(\mathrm{a} * \mathrm{~b})$.

Solution: L.H.S. $(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c}) \quad[\because *$ is associative $]$

$$
\begin{aligned}
& =a *(c * b) \\
& =(a * c) * b \\
& =(c * a) * b \\
& =c *(a * b) \\
& =\text { R.H.S. }
\end{aligned}
$$

5. Let $(S, *)$ be a commutative semigroup. If $x * x=x, y * y=y$, prove that $(x * y) *(x * y)=x * y$.
Solution: L.H.S.: $(x * y) *(x * y)$

$$
\begin{aligned}
& =x *(y *(x * y)) \\
& =x *((y * x) * y) \\
& =x *((x * y) * y) \\
& =x *(x *(y * y)) \\
& =x *(x * y) \\
& =(x * x) * y \\
& =x * y \\
& =\text { R.H.S. }
\end{aligned}
$$

www.AllAbtEngg.com

6. Let $(S, *)$ be a commutative semigroup. If $x * x=x, y * y=y$, prove that $(x * y) *(x * y)=x * y$.

Solution: L.H.S.: $(x * y) *(x * y)$

$$
\begin{aligned}
& =x *(y *(x * y)) \\
& =x *((y * x) * y) \\
& =x *((x * y) * y) \\
& =x *(x *(y * y)) \\
& =x *(x * y) \\
& =(x * x) * y \\
& =x * y \\
& =\text { R.H.S. }
\end{aligned}
$$

7. Let $\{\{x, y\}, \cdot\}$ be a semigroup where $x \cdot x=y$. Show that
(i) $x \cdot y=y \cdot x$
(ii) $y \cdot y=y$.

Solution: (i) $x \cdot(x \cdot x)=(x \cdot x) \cdot x \quad$ (Since \cdot is associative)

$$
\begin{aligned}
& \text { Given } \mathrm{x} \cdot \mathrm{x}=\mathrm{y} \\
& \therefore \mathrm{x} \cdot \mathrm{y}=\mathrm{y} \cdot \mathrm{x}
\end{aligned}
$$

(ii)To prove: $y \cdot y=y$

Since the set $\{x, y\}$ is closed for operation ${ }^{\prime}$ ',
$x \cdot y=x$ (or) $x \cdot y=y$
Assume $x \cdot y=x$

$$
\begin{aligned}
y \cdot y & =y \cdot(x \cdot x) \\
& =(y \cdot x) \cdot x \\
& =(x \cdot y) \cdot x
\end{aligned}
$$

$\therefore y \cdot y=y$

Next consider the case $x \cdot y=y$,

$$
\begin{aligned}
y \cdot y & =(x \cdot x) \cdot y \\
& =x \cdot(x \cdot y)
\end{aligned}
$$

$\therefore y \cdot y=y$

$$
a * b \neq b * a
$$

(i) Show that for every $a \in A, a * a=a$
(ii) For every $a \in A, a *(b * a)=a$.
(iii) For every $a, b, c \in A,(a * b) * c=a * c$.

Solution:

(i) $\mathrm{a} *(\mathrm{~b} * \mathrm{c})=(\mathrm{a} * \mathrm{~b}) * \mathrm{c}$

Put $\mathrm{b}=\mathrm{a}$ and $\mathrm{c}=\mathrm{a}$

$$
a *(a * a)=(a * a) * a
$$

Since $(A, *)$ is not commutative, $a * a=a$.
(ii) Let us assume that $\mathrm{b} \in \mathrm{A}$ then we have for $b \in A, b * b=b$.

Let $a *(b * b)=a * b \quad[\because b * b=b]$
$(a * b) * b=a * b \quad[\because$ associative $]$
Hence $\mathrm{a} * \mathrm{~b}=\mathrm{a}$
(1) (Using Right Cancellation law)
$\therefore a *(b * a)=(a * b) * a \quad$ From $[\because$ associative $]$
$=a * a$ = a
(iii) $(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{a} * \mathrm{c} \quad[\because \mathrm{a} * \mathrm{~b}=\mathrm{a}]$
x.

www.AllAbtEngg.com

Monoids

1)Define Monoid with Example:

A semigroup $(S, *)$ with an identity element w.r.t. ' $*^{\prime}$ is called Monoid. It is denoted by $(\mathrm{M}, *)$.

In other words, a non-empty set ' M ' with respect to $*$ is said to be a monoid, if $*$ satisfies the following properties.
(a) Closure property
(b) Associative property
(c) Identity property

Examples:

1. $N=\{0,1,2 \ldots\}$ then $(N,+),(N, x)$ are monoids.
2. $(Z, x),(Z,+)$ are monoids.
3. The set of even integers $E=\{\ldots . .,-4,-2,0,2,4, \ldots$.$\} , Then (E,+)$ is a monoid and (E, x) is a semigroup but not a monoid.
4. $(P(A), U)$ is a monoid with identity element \emptyset.
$(P(A), \cap)$ is a monoid with identity element A, where A is any set.

Problem:

2) Show that the set of integers, is a monoid for the operation * defined by $a * b=a+b-a b$, for $a, b \in I$.

Solution:

I is closed for the operation *.
Further $*$ is a associative.
The element $0 \in I$ is the identity Element
Since $x * 0=x+0-x \cdot 0=x$ and $0 * x=0+x-0 \cdot x=x, \forall x \in I$.
$\therefore(\mathrm{I}, *)$ is a monoid with identity $0 \in \mathrm{I}$.
\qquad

Topic 2: dkobbayv.AllAbtEngg.com

1) Define Group with Example :

A non-empty set G with binary operation $*$ is called a group if the following axioms are satisfied.

1. $*$ is associative, i.e. $(a * b) * c=a * b * c \forall a, b, c \in G$.
2. There exists an element $e \in G$ such that $a * e=e * a=a, \forall a \in G$. (e is the identity element).
3. For every $a \in G, \exists$ an element $a^{-1} \in G$, such that $a * a^{-1}=a^{-1} * a=e$. (a^{-1} is called the inverse element of a).

2)Define Abelian Group (or) Commutative Group

A group $(\mathrm{G}, *)$ is called abelian if $\mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$. i.e. $*$ is commutative in G.

Example:

1. ($\mathrm{I},+$) is a group called the additive group of integers.
2. $M_{2}(R)$, the set of all 2×2 matrices is a group w.r.to matrix addition.
3. The set of all non-singular 2×2 matrices is a group w.r.to matrix multiplication.
4. The set of $n^{\text {th }}$ roots of unity $\left\{1, w, w^{2}, \ldots \ldots, w^{n-1}\right\}$ is a group w.r.to the operation multiplication of complex numbers.
5. $\mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$. In G , the operation '.' is defined by the following table. Then ($\mathrm{G},{ }^{\bullet}$) is an abelian group.

	$\mathbf{1}$	$\mathbf{- 1}$	\mathbf{i}	$\mathbf{- i}$
$\mathbf{1}$	1	-1	i	-i
$\mathbf{- 1}$	-1	1	-i	I
\mathbf{i}	i	-i	-1	1
$\mathbf{- i}$	-i	i	1	-1

Here ' \cdot ' is the multiplication of complex numbers.

www.AllAbtEngg.com

Examples:

1. Show that $\left[Z_{5},+5\right]$ is an abelian group.

Solution: The table for addition modulo 5 is.

$\mathbf{+} \mathbf{5}$	$\mathbf{[0]}$	$\mathbf{[1]}$	$\mathbf{[2]}$	$\mathbf{[3]}$	$\mathbf{[4]}$
$\mathbf{[0]}$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$
$\mathbf{[1]}$	$[1]$	$[2]$	$[3]$	$[4]$	$[0]$
$\mathbf{[2]}$	$[2]$	$[3]$	$[4]$	$[0]$	$[1]$
$\mathbf{[3]}$	$[3]$	$[4]$	$[0]$	$[1]$	$[2]$
$\mathbf{[4]}$	$[4]$	$[0]$	$[1]$	$[2]$	$[3]$

(i) Closure property:
[a] +5 [b]= remainder when the sum is divided by 5 .
(ii) Associative Property:

From the table for $[\mathrm{a}],[\mathrm{b}],[\mathrm{c}] \in \mathrm{Z}_{5}$
$[\mathrm{a}]+5([\mathrm{~b}]+5[\mathrm{c}])=([\mathrm{a}]+5[\mathrm{~b}])+5[\mathrm{c}]$
(iii) Identity:
$[0] \in Z_{5}$ is the identity
(iv) Inverse:

The inverse of [1] is [4].
The inverse of [2] is [3].
The inverse of [3] is [2].
The inverse of [4] is [1].
The element $[0] \in Z_{5}$ has self-inverse.
(v) Commutative property:

Further $[\mathrm{a}] \mathrm{C}_{5}[\mathrm{~b}]=[\mathrm{b}]+5[\mathrm{a}], \forall[\mathrm{a}],[\mathrm{b}] \in \mathrm{Z}_{5}$.
$\therefore\left(Z_{5},+5\right)$ is an abelian group.

www.AllAbtEngg.com

2. Show that $\left[\{1,2,3,4\}, x_{5}\right]$ is an abelian group.

Solution: The table for the x_{5} is as follows
$Z_{5}=\{1,2,3,4\}$ and x_{5} is multiplication operation

$x_{\mathbf{5}}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	1	2	3	4
$\mathbf{2}$	2	4	1	3
$\mathbf{3}$	3	1	4	2
$\mathbf{4}$	4	3	2	1

(i) Closure Property:

Here $\mathrm{a} \in \mathrm{Z}_{5}$ means $\mathrm{a}=[\mathrm{a}]$
$a x_{5} b=$ remainder when $a b$ is divisible by 5 .
(ii) Associative Property:

For $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{5}$.
$a x_{5}\left(b x_{5} c\right)=\left(a x_{5} b\right) x_{5} c$
(iii) Identity:
$1 \in Z_{5}$; is the identity element.
(iv) Inverse:

The inverse of 1 is 1
The inverse of 2 is 3
The inverse of 3 is 2
The inverse of 4 is 4
(v) Commutative property: Further $a x_{5} b=b x_{5} a, \forall a, b \in Z_{5}$.
$\therefore\left[\{1,2,3,4\}, \mathrm{x}_{5}\right]$ is an abelian group.

www.AllAbtEngg.com

Topic :3 Properties of Group

Property 1:

The identity element in a group is unique.

Proof: If ($\mathrm{G}, *$) be a group and e_{1} and e_{2} be two identity elements of G .
Let $\mathrm{x} \in \mathrm{G} ; \mathrm{x} * \mathrm{e}_{1}=\mathrm{x}$ and $\mathrm{x} * \mathrm{e}_{2}=\mathrm{x}$
$\therefore \mathrm{x} * \mathrm{e}_{1}=\mathrm{x} * \mathrm{e}_{2}$,
By using left cancellation law, we get $\mathrm{e}_{1}=\mathrm{e}_{2}$
\therefore Identity element is unique

Property 2:

The inverse of every element in a group is unique.

Proof: Let ($\mathrm{G}, ~ *)$ be a group, with identity element e.
Let b and c be inverses of a element $a \in G$.

$$
\begin{array}{rl}
a & * b=b * a=e \\
a & * c=c * a=e \\
b & =b * e \\
& =b *(a * c) \\
& =(b * a) * c \\
& =e * c \\
b & =c
\end{array}
$$

Property 3:

If a is an element in a group $(G, *)$ then $\left(a^{-1}\right)^{-1}=a$.

Property 4:(Reversal law)

If a and b are two elements in a group $(G, *)$ then

$$
(a * b)^{-1}=b^{-1} * a^{-1}
$$

$\left[\right.$ prove $(a * b) *\left(b^{-1} * a^{-1}\right)=e$ and $\left.\left(b^{-1} * a^{-1}\right) *(a * b)=e\right]$

www.AllAbtEngg.com

Property 5: Cancellation laws

In a group ($G, *$), for every $a, b, c \in G$, then
(i) $\mathrm{a} * \mathrm{c}=\mathrm{b} * \mathrm{c}$ implies $\mathrm{a}=\mathrm{b} \quad$ (Right Cancellation law)
(ii) $\mathrm{c} * \mathrm{a}=\mathrm{c} * \mathrm{~b}$ implies $\mathrm{a}=\mathrm{b} \quad$ (Left Cancellation law)

Property 6:

In a group $(\mathrm{G}, *)$, the equations $\mathrm{x} * \mathrm{a}=\mathrm{b}$ and $\mathrm{a} * \mathrm{y}=\mathrm{b}$ has unique solution.

Proof:

Consider $\mathrm{x} * \mathrm{a}=\mathrm{b}$ Post
multiplying by a^{-1}
$x *\left(a * a^{-1}\right)=b * a^{-1}$
i.e. $x * e=b * a^{-1}$
$\therefore \mathrm{x}=\mathrm{b} * \mathrm{a}^{-1}$

Proof of Uniqueness

Let x_{1} and x_{2} be two solutions of $x * a=b$.
Then $\mathrm{x}_{1} * \mathrm{a}=\mathrm{b}$ and $\mathrm{x}_{2} * \mathrm{a}=\mathrm{b}$.
$\therefore \mathrm{x}_{1} * \mathrm{a}=\mathrm{x}_{2} * \mathrm{a}$
$\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2} \quad$ [By Right cancellation law]
\therefore The solution is unique.
In a similar manner, the equation $a * y=b$ has a solution $y=a^{-1} * b$ and it has unique solution.

Examples

1. Show that a group $(G, *)$ is abelian iff $(a * b)^{2}=a^{2} * b^{2}$

Solution: First we assume that (G,*) is abelian,

$$
\begin{aligned}
(a * b)^{2}=(a * b) & *(a * b) \\
& =a *(b *(a * b)) \\
& =a *((b * a) * b)
\end{aligned}
$$

www.AllAbtEngg.com

Since G is abelian, $\quad a * b=b * a$.

$$
\begin{aligned}
\therefore(a * b)^{2} & =a *((a * b) * b) \\
& =(a * a) *(b * b) \\
& =a^{2} * b^{2}
\end{aligned}
$$

Conversely,

we assume that $(a * b)^{2}=a^{2} * b^{2}$.

To prove: G is abelian

$$
(a * b)^{2}=a^{2} * b^{2}
$$

$$
(\mathrm{a} * \mathrm{~b}) *(\mathrm{a} * \mathrm{~b})=(\mathrm{a} * \mathrm{a}) *(\mathrm{~b} * \mathrm{~b})
$$

$$
\mathrm{a} *(\mathrm{~b} *(\mathrm{a} * \mathrm{~b}))=\mathrm{a} *(\mathrm{a} *(\mathrm{~b} * \mathrm{~b}))
$$

$$
\mathrm{b} *(\mathrm{a} * \mathrm{~b})=\mathrm{a} *(\mathrm{~b} * \mathrm{~b}) \quad[\text { by Left cancellation law }]
$$

$$
(\mathrm{b} * \mathrm{a}) * \mathrm{~b}=(\mathrm{a} * \mathrm{~b}) * \mathrm{~b}
$$

$$
\mathrm{b} * \mathrm{a}=\mathrm{a} * \mathrm{~b} \quad[\text { by Right cancellation law }]
$$

$$
\therefore \quad \mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}, \forall \mathrm{a}, \mathrm{~b} \in \mathrm{G}
$$

$\therefore \quad \mathrm{G}$ is abelian.
2. Show that $(G, *)$ is abelian iff $(a * b)^{-1}=a^{-1} * b^{-1}$.

Solution: Assume that G is Abelian.

$$
\begin{aligned}
\therefore(a * b) & =(b * a), \forall a, b \in G \\
(a * b)^{-1} & =(b * a)^{-1} \\
& =a^{-1} * b^{-1}
\end{aligned}
$$

Conversely

Taking inverses both sides,

$$
\begin{aligned}
& \left((a * b)^{-1}\right)^{-1}=\left((b * a)^{-1}\right)^{-1} \\
& \quad \Rightarrow a * b=b * a, \forall a, b \in G
\end{aligned}
$$

$\therefore(\mathrm{G}, *)$ is abelian

$$
\begin{aligned}
& \text { assume }(a * b)^{-1}=a^{-1} * b^{-1} \\
& \text { But } a^{-1} * b^{-1}=(b * a)^{-1} \quad \text { (By Reversal law) } \\
& \therefore(a * b)^{-1}=(b * a)^{-1} \quad \text { From given }
\end{aligned}
$$

www.AllAbtEngg.com

3. Show that if every element in a group is its own inverse, then the group is abelian.

Solution: Let G be a group such that every element in G is its own inverse.

$$
\therefore \text { For } \mathrm{a} \in \mathrm{G}, \mathrm{a}^{-1}=\mathrm{a}
$$

Let $\mathrm{a}, \mathrm{b} \in \mathrm{G}$, then $(\mathrm{a} * \mathrm{~b}) \in \mathrm{G}$ and so
$(a * b)^{-1}=a * b$
But $(a * b)^{-1}=b^{-1} * a^{-1}$
Since $b^{-1}=b, a^{-1}=a$.

$$
\begin{equation*}
\Rightarrow(a * b)^{-1}=b * a \tag{2}
\end{equation*}
$$

From (1) and (2) we have $\mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a} \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$
$\therefore \mathrm{G}$ is abelian.
4. Prove that if for every element a in a group $(G, *), a^{2}=e$ then G is an abelian group.

Solution: Let $\mathrm{a}, \mathrm{b} \in \mathrm{G}$

$$
\begin{align*}
& \text { Then }(a * b) \in G \text { and } s o(a * b)^{2}=e \tag{1}\\
& \text { Since } a \in G, a^{2}=e \Rightarrow a * a=e \\
& b \in G, b^{2}=e \Rightarrow b * b=e \\
& \text { From (1) } \\
& (a * b)^{2}=e \\
& \Rightarrow(a * b) *(a * b)=e * e \\
& =(\mathrm{a} * \mathrm{a}) *(\mathrm{~b} * \mathrm{~b}) \\
& a *(b *(a * b))=a *(a *(b * b)) \\
& b *(a * b)=a *(b * b) \quad \text { [by Left cancellation law] } \\
& \text { i.e. } \quad(b * a) * b=(a * b) * b \\
& \therefore \mathrm{~b} * \mathrm{a}=\mathrm{a} * \mathrm{~b} \quad \text { [by Right cancellation law] }
\end{align*}
$$

$\therefore \mathrm{G}$ is abelian.
x. \qquad .

Topic quwwwerelkAbtEngg.com

1) Define Permutation with Example:

A permutation of a set A is a one-to-one and onto function from set A to itself.

Example.:

If $A=\{1,2,3,4,5\}$, then a permutation is function σ where: $\sigma(1)=4, \sigma(2)=2, \sigma$
$(3)=5, \sigma(4)=3, \sigma(5)=1$. This can be represented with permutation notation as: $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 & 1\end{array}\right)$

2) Define Symmetric Set:

If S is a finite set having n distinct elements then we shall have n ! distinct permutations of the sets. The set of all distinct permutations of degree n defined on the set S is denoted by S_{n} called symmetric set of permutations of degree n.
Note: $O\left(S_{n}\right)=n!$.

Problems:

1. List all elements of the symmetric set S_{3}, where $S=\{1,2,3\}$ and prove that $\left(S_{3},{ }^{\circ}\right)$ is a non abelian group.
Solution: Given $S=\{1,2,3\}$.
Total number of permutation on $\mathrm{S}=3!=6$.
Elements of symmetrical set $S_{3}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}$
where

$$
\begin{aligned}
& p_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), p_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \\
& p_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), p_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \\
& p_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), p_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
\end{aligned}
$$

The operation ${ }^{\prime o}$ product of permutations defined on the set $S_{3}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}$ is given in the table.

\section*{
 | P_{1} | P_{1} | P_{2} | P_{3} | P_{4} | P_{5} | P_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P_{2} | P_{2} | P_{1} | P_{4} | P_{3} | P_{6} | P_{5} |
| P_{3} | P_{3} | P_{5} | P_{1} | P_{6} | P_{4} | P_{2} |
| P_{4} | P_{4} | P_{6} | P_{2} | P_{5} | P_{1} | P_{3} |
| P_{5} | P_{5} | P_{3} | P_{6} | P_{1} | P_{4} | P_{2} |
| P_{6} | P_{6} | P_{4} | P_{5} | P_{2} | P_{3} | P_{1} |}

To prove: $\left(\mathrm{S}_{3},{ }^{\circ}\right)$ is a non abelian group.
(i) Closure: Since the body of the table contains only the elements of S_{3}. $\therefore\left(\mathrm{S}_{3},{ }^{\circ}\right)$ is closed.
(ii) Associativity: We know composition of function S_{3} is associative and so it is true in S_{3} also. $\left(\mathrm{S}_{3},{ }^{\circ}\right)$ is associative.
$P_{1} \circ\left(P_{3} \circ P_{4}\right)=P_{1} \circ P_{6}=P_{6}$.
$\left(P_{1} \circ P_{3}\right) \circ P_{4}=P_{3} \circ P_{4}=P_{6}$.
$\therefore P_{1} \circ\left(P_{3} \circ P_{4}\right)=\left(P_{1} \circ P_{3}\right) \circ P_{4}$.
(iii) Identity: $P_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$ is the identity element of S_{3}.
(iv) Inverse: From the above table $P_{1}^{-1}=P_{1} ; P_{2}^{-1}=P_{2} ; P_{3}^{-1}=P_{3} ; P_{4}^{-1}=P_{5} ; P_{5}^{-1}=P_{4} ; P_{6}^{-1}=P_{6}$. Thus inverse exists for every element. Hence inverse axiom is verified.
$\therefore\left(\mathrm{S}_{3},{ }^{\circ}\right)$ is a group.
(v)Commutative: From the table; $\mathrm{P}_{3}{ }^{\circ} \mathrm{P}_{4}=\mathrm{P}_{6}$ and $\mathrm{P}_{4}{ }^{\circ} \mathrm{P}_{3}=\mathrm{P}_{2}$.
$\therefore \mathrm{P}_{3}{ }^{\circ} \mathrm{P}_{4} \neq \mathrm{P}_{4}{ }^{\circ} \mathrm{P}_{3}$. Hence $\left(\mathrm{S}_{3},{ }^{\circ}\right)$ is not commutative.
\qquad

www.AllAbtEngg.com

Topic 5: SUBGROUP

1) Define SUBGROUP with Example:

Definition: Let G, * be a group. Let e be the identity element in G and let $H \subseteq G$.
If H itself is a group with the same operation $*$ and the same identity element e.
(or)

Let , * be a group and $H \subseteq G . H$, * is called a subgroup of $G, *$, if H itself is a group with respect to *.

Example: $(Q,+)$ is a subgroup of $(R,+)$.

2)Define TRIVIAL SUBGROUP OR IMPROPER SUBGROUP

Solution: For any group $G, *,\{e, *\}$ and $G, *$ are subgroups, called trivial subgroups.

3)Define NON TRIVIAL SUBGROUP OR PROPER SUBGROUP

Solution: All other subgroups other than $\{, *\}$ and $(G, *)$ are called non trivial subgroup.

4)What is the CONDITION FOR A NON-EMPTY SUBSET H to be subgroup of \mathbf{G}

$H, *$ is said to be a subgroup of $G, *$ if
(i). H is closed for the operation $*, \forall a, b \in H, a * b \in H$.
(ii). H contains the identity element e
(i.e) $e \in H$ where e is the identity of G.
(iii). For any $a \in H, a^{-1} \in H$.

1)Theorem 1: State and Prove NECESSARY AND SUFFICIENT CONDITION For a subgroup :

Statement: A non-empty subset H of a group $G, *$ is a subgroup of G if and only if $a * b^{-1} \in H$ for all $a, b \in H$.

PROOF: Necessary Condition:

Let H be a subgroup of a group G and $a, b \in H$.
To prove: $a * b^{-1} \in H$.
Since H is a subgroup and $b \in H, b^{-1}$ must exist and $b^{-1} \in H$.
Now, $a \in H, b^{-1} \in H \Rightarrow a * b^{-1} \in H$. [By closure property]

Sufficient Condition:

Assume $a \in H, b \in H \Rightarrow a * b^{-1} \in H$.
To prove: H be a subgroup of a group G.

(i). IDENTITY:

Now, $a \in H, a^{-1} \in H \Rightarrow a * a^{-1} \in H \Rightarrow e \in H$.
Hence the identity element, $e \in H$.
(ii). INVERSE:
$e \in H, a \in H \Rightarrow e * a^{-1} \in H \Rightarrow a^{-1} \in H$.
\Rightarrow Every element ' a ' of H has its inverse a^{-1} is in H.
(iii). CLOSURE:

If $b \in H$ then $b^{-1} \in H . a \in H, b^{-1} \in H \Rightarrow a *\left(b^{-1}\right)^{-1} \in H \Rightarrow a * b \in H$.
(iv). ASSOCIATIVE:

Now $H \subseteq G$ and the associative law hold good for G, as G is a group.
Hence it is true for the element of H.
Thus all axioms for a group are satisfied for H.
Hence H is subgroup of G.

www.AllAbtEngg.com

2)Prove: The intersection of two subgroups of a group $G, *$ is also a subgroup of $(G, *)$ \& The Union need not be a Subgroup .

PROOF:

Let H and K are subgroups of $(G, *)$
To prove that: $H \cap K$ is subgroup of ($G, *$).
We have $H \cap K \neq \emptyset$. [\because atleast identity element is common to both H and $K]$.
Let $a, b \in H \cap K \Rightarrow a \in H \cap K$ and $b \in H \cap K$
$a \in H \cap \mathrm{~K} \Rightarrow a \in \mathrm{H}$ and $a \in$
$b \in H \cap K \Rightarrow b \in H$ and $b \in$

Now, $a \in H, b \in H \Rightarrow a * b^{-1} \in H$ [H is a subgroup, Theorem 1],
$a \in K, b \in K \Rightarrow a * b^{-1} \in K$ [K is a subgroup, Theorem 1].
Therefore, $a * b^{-1} \in H \cap K$.
Thus $a \in H \cap K$ and $b \in H \cap K \Rightarrow a * b^{-1} \in H \cap K$.
$H \cap K$ is a subgroup of G. [By Theorem 1]
ALSO, The union of two subgroups need not be a subgroup.

Example:

Let $(Z,+)$ is a group.
Let H and K are subgroup of $(Z,+)$
where $H=\{\ldots .-4,-2,0,2,4,6 \ldots\}=.\{0, \pm 2, \pm 4, \pm 6 .$.
$K=\{\ldots .-6,-3,0,3,6,9 \ldots\}=.\{0, \pm 3, \pm 6, \pm 9 .$.
$H \cup K=\{0, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 9 .$.
$3,8 \in H \cup K$ but $3+8=11 \notin H \cup K$.

Therefore, $H \cup K$ is not closed with respect to addition.

Therefore, $H \cup K$ is not a subgroup of G.

www.AllAbtEngg.com

3)Prove: The union of two subgroups of a group G iff one is contained in the other.

PROOF:

Assume H and K are subgroups of G and $H \subseteq K$ or $K \subseteq H$.
To prove that. $H \cup K$ is a subgroup.
$\because H$ and K are subgroups and $H \subseteq K \Rightarrow H \cup K=K$.
(or) H and K are subgroups and $K \subseteq H \Rightarrow H \cup K=H$.
Therefore, $H \cup K$ is a subgroup.

Conversely,

Suppose $H \cup K$ is a subgroup.
To prove that, one is contained in the other (i.e) $H \subseteq K$ or $K \subseteq H$.

Suppose, $H \nsubseteq K$ or $K \nsubseteq H$.
Then, \exists elements a, such that $\mathrm{a} \in H$ and $a \notin K$
$\mathrm{b} \in \mathrm{K}$ and $b \notin H$
Clearly, $a, b \in H \cup K$.
Since, $H \cup K$ is a subgroup of $G, a b \in H \cup K$.
Hence, $a b \in H$ or $a b \in K$.

Case 1: Let $a b \in H . \because a \in H, a^{-1} \in H$.
Hence, $a^{-1} a b=b \in H$, which is a contradiction (2).

Case 2: Let $a b \in K . \because b \in K, b^{-1} \in K$.
Hence, $b^{-1} a b=a \in K$, which is a contradiction (1).

Therefore, Our assumption is wrong.
Thus, $H \subseteq K$ or $K \subseteq H$.

proumbww.AllAbtEngg.com

1. Find all the non-trivial subgroup of $\left(Z_{6},+_{6}\right)$.

Solution: $Z_{6}=\{0,1,2,3,4,5\}$ of H is a subgroup of Z_{6}
Hence, $O(H)=1,2,3$, or 6 .

Subgroups are

$$
\begin{aligned}
& \Rightarrow>H=[0] \\
& \Rightarrow H=[0],[3] \\
& \Rightarrow H=[0],[2],[4]
\end{aligned}
$$

+6	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

2. Find all the subgroups of $\left(Z_{9},+9\right)$.

Solution:

$Z_{9}=\{0,1,2,3,4,5,6,7,8\}$
Here, $O(H)=1,3$.

Subgroups are
$\Rightarrow H=\{0\}$
$\Rightarrow H=\{0,3,6\}$

+9	0	3	6
0	0	3	6
3	3	6	0
6	6	0	3

x_{9}	0	1	2	3	4	5	6	7	8
0	0	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8	0
2	2	3	4	5	6	7	8	0	1
3	3	4	5	6	7	8	0	1	2
4	4	5	6	7	8	0	1	2	3
5	5	6	7	8	0	1	2	3	4
6	6	7	8	0	1	2	3	4	5
7	7	8	0	1	2	3	4	5	6
8	8	0	1	2	3	4	5	6	7

3.. Check whether $H_{1}=\{0,5,10\}$ and $H_{2}=\{0,4,8,12\}$ are subgroups of Z_{15} with respect to $+{ }_{15}$.

Solution: $H_{1}=\{0,5,10\}$

www.AllAbtEngg.com

$$
H_{1}=\{0,5,10\}
$$

t_{15}	0	5	10	
0	0	5	10	
5	5	10	0	
10	10	0	5	
$\left(H_{1},+_{15}\right)$				

$$
H_{2}=\{0,4,8,12\}
$$

$+_{15}$	0	4	8	12
0	0	4	8	12
4	4	8	12	1
8	8	12	1	5
12	12	1	5	9
$\left(H_{2,}+_{15}\right)$				

Table 1:
$\left(H_{1},{ }_{15}\right)$: All the entries in the addition table for H_{1} are the elements of H_{1}.
Therefore, H_{1} is a subgroup of Z_{15}.

Table 2:
$\left(H_{2},+_{15}\right)$: All the entries in the addition table for H_{2} are not the elements of H_{2}.
Therefore, H_{2} is a subgroup of Z_{15}.
\qquad

www.AllAbtEngg.com

Topic 7: NORMAL SUBGROUPS

1) Define NORMAL SUBGROUPS with Example.

Definition: A subgroup $(H, *)$ of $(G, *)$ is called normal subgroup of G if $a H=H a, \forall a \in G$.
2) Theorem: Every subgroup of an abelian group is normal

Proof: Let $(G, *)$ be a abelian group and $(H, *)$ be a subgroup of G.
Let $a \in G$ be any element.
Then $a H=\{a * h / h \in\}$

$$
=\{h * a / h \in H\} \quad \text { (since } \mathrm{G} \text { is abelian) }=\mathrm{Ha}
$$

Since a is arbitrary, $a H=H a \forall a \in G$
Therefore H is a normal subgroup of G .
3) Theorem: ($N, *$) is a normal subgroup of ($G, *$) iff $a * n * a^{-1} \in N$
$\forall n \in N$ and $\forall a \in G$.
Proof: Let $(N, *)$ is a normal subgroup of $(G, *)$. Therefore $a N=N a \quad \forall a \in G$
$\Rightarrow a * N * a^{-1}=N * a * a^{-1}=N * e=N$
Therefore for any $n \in N, a * N * a^{-1} \in N$
Conversely, if $a * N * a^{-1} \in N, n \in N, \forall a \in G$,
To prove $a * N=N * a$
Let $x \in a * N \Rightarrow \mathrm{x}=\mathrm{a} * \mathrm{n}$ for some $n \in N$
$x=a * n * e \Rightarrow x=a * n *\left(a^{-1} * a\right)$

www.AllAbtEngg.com

$\Rightarrow \mathrm{x}=\mathrm{a} * \mathrm{n} * \mathrm{a}^{-1} * \mathrm{a} \in N * a$
$\Rightarrow a * N \subseteq \mathbf{N} * a$

Let $y \in N * a \Rightarrow \mathrm{y}=\mathrm{n} *$ a for some $n \in N$

Then $y=a * \mathrm{a}^{-1} * \mathrm{n} * \mathrm{a}=\mathrm{a} *\left(\mathrm{a}^{-1} * \mathrm{n} * \mathrm{a}^{-1-1}\right) \in a * N$
Therefore $y \in N * a \Rightarrow \mathrm{y} \in a * N$ therefore $N * a \subseteq \mathrm{a} * N$.
Therefore from (1) and (2) we get $a * N=\mathbf{N} * \mathrm{a}, \forall a \in G$.
Hence N is a normal subgroup of G.
4)Theorem: prove that intersection of two normal subgroup of $(G, *)$ is a normal subgroup of $(G, *)$.

Proof: Let $\left(N_{1}, *\right)$ and $\left(N_{2}, *\right)$ be two normal subgroups of $(G, *)$.

To Prove $\left(N_{1} \cap N_{2}, *\right)$ is a normal subgroup of $(G, *)$.

$$
a * n * a^{-1} \in N_{1} \cap N_{2} \text { (by previous theorem) }
$$

Since N_{1} and N_{2} are normal subgroup of G, they are basically subgroups.
We know ${ }_{1} \cap N_{2}$ is a subgroup of G.
Now we shall prove it is a normal subgroup of G.
Let $\mathrm{n} \in N_{1} \cap N_{2}$ be any element and $a \in G$ be any element
Then $\mathrm{n} \in N_{1}$ and $\mathrm{n} \in N_{2}$, Since N_{1} and N_{2} are normal, $a * n * a^{-1} \in N_{1}$ and $a * n * a^{-1} \in N_{2}$, Therefore $a * n * a^{-1} \in N_{1} \cap N_{2}$.

Hence $N_{1} \cap N_{2}$ is normal.

www.AllAbtEngg.com

Topic 8: Group Homomorphism:

1) Define Group Homomorphism.

Let $G, *$ and G_{1}, \circ be two groups. A mapping $g: G \rightarrow G_{1}$ is called group homomorphism if $g a * b=g a \circ g b$ for all $a, b \in G$.

2) Properties of group homomorphism:

A group homomorphism preserves identities, inverses and sub groups.

Theorem 1: Homomorphism preserves identities.
(or)
If () $=e_{1}$ where e and e_{1} are the identity elements of G and G_{1} respectively.

Proof: Let $a \in G$, If e is the identity element G,
then $a * e=e * a=a$
$\Rightarrow f(a * e)=f a$
$\Rightarrow \mathrm{f}(\mathrm{a}) \circ \mathrm{f}(\mathrm{e}) \quad=f(a) \quad \because f$ is homomorphism
$\Rightarrow f(\mathrm{e})=e_{1}$
$\therefore f$ preserves identities.
Theorem 2: Homomorphism preserves inverse (or) $f\left(a^{-1}\right)=[f(a)]^{-1}$

Proof:

Let $a \in G, a^{-1} \in G \Rightarrow a * a^{-1}=a^{-1} * a=e$

Since $a * a^{-1}=e$
$\Rightarrow f\left(a * a^{-1}\right)=f(e)$

$\Rightarrow \mathrm{f}(a) \circ \mathrm{f}\left(\mathrm{a}^{-1}\right)=\mathrm{f}\left(e_{1}\right) \quad \because f$ is homomorphism
$\therefore f\left(a^{-1}\right)=[f(a)]^{-1}$.
$\therefore f$ preserves inverse

www.AllAbtEngg.com

Theorem 3: Homomorphism preserves subgroup (or)
If H is a subgroup of ,then $f(H)$ is a subgroup of G_{1}.

Proof:

Let H be a subgroup of $\mathrm{G} \Rightarrow$ for $a, b \in H, a * b^{-1} \in H[\because H$ is a subgroup $]$ Let $f(a) \in f(H)$ and $f(b) \in f(\mathrm{H})$.

To prove $f(a) \circ f\left(b^{-1}\right) \in f(\mathbf{H})$
Consider $\mathrm{f}(\mathrm{a}) \circ \mathrm{f}\left(b^{-1}\right)=f\left(a * b^{-1}\right) \in f(H) \quad\left[\because a * b^{-1} \in H\right]$

$$
\Rightarrow \mathrm{f}(\mathrm{a}) \circ \mathrm{f}\left(b^{-1}\right) \in f(H) \quad \forall f(a) \in f(H) \text { and } f(b) \in f(H) .
$$

$\therefore f(\mathrm{H}) \subseteq G_{1}$ is a subgroup of G_{1}.

Theorem 4: Let $f: G \rightarrow G^{\prime}$ be a group homomorphism and H is a subgroup of G^{\prime}. Then f^{-1} ()is a subgroup of G.

Proof:

Clearly $f^{-1}(H)$ is a non empty subset of $G \quad[\because H$ is a subgroup of G.] Now let us consider $a=f^{-1}(c) \in f^{-1}(H)$ and $\mathrm{b}=f^{-1}(d) \in f^{-1}(\mathrm{H})$.

For $c, d \in H$ with $f(\mathrm{a})=c$ and $f(b)=d$.
Let $\mathrm{a}, b \in f^{-1}(\mathrm{H}) \quad \Rightarrow f(\mathrm{a}), \mathrm{f}(\mathrm{b}) \quad \in H \quad[\because H$ is a subgroup.]
$\Rightarrow f(\mathrm{a}) * f\left(b^{-1}\right) \in H$
$\Rightarrow f\left(a * \mathrm{~b}^{-1}\right) \in H \quad[\because f$ is homomorphism. $]$
$\Rightarrow a * b^{-1} \in f^{-1}(\mathrm{H})$
$\therefore \mathrm{a}, b \in f^{-1}(H) \Rightarrow a * b^{-1} \in f^{-1}(H)$
Hence $f^{-1}(H)$ is a subgroup of G^{1}.
\qquad

Tonec : MdxdwohwadllâabtEngg.com

1)Define KERNEL OF A HOMOMORPHISM with Example:

Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. The set of elements of G which are mapped into e^{\prime} (identity element in G^{\prime}) is called the kernel of f and it is denoted by kerf.
$\operatorname{ker} f=\left\{x \in G / f(x)=e^{\prime}\right\}, e^{\prime}$ is identity of G^{\prime}.

then $\operatorname{ker} f=\{a, b, c\}$
Example: 1. $f:(Z,+) \rightarrow(Z,+)$ defined by $f(x)=2 x$ then $\operatorname{ker} f=\{0\}$
2. : $\left.R^{*}, \cdot\right) \rightarrow\left(R^{+},\right)$defined by $f(x)=|x|$, then $\operatorname{ker} f=\{1,-1\}$.
2) If $f: G \rightarrow G^{\prime}$ is a homomorphism then $\operatorname{ker} f=\{e\}$ iff f is 1-1.

Proof:

Assume f is one to one Then
$\mathrm{f}(\mathrm{e})=e^{\prime}$

$$
\therefore \operatorname{ker} f=\{e\}
$$

Conversely,
Assume $\operatorname{ker} f=\{e\}$
Now $\quad f(x)=f()$
$\Rightarrow f(x)^{*} \mathrm{f}\left(y^{-1}\right)=\mathrm{f}(\mathrm{y})^{*} \mathrm{f}\left(y^{-1}\right)$
$\Rightarrow f\left(x y^{-1}\right)=e^{\prime}$
$\Rightarrow x y^{-1} \in \operatorname{ker} f$
$\Rightarrow x y^{-1}=e$
$\Rightarrow x=y$
$\therefore f(x)=f(y) \Rightarrow x=y$
Hence f is one to one.
3) Prove that Kernel of a homomorphism is a normal subgroup of G .

Proof:

Let $(G, *)$ and $\left(G^{\prime}, \cdot\right)$ be the groups and $f: G \rightarrow G^{\prime}$ is a group homomorphism.

www.AllAbtEngg.com

By the definition of homomorphism, $\mathrm{f}(a * b)=\mathrm{f}(\mathrm{a}) \cdot f(b) \forall a, b \in G$.
By the definition of kernel, $K=\left\{a \in G / \mathrm{f}(a)=e^{\prime}\right\}$
i.e., $f()=e^{\prime} \quad \forall a \in K$ and e^{\prime} is the identity element of H .

To prove that ' K ' is a normal subgroup of G.
i.e., To prove
i) K is nonempty
ii) $a * b^{-1} \in K, \forall a, b \in K$
iii) $x * h * x^{-1} \in K, \forall h \in K, x \in G$
i) Identity element ' e ' of G is mapped to identity element of e ' of G '.
i.e., $f(e)=e^{\prime}$
$\therefore e \in K \Rightarrow K$ is non-empty.
ii) Let $a, b \in K \subseteq G$
$\Rightarrow f(a)=f(b)=e^{\prime}$
$f\left(a * b^{-1}\right)=f(a) \cdot \mathrm{f}\left(b^{-1}\right)\{\because f$ is homomorphism $\}$

$$
=e^{\prime} \cdot\left(e^{\prime}\right)^{-1}
$$

$$
=e^{\prime} . e^{\prime}=e^{\prime}
$$

$\therefore a * b^{-1} \in K$.
Hence $K=\operatorname{ker} f$ is a subgroup
iii) Let $x \in G$ and $h \in K$ be any element.
$\Rightarrow f(h)=e^{\prime}$
$f\left(x * h * x^{-1}\right)=f(x) \cdot f(h) \cdot f\left(x^{-1}\right)$

$$
=f(x) \cdot e^{\prime} \cdot f\left(x^{-1}\right)=f(\mathrm{x}) \cdot f\left(x^{-1}\right)=e^{\prime}
$$

$\therefore x * h * x^{-1} \in K$
Hence $K=\operatorname{ker} f$ is a normal subgroup of G.
X..

www.AllAbtEngg.com
 Topic: 10 Fundamental Theorem Of Group Homomorphism

State and prove the Fundamental Theorem Of Group Homomorphism.
Statement: Let $(G, *)$ and $\left(G^{\prime}, \cdot\right)$ be two groups.
Let $f: G \rightarrow G^{\prime}$ be a homomorphism of groups with kernel K, then G / K is isomorphic to (G).

$$
\text { i.e., } G / K \cong G^{\prime}
$$

Proof: Given that $f: G \rightarrow G^{\prime}$ be a homomorphism of groups with kernel K.
Define the map $\emptyset(K * a)=\mathrm{f}(\mathrm{a}), \forall a \in G$

i) \emptyset is well defined:

Let $a, b \in G$ such that
$K * a=K * b$
$\Rightarrow a * b^{-1} \in K$
$\Rightarrow \mathrm{f}\left(\mathrm{a} * b^{-1}\right)=e^{\prime} \quad\{\because K$ is kernel $\}$
$\Rightarrow \mathrm{f}(\mathrm{a}) * \mathrm{f}\left(b^{-1}\right)=e^{\prime} \quad\{\because f$ is homomorphism $\}$
$\Rightarrow f(a) * \mathrm{f}(b)^{-1} * f(b)=e^{\prime} * f(b)$
$\Rightarrow \mathrm{f}(\mathrm{a})=\mathrm{f}(b)$
$\Rightarrow \emptyset(K * a)=\emptyset(K * b)$
$\therefore \emptyset$ is well defined.
ii) \emptyset is one to one:

To prove that $\emptyset(K * a)=\emptyset(K *) \Rightarrow K * a=K * b$
We know that $\emptyset(K * a)=\emptyset(K * b) \Rightarrow f(a)=\mathrm{f}(b)$

$$
\begin{aligned}
\Rightarrow f(a) * \mathrm{f}\left(b^{-1}\right) & =f(b) * \mathrm{f}\left(b^{-1}\right) \\
& =f\left(b * b^{-1}\right) \\
& =f(e)
\end{aligned}
$$

$\Rightarrow f(a) * \mathrm{f}\left(b^{-1}\right)=e^{\prime}$
$\Rightarrow f\left(a * b^{-1}\right)=e^{\prime}$
$\Rightarrow a * b^{-1} \in K$
$\Rightarrow K * a=K * b$
$\therefore \varnothing$ is one to one.

www.AllAbtEngg.com

iii) \varnothing is onto:

Let $y \in G^{\prime}$
Since f is onto, there exists $a \in G$ such that $f(\mathrm{a})=y$

$$
\Rightarrow \emptyset(K * a)=y \quad\{\because f(a)=\emptyset(K * a)\}
$$

Thus every element of G^{\prime} has preimage in G / K
$\therefore \emptyset$ is onto.
i) \varnothing is a homomorphism:

$$
\begin{aligned}
\emptyset(K * a * K * b) & =\emptyset(K * a * b) \\
& =f(a * b) \\
& =f(a) * f(b) \\
& =\emptyset(K * a) * \emptyset(K * b)
\end{aligned}
$$

$\therefore \emptyset$ is a homomorphism.

Since \varnothing is one to one, onto and homomorphism, \varnothing is isomorphism between G / K and G^{\prime}.

$$
\therefore G / K \cong G^{\prime}
$$

2) State and prove the Cayley's representation theorem.
(or)
Prove that every finite group of order ' n ' is isomorphic to a permutation group of order ' n '.

Proof:

To prove the theorem, we have to show the following.
a. To form a set G of permutation
b. To prove G^{\prime} is a group
c. Exhibit an Isomorphism $\emptyset: G \rightarrow G^{\prime}$.

a. To Whawd AlldibtEngg.com

Let G be a finite group of order ' n ' and $a \in G$ be any element.
Corresponding to 'a' we define a map $f_{a}(\mathrm{x})=a * x, \forall x \in G$ then f is one to one.
$\because f_{a}(\mathrm{x})=f_{a}(y)$
$\Rightarrow a * x=a * y$
$\Rightarrow x=y$ (by left cancellation law)

Now $y \in G$ (Co-domain), then
$a^{-1} * y \in G$ such that
$f_{a}\left(a^{-1} * y\right)=a *\left(a^{-1} * y\right)=\left(a * a^{-1}\right) * y=e * y=y$
$\therefore f_{a}$ is onto.
Thus f_{a} is a one to one and onto function from $G \rightarrow G$ and so it is a permutation on G.

b. To prove G^{\prime} is a group:

Let , $f_{b} \in G^{\prime}$ be any two elements, then

$$
\left(f_{a} \circ f_{b}\right) x=f_{a}\left(f_{b}(x)\right)=f_{a}(b * x)=a *(b * x)=(a * b) * x=f_{a * b}
$$

$\therefore G^{\prime}$ is closed.
Composition mapping is also associative.
Since 'e' is the identity element of $\mathrm{G}, f_{e} \in G^{\prime}$ is identity mapping.
Let $a \in G \Rightarrow a^{-1} \in G$
$f_{a^{-1}} f_{a}(x)=f_{a^{-1}(a * x)}=\left(a^{-1} * a\right) * x=e * x=f_{e}(x)$
$\therefore f_{a^{-1}} \in G^{\prime}$
Hence G^{\prime} is a group.
c.Isomorphism $\varnothing: G \rightarrow G^{\prime}$:

To prove G and G^{\prime} are isomorphic.
Let $\emptyset: G \rightarrow G^{\prime}$ be defined by $\varnothing(a)=\mathrm{f}_{\mathrm{a}}, \forall a \in G$
Now for any $a, b \in G, \emptyset(a * b)=f_{a * b}=f_{a} * f_{b}=\emptyset(a) \varnothing(b)$
$\therefore \varnothing$ is a homomorphism.
Suppose $\emptyset(a)=\emptyset(b)$ then
$f_{a}=f_{b} \Rightarrow f_{a}(x)=f_{b}(x), \forall x \in G \Rightarrow a * x=b * x \Rightarrow a=b$ \{Right Cancellation law\}
$\therefore \emptyset$ is one to one
Since ${ }^{f_{a}}$ is onto, \varnothing is onto.
Thus

$$
\mathrm{G} \cong G^{\prime}
$$

www.AllAbtEngg.com

Topic 11: COSETS and LAGRANGE'S THEOREM:

1)Define cosets with Example:

Definition: Let ($H, *$) be a subgroup of $(G, *)$. Let $a \in G$ be any element. Then $a H=\{a * h / h \in\}$ is called the left coset of H in G determined by a.

Sometimes $a H$ can be written as $a * H$.

The set $H a=\{h * a / h \in H\}$ is called the right coset of H in G determined by a.

Points to remember:

1. Since $e \in H, a * e \in a H \Rightarrow a \in a H$ and $e * a=a \in H a$
2. Also $e H=e * h / h \in H=h / h \in H=H$
and $H e=h * e / h \in H=h / h \in H=H$
So H itself is a left coset as well as right coset.
3. In general, $a H \neq H a$.

But if G is abelian, then $a H=H a$ That is every left coset is a right coset.

Problems:

1.Find the left cosets of $H=(5 Z,+)$ which is a subgroup of $(Z,+)$

Solution: If $H=5 Z$ then $(H,+)$ is a subgroup of $(Z,+)$.

Then the distinct left cosets of H in Z are
$0+H=H=0+5 x$ where $\in Z$
$1+H=1+5 x$ where $\mathrm{x} \in Z$
$2+H=2+5 x$ where $\mathrm{x} \in Z$
$3+H=3+5 x$ where $\mathrm{x} \in Z$
$4+H=4+5 x$ where $\mathrm{x} \in Z$

$6+H=6+5 x / x \in Z=1+5(1+x)$ where $x \in Z=1+H$ and so
on. Therefore number of different left cosets of H in G is 5 .
2)Theorem: Let $(H, *)$ be a subgroup of $(G, *)$. Then the set of all left cosets of H in G form a partition of G.

Proof: Let $a H$ and $b H$ be any two left cosets.
We shall prove either $a H=b H$

$$
\text { (or) } a H \cap b H=\emptyset .
$$

Suppose $a H \cap b H \neq \emptyset$, then there exists an element
$x \in a H \cap b H \Rightarrow x \in a H$ and $x \in b H$
$\Rightarrow \mathrm{x}=\mathrm{a} * h_{1} \mathrm{x}=b * h_{2}$, for some $h_{1}, h_{2} \in H$
Therefore, $a * h_{1}=b * h_{2} \Rightarrow a * h_{1} \quad * h_{1}^{-1}=b * h_{2} * h^{-1}$

$$
\begin{align*}
\Rightarrow & a *\left(h_{1} * h_{1}^{-1}\right)=b *\left(h_{2} * h_{1}^{-1}\right) \\
\Rightarrow & a * e=b *\left(h_{2} * h_{1}^{-1}\right) \\
& \mathrm{a}=b *\left(h_{2} * h_{1}^{-1}\right) \ldots(2) ~ \tag{2}
\end{align*}
$$

If x is any element in $a H$, then $x=a * h$
$\Rightarrow x=b *\left(h_{2} * h_{1}^{-1}\right) * h$
$\Rightarrow \mathrm{x}=b *\left(h_{\text {a }} * h^{-1}\right) * h \in \mathrm{~b} H$

Therefore $\mathrm{x} \in a H \Rightarrow \mathrm{x} \in b H$ therefore $a H \subseteq \mathrm{bH}$

Similarly we can prove $b H \subseteq \mathrm{aH}$

From (2) and (3) we get $a H=a H$.

www.AllAbtEngg.com

Thus any two left cosets are either equal or disjoint. Futher $\underset{a \in G}{\cup} a H \subseteq \mathbf{G}$ since union of subsets is a subset.If x is any element in G , then $x=x * e \in x H$

Therefore x is a left coset and hence $\quad x \in \underset{a \in G}{\cup} a H$. Hence $\Rightarrow x \in G \Rightarrow x \in \underset{a \in G}{\cup} a H \Rightarrow$ $G \subseteq \underset{a \in G}{\cup} a H$. Therefore $G=\underset{a \in G}{\cup} a H$. Thus all the left cosets forms partition of G.

3) State and prove Lagrange's theorem:

Statement:The order of a subgroup H of a finite group G divides the order of the group. (i.e) order of H divides order of G.

Proof: Let $(G, *)$ be a group of order n and $(H, *)$ be a subgroup of order m.

Since G is a finite group, the number of left cosets of H in G is finite.

Let r be the number of left cosets of H in G

Let the r cosets be $a_{1} H, a_{2} H \ldots . a_{r} H$.
We know that the left cosets of G forms a partition of G. (by previous theorem)
Therefore $G=a_{1} H \cup a_{2} H \cup \ldots . \cup a_{r} H$

Therefore $o(\mathrm{G})=\mathrm{o}\left(a_{1} H \cup a_{2} H \cup \ldots . \cup a_{r} H\right)$

$$
=\mathrm{o}\left(a_{1} H\right)+o\left(a_{2} \mathrm{H}\right)+\cdots \mathrm{o}\left(a_{r} H\right)
$$

But $\mathrm{o}\left(a_{i} H\right)=o(H)$ (by previous theorem)

Therefore $o(G)=o(H)+o(H)+\cdots \ldots o(H)$ r times
$\Rightarrow o(G)=r o(H)$

Thus $\mathrm{O}(H)$ divides $o(G)$

www.AllAbtEngg.com

Topic 12: RINGS AND FIELDS

1)Define Ring with Example:

Definition: A non-empty set R with two binary operations + and. called addition and multiplication is called ring if the following axioms are satisfied.
(i) $(R,+)$ is an abelian group with 0 as identity
(ii) $(R,$.$) is a semigroup$
(iii) The operation . is distributive over + (i.e) $a . b+c=a . b+a . c$ and $b+c . a=b . a+c . a \quad \forall a, b, c \in R$
2)Define commutative ring.

Definition: A ring $(R,+,$.$) is said to be commutative if a . b=b . a \forall a, b \in R$

3)Define Ring with Identity.

Definition: A ring $(R,+,$.$) is said to be a ring with identity if there exists an element$ $1 \in R$ such that $1 . a=a .1=a \quad \forall \in K$

4)Define Ring with zero divisor.

Definition: If $R,+,$. is a commutative ring, then $a \neq 0 \in R$ is said to be a zero- divisor if there exists a non-zero $b \in R$ such that $a b=0$.

5)Define Ring without zero divisors

Definition: If in a commutative ring ($R,+,$.), for any $a, b \in R$ such that $a \neq 0, b \neq 0 \Rightarrow$ $a b \neq 0$ then the ring is without zero divisors.

In a ring without zero divisors, $\mathrm{a} . \mathrm{b}=0 \Rightarrow \mathrm{a}=0$ or $\mathrm{b}=0$.

6)Define Integral domain:

Definition: Integral domain: A commutative ring ($\mathrm{R},+,$.) with identity and without zero divisors is called an integral domain.

7)Define Field.

Definition: Field: A commutative ring ($\mathrm{R},+,$.) which has more than one element such that every non zero element of R has a multiplicative inverse in R is called a field.

www.AllAbtEngg.com

Problems:

1. Show that $Z_{5}=\{0,1,2,3,4\}$ is an integral domain under +5 and \times_{5}.

Solution:

$+_{5}$	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

\times_{5}	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

We can easily verify $\left(Z_{5},+5, x_{5}\right)$ is a commutative ring with identity 1 . From the table for x_{5}, we see product of non zero elements is non zero and so $\left(Z_{5},+5, x_{5}\right)$ ring without zero divisors is an integral domain.
2. Prove the set $Z_{4}=\{0,1,2,3\}$ is a commutative ring with respect to $+_{4}$ and \times_{4}.

Solution:

$+_{4}$	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

$\times 4$	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

(i) All entries in both the tables ${ }_{4}, \times_{4}$, belongs to Z_{4}.

Therefore Z_{4} is closed under ${ }_{4}, x_{4}$.
(ii) The entries of the first row is same as those of first column.
(iii) Hence Z_{4} is commutative with respect to $+_{4}, \times_{4}$

www.AllAbtEngg.com

(iv) If $a, b, c \in Z_{4}$ we can verify

$$
\begin{aligned}
& a+{ }_{4} b+{ }_{4} c=a+{ }_{4} b+{ }_{4} c \\
& a \times{ }_{4} b \times \times_{4} c=a \times_{4} b \times \times_{4} c
\end{aligned}
$$

Also the law is true for $+_{4}, \times_{4}$.

$$
\begin{align*}
& 0+{ }_{4} a=a+{ }_{4} 0=a \forall \in Z_{4} \tag{iv}\\
& 1 \times \times_{4}=a \times_{4} 1=a \in{ }_{4}
\end{align*}
$$

0 is the additive identity and 1 is the multiplicative identity of Z_{4} with respect to $+_{4}, x_{4}$.
(v) From the table ${ }_{4}$ additive inverse of $0,1,2,3$ are $0,3,2,1$ respectively. And multiplicative inverse of non zero element $1,2,3$ are $1,2,3$ respectively.
(vi) Also we can verify distributive law
(vii)

$$
\begin{gathered}
a \times_{4}\left(b++_{4} c\right)=a \times_{4} b++_{4}\left(a \times_{4} c\right) \\
b+{ }_{4} \times_{4} a=b \times_{4} a+\left(c \times_{4} a\right)
\end{gathered}
$$

Hence $\left(Z_{4},{ }_{4}, x_{4}\right)$ is a commutative ring with unity.
3. Prove that every field is an integral domain.

Proof: Let F be a field.

(i.e) $(F,+,$.$) is a commutative ring with identity and non zero element has a$ multiplicative inverse.

To prove F is an integral domain we have to show it has no zero divisors.

Suppose $a, b \in F$ with a. $b=0$ let $a \neq 0$, since a is a non zero element, its multiplicative invese exists (i.e) a^{-1} exists .

Therefore $a^{-1} \cdot a \cdot b=a^{-1} \cdot 0 \Rightarrow a^{-1} \cdot a \cdot b=0 \Rightarrow 1 \cdot b=0$

Thus $a . b=0 \Rightarrow a \neq 0 \Rightarrow b=0$. Therefore F has no zero divisors.

Hence $(F,+,$.$) is an integral domain.$

www.AllAbtEngg.com

4) Show that $(z,+,$.$) is an integral domain where Z$ is setolallintegers.

Proof: We know commutative ring with identity and without zero divisors is called integral domain.

If Z is set of all integers, then
(i) $(Z,+)$ is an abelian group.
(ii) (Z, \times) is a semi ring.
(iii) $a \times b=b \times a \forall a, b, c \in Z$
(iv) $a \times b+c=a \times b+a \times c \quad \forall a, b, c \in Z$

Hence $(z,+,$.$) is a commutative ring withidentity.$

If $a \neq 0, b \neq 0 \in Z$ then we know $a b \neq 0$. So Z is without zero divisors.

Hence $(z,+,$.$) is an integraldomain.$
\qquad

