UNIT- IV Topic : 1 Algebraic Structures

1)Define Binary Operation with Example:

Let A be any non-empty sets. The binary operation * is a function from A x A i.e. a rule which assigns to every pair (a, b) \in A x A, a unique element $a*b \in A$.

Example:

Usual addition, multiplication are binary operation defined on the set of real numbers.

Matrix addition and Matrix multiplication are binary operation on the set of 2×2 real matrices.

2) Define Algebraic System with Example:

A non-empty set A together with one or more n-ary operations * defined on it, is called an algebraic system or algebraic structure or Algebra. We denote it by (A, *)

Note: $+, -, \cdot, x, *, \cup, \cap$ etc.., are some of binary operations.

Properties of Binary operations:

Let the binary operation be $* : A \times A \rightarrow A$.

Then we have the following properties

1) Closure Property:

 $a * b \in A$ for all $a, b \in A$.

2) Associativity:

(a * b) * c = a * (b * c) for all a, b, $c \in A$.

3) Identity element:

a * e = e * a = a, for all $a \in A$, where e is called the identity element.

4) Inverse element:

If a * b = b * a = e, then b is called the inverse of a and it is denoted by a^{-1} , (i.e. $b = a^{-1}$).

5) Commutative:

a * b = b * a for all $a, b \in A$.

6) Distributive properties: for all a, b, $c \in A$.

(i)	a* (b c) = (a* b) (a*c)	[Left distributive law]
(ii)	(b · c) * a = (b* a) · (c* a)	[Right distributive law]

7) Cancellation properties: for all a, b, $c \in A$ (i) $a * b = a * c \Rightarrow b = c$ (ii) $b * a = c * a \Rightarrow b = c$

[Left cancellation law] [Right cancellation law]

Note:

If the binary operations defined on G is + and x, then we have the following table

	Properties	For all a, b, $c \in (G, +)$	For all a, b, $c \in (G, x)$
1.	Closure	a+b∈G	a x b ∈ G
2.	Associativity	(a + b)+ c = a + (b + c)	$(a \times b) \times c = a \times (b \times c)$
3.	Identity element	a+0=0+a=a, Here 0 is Additive Identity	a x 1=1 x a=a, Here 1 is Multiplicative Identity
4.	Inverse element	a+(-a) = 0, Here (-a) is Additive inverse	a = x a = 1, Here a = a a = 1 is multiplicative inverse a
5.	Commutative	a + b=b + a	a x b=b x a

Notation:

Z or <i>I</i>	The set of all integer.
Q	The set of all rational number.
R	The set of all real number.
R +	The set of all positive real number.
Q +	The set of all positive rational number.
C	The set of all complex number.

Example 1:

The set of integers \mathbb{Z} with the binary operations + and x is an algebraic system since it satisfies all the above properties.

Example 2:

The set of real numbers \mathbb{R} with binary operations + and x is an algebraic system.

3) Define Semi group with Example:

Definition: If a non-empty set S together with the binary operation *

satisfying the following two properties.

- (a) Closure property
- (b) Associative property

is called a semigroup. It is denoted by (S, *).

Example:

- 1. Let X be any non-empty set. Then the set of all functions from X to X is the set X^x, is a semigroup w.r.to *, the composition of functions.
- 2. (I, +), (I, \times) are semigroups, where + is the usual addition and \times is the usual multiplication.
- 3. $(P(A), \cap)$ and $(P(A), \cup)$ are semigroups. Where P(A) is the powerset of A (the set of all subsets of A).
- 4. N= {0, 1, 2 ...} then (N, +), (N, x) are semigroups. N is not a semigroup w.r.to the operation subtraction.

Solved Examples:

 Show that the set of all natural numbers N is a semigroup w.r.to operation * defined by a * b = max {a, b}.

Solution:

N is closed under the operation *. For a, b, c \in N a * (b * c) = max {a, max {b, c}} = max {a, b, c} (1) (a *b)*c = max{max {a, b}, c} (a *b)*c = max {a, b, c} (2) From (1) and (2), (a * b) *c = a * (b *c), \forall a, b, c \in N \therefore * is associative. \therefore (N, *) is a semigroup.

2. Show that the set of rational numbers Q is a semigroup for the operation * defined by a * b = a + b - ab. Solution: Q is closed for *. a * (b * c) = a * (b + c - bc) = a + b + c - bc - a (b + c - bc) = a + b + c - ab - bc - ca + abc (1) (a * b) * c = (a + b - ab) * c = a + b - ab + c - (a + b - ab) c = a + b + c - ab - ac - bc + abc (2) From (1) and (2), (a * b) * c = a * (b * c), $\forall a, b, c \in Q$ $\therefore *$ is associative.

 \therefore (Q, *) is a semigroup.

3. Show that the set of rational numbers Q is a semigroup for operation * defined by a * b = $\frac{b}{2} \forall a, b \in Q$

Solution: Q is closed for *.

a * (b * c) = a * $\frac{bc}{2} = \frac{abc}{4}$ (a * b) * c = $\frac{abc}{2}$ * c = $\frac{abc}{4}$ (a * b) * c = a * (b * c), ∀ a, b, c ∈ Q ∴ * is associative. ∴ (Q, *) is a semigroup.

4. Let (A, *) be a semigroup. Show that for a, b, c in A if a *c = c * a and then b *c = c * b then (a * b) * c = c * (a * b).

Solution: L.H.S. (a * b) * c = a * (b * c)	[∵ * is associative]
= a * (c * b)	[: b * c = c * b]
=(a * c) * b	[: * is associative]
= (c * a) * b	[: a * c = c * a]
= c * (a * b)	[: * is associative]
=R.H.S.	

5. Let (S,*) be a commutative semigroup. If x * x = x, y * y = y, prove that (x * y) * (x * y) = x * y.

Solution: L.H.S.: (x * y) * (x * y)=x * (y * (x * y))=x * ((y * x) * y)=x * ((x * y) * y)=x * ((x * y) * y)=x * (x * (y * y))=x * (x * y)=(x * x) * y=x * y= R.H.S.

6. Let (S,*) be a commutative semigroup. If x * x = x, y * y = y, prove that (x * y) * (x * y) = x * y.

Solution: L.H.S.:
$$(x * y) * (x * y)$$

= $x * (y * (x * y))$
= $x * ((y * x) * y)$
= $x * ((x * y) * y)$
= $x * (x * (y * y))$
= $x * (x * (y * y))$
= $(x * x) * y$
= $(x * x) * y$
= R.H.S.

- **7.** Let $\{\{x, y\}, \cdot\}$ be a semigroup where $x \cdot x = y$. Show that
 - (i) $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ (ii) $\mathbf{y} \cdot \mathbf{y} = \mathbf{y}$.

Solution: (i) $x \cdot (x \cdot x) = (x \cdot x) \cdot x$ (Since \cdot is associative) Given $x \cdot x = y$ $\therefore x \cdot y = y \cdot x$ (ii) To prove: $y \cdot y = y$ Since the set $\{x, y\}$ is closed for operation $\cdot '$, $x \cdot y = x$ (or) $x \cdot y = y$ Assume $x \cdot y = x$ $y \cdot y = y \cdot (x \cdot x)$ $= (y \cdot x) \cdot x$ $= (x \cdot y) \cdot x$ $\therefore y \cdot y = y$ Next consider the case $x \cdot y = y$, $y \cdot y = (x \cdot x) \cdot y$ $= x \cdot (x \cdot y)$ $\therefore y \cdot y = y$

8. Let (W) Way mi group Lurthe bror Erong & CAOM then

 $a * b \neq b * a$

- (i) Show that for every $a \in A$, a * a = a
- (ii) For every $a \in A$, a * (b * a) = a.
- (iii) For every a, b, $c \in A$, (a * b) * c = a * c.

Solution:

(i) a * (b * c) = (a * b) * c

(ii) Let us assume that $b \in A$ then

Put b = a and c=a a * (a * a) = (a *a)*a Since (A, *) is not commutative, a * a = a.

we have for $b \in A$, b * b = b. Let a * (b * b) = a *b [$\because b * b = b$] (a * b) * b = a *b [\because associative] Hence a * b = a_____(1) (Using Right Cancellation law) $\therefore a * (b * a) = (a *b)*a$ From [\because associative] = a * a = a(iii) (a * b) * c = a * c [$\because a * b = a$]

Х.....Х

Monoids

1)Define Monoid with Example:

A semigroup (S, *) with an identity element w.r.t. `*' is called Monoid.

It is denoted by (M, *).

In other words, a non-empty set 'M' with respect to * is said to be a monoid,

if * satisfies the following properties.

- (a) Closure property
- (b) Associative property
- (c) Identity property

Examples:

- 1. N= $\{0, 1, 2 ...\}$ then (N, +), (N, x) are monoids.
- 2. (Z, x), (Z, +) are monoids.
- 3. The set of even integers E= {.....,-4, -2,0,2,4,}, Then (E, +) is a monoid and (E, x) is a semigroup but not a monoid.
- 4. (P(A),∪) is a monoid with identity element Ø.
 (P(A),∩) is a monoid with identity element A, where A is any set.

Problem:

2) Show that the set of integers, is a monoid for the operation \ast defined by $a\ast b=a+b-ab,$ for a, $b\in I.$

Solution:

I is closed for the operation * .

Further * is a associative.

The element $0 \in I$ is the identity Element

Since $x * 0 = x + 0 - x \cdot 0 = x$ and $0 * x = 0 + x - 0 \cdot x = x$, $\forall x \in I$.

 \therefore (I,*) is a monoid with identity $0 \in I$.

Х.....Х

Topic 2: Top

1) Define Group with Example :

A non-empty set G with binary operation * is called a group if the following axioms are satisfied.

- 1. * is associative, i.e. $(a*b)*c=a*b*c \forall a, b, c \in G$.
- There exists an element e ∈ G such that a * e = e * a = a, ∀ a ∈ G.
 (e is the identity element).
- For every a ∈ G, ∃ an element a⁻¹∈ G, such that a* a⁻¹ = a⁻¹ * a = e.
 (a ⁻¹ is called the inverse element of a).

2)Define Abelian Group (or) Commutative Group

A group (G,*) is called abelian if a*b=b*a, $\forall a, b \in G$. i.e. * is commutative in G.

Example:

- 1. (I, +) is a group called the additive group of integers.
- 2. M_2 (R), the set of all 2 x 2 matrices is a group w.r.to matrix addition.
- 3. The set of all non-singular 2 x 2 matrices is a group w.r.to matrix multiplication.
- 4. The set of nth roots of unity {1, w, w²,, wⁿ⁻¹} is a group w.r.to the operation multiplication of complex numbers.
- 5. $G = \{1, -1, i, -i\}$. In G, the operation `· ' is defined by the following table. Then (G, ·) is an abelian group.

•	1		i	
1	1	-1	i	-i
-1	-1	1	-i	Ι
i	1 -1 i -i	-i	-1	1
-i	-i	i	1	-1

Here `• ' is the multiplication of complex numbers.

Examples :

1. Show that $[Z_5, +_5]$ is an abelian group.

Solution: The table for addition modulo 5 is.

+5	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
		[3]			[1]
[3]		[4]			[2]
[4]	[4]	[0]	[1]	[2]	[3]

- (i) Closure property:
 [a] +₅ [b]= remainder when the sum is divided by 5.
- (ii) Associative Property: From the table for [a], [b], [c] ∈ Z₅
 [a] +₅ ([b] +₅ [c]) = ([a] +₅ [b]) +₅ [c]

(iii) Identity:

 $[0]\in Z_5$ is the identity

- (iv) Inverse: The inverse of [1] is [4]. The inverse of [2] is [3]. The inverse of [3] is [2]. The inverse of [4] is [1]. The element $[0] \in Z_5$ has self-inverse.
- (v) Commutative property: Further [a] $+_5$ [b] = [b] $+_5$ [a], \forall [a], [b] \in Z₅.
 - \therefore (Z₅, +₅) is an abelian group.

2. Show that $[\{1,2, 3, 4\}, x_5]$ is an abelian group.

Solution: The table for the x_5 is as follows $Z_5 = \{1,2,3,4\}$ and x_5 is multiplication operation

1	2	3	4
1	2	3	4
2	4	1	3
3	1	4	2
4	3	2	1
	1 2 3	1 2 2 4 3 1	1 2 3 2 4 1 3 1 4

- (i) Closure Property: Here $a \in Z_5$ means a = [a] $a x_5 b =$ remainder when ab is divisible by 5.
- (ii) Associative Property: For a, b, $c \in Z_5$. a x_5 (b x_5 c) = (a x_5 b) x_5 c
- (iii) Identity: $1 \in Z_5$; is the identity element.
- (iv) Inverse:

The inverse of 1 is 1 The inverse of 2 is 3 The inverse of 3 is 2 The inverse of 4 is 4

(v) Commutative property:

Further a $x_5 b=b x_5 a$, $\forall a, b \in Z_5$.

 \therefore [{1,2, 3, 4}, x₅] is an abelian group.

X.....X

Topic :3 Properties of Group

Property 1:

The identity element in a group is unique.

Proof: If (G, *) be a group and e_1 and e_2 be two identity elements of G.

Let $x \in G$; $x * e_1 = x$ and $x * e_2 = x$

 $\therefore x * e_1 = x * e_2,$

By using left cancellation law, we get $e_1 = e_2$

 \therefore Identity element is unique

Property 2:

The inverse of every element in a group is unique.

Proof: Let (G, *) be a group, with identity element e.

Let b and c be inverses of a element $a \in G$. a * b=b * a = e a * c=c * a = e b = b * e = b * (a * c) = (b * a) * c = e * cb = c

Property 3:

If a is an element in a group (G, *) then $(a^{-1})^{-1} = a$.

Property 4:(Reversal law)

If a and b are two elements in a group (G, *) then

 $(a * b)^{-1} = b^{-1} * a^{-1}.$ [prove $(a * b) * (b^{-1} * a^{-1}) = e$ and $(b^{-1} * a^{-1}) * (a * b) = e$]

Property 5: Cancellation laws

In a group (G,*), for every a, b, $c \in G$, then

- (i) a* c = b* c implies a=b (Right Cancellation law)
- (ii) c* a = c* b implies a=b (Left Cancellation law)

Property 6:

In a group (G,*), the equations x * a=b and a * y=b has unique solution.

Proof:

Consider x * a=b Post multiplying by a^{-1} $x * (a * a^{-1}) = b* a^{-1}$ i.e. $x * e = b* a^{-1}$ $\therefore x = b * a^{-1}$

Proof of Uniqueness

Let x_1 and x_2 be two solutions of x * a = b. Then $x_1 * a = b$ and $x_2 * a = b$. $\therefore x_1 * a = x_2 * a$ $\Rightarrow x_1 = x_2$ [By Right cancellation law] \therefore The solution is unique.

In a similar manner, the equation a * y=b has a solution $y = a^{-1} * b$ and it has unique solution.

Examples

1. Show that a group (G, *) is abelian iff $(a * b)^2 = a^2 * b^2$

Solution: First we assume that (G,*) is abelian,

 $(a*b)^2=(a*b)*(a*b)$ =a*(b*(a*b))

Since G is abelian, a * b=b * a.

$$(a * b)^2 = a * ((a * b) * b)$$

= (a * a) * (b * b)
= a² * b²

Conversely,

we assume that $(a * b)^2 = a^2 * b^2$.

To prove : G is abelian

$$(a * b)^{2}=a^{2}* b^{2}$$

$$(a * b) * (a * b) = (a * a) * (b * b)$$

$$a * (b * (a * b)) = a * (a * (b * b))$$

$$b * (a * b) = a * (b * b)$$

$$(b * a) * b = (a * b) * b$$

$$b * a = a * b$$

$$\therefore a * b = b * a, \forall a, b \in G$$

$$\therefore G \text{ is abelian.}$$

2. Show that (G, *) is abelian iff (a * b)⁻¹ = a⁻¹ * b⁻¹.

Solution: Assume that G is Abelian.

$$\therefore (a * b) = (b * a), \forall a, b \in G (a * b)^{-1} = (b * a)^{-1} = a^{-1} * b^{-1}$$

Conversely

assume $(a * b)^{-1} = a^{-1} * b^{-1}$ But $a^{-1} * b^{-1} = (b * a)^{-1}$ (By Reversal law) ∴ $(a * b)^{-1} = (b * a)^{-1}$ From given Taking inverses both sides, $((a * b)^{-1})^{-1} = ((b * a)^{-1})^{-1}$ $\Rightarrow a * b = b * a, \forall a, b \in G$

$$\therefore$$
 (G, *) is abelian

3. Show that if every element in a group is its own inverse, then the group is abelian.

Solution: Let G be a group such that every element in G is its own inverse.

 $\therefore \text{ For } a \in G, a^{-1} = a$ Let $a, b \in G$, then $(a * b) \in G$ and so $(a * b)^{-1} = a * b$ (1)
But $(a * b)^{-1} = b^{-1} * a^{-1}$ Since $b^{-1} = b, a^{-1} = a$. $\Rightarrow (a * b)^{-1} = b * a$ (2)
From (1) and (2) we have $a * b = b * a \forall a, b \in G$ $\therefore G$ is abelian.

Prove that if for every element a in a group (G, *), a² = e then G is an abelian group.

Solution: Let $a, b \in G$

Then $(a * b) \in G$ and so $(a * b)^2 = e$ ____(1) Since $a \in G$, $a^2 = e \Rightarrow a * a = e$ $b \in G$, $b^2 = e \Rightarrow b * b = e$ From (1) $(a * b)^2 = e$ $\Rightarrow (a * b) * (a * b) = e * e$ = (a * a) * (b * b) a * (b * (a * b)) = a * (a * (b * b)) b * (a * b) = a * (b * b) [by Left cancellation law] i.e. (b * a) * b = (a * b) * b $\therefore b * a = a * b$ [by Right cancellation law] $\therefore G$ is abelian. X.....X

Topic 4 W SWIM WE GRAPHE Abt Engg.com

1) Define Permutation with Example:

A permutation of a set A is a one-to-one and onto function from set A to itself.

Example.:

If $A=\{1,2,3,4,5\}$, then a permutation is function σ where: $\sigma(1)=4$, $\sigma(2)=2$, $\sigma(3)=5$, $\sigma(4)=3$, $\sigma(5)=1$. This can be represented with permutation notation

 $\operatorname{as:} \sigma = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \\ 4 \ 2 \ 5 \ 3 \ 1 \end{bmatrix}$

2) Define Symmetric Set:

If S is a finite set having n distinct elements then we shall have n! distinct permutations of the sets. The set of all distinct permutations of degree n defined on the set S is denoted by S_n called symmetric set of permutations of degree n.

Note: $O(S_n)=n!$.

Problems:

1. List all elements of the symmetric set S₃, where S={1,2,3} and prove that (S₃, $^{\circ}$) is a non abelian group.

Solution: Given S={1,2,3}.

Total number of permutation on S=3!=6.

Elements of symmetrical set $S_3 = \{P_1, P_2, P_3, P_4, P_5, P_6\}$ where

nere

$$p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \ p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
, $p_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$

The operation '°' product of permutations defined on the set $S_3 = \{P_1, P_2, P_3, P_4, P_5, P_6\}$ is given in the table.

*****		A 1	11 ۸	h			.com
WW	W	P 2	Þ⁄-	D	\mathbf{P}_{5}	155	.COIII
		- 1		Γ			••••===

P ₁	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆
P ₂	P ₂	P ₁	P ₄	P ₃	P ₆	P ₅
P ₃	P ₃	P ₅	P ₁	P ₆	P ₄	P ₂
P ₄	P ₄	P ₆	P ₂	P ₅	P_1	P ₃
P ₅	P ₅	P ₃	P ₆	P ₁	P ₄	P ₂
P ₆	P ₆	P ₄	P ₅	P ₂	P ₃	P ₁

To prove: (S₃, $^{\circ}$) is a non abelian group.

(i) Closure: Since the body of the table contains only the elements of $S_3.$ \therefore (S_3, °) is closed.

(ii) Associativity: We know composition of function S_3 is associative and so it is true in S_3 also. (S_3 , °) is associative.

$$P_{1} \circ (P_{3} \circ P_{4}) = P_{1} \circ P_{6} = P_{6}.$$

$$(P_{1} \circ P_{3}) \circ P_{4} = P_{3} \circ P_{4} = P_{6}.$$

$$\therefore P_{1} \circ (P_{3} \circ P_{4}) = (P_{1} \circ P_{3}) \circ P_{4}.$$
(iii) Identity: $P_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ is the identity element of S₃.
(iv) Inverse: From the above table
 $P_{1}^{-1} = P_{1'}P_{2}^{-1} = P_{2'}P_{3}^{-1} = P_{3'}P_{4}^{-1} = P_{5'}P_{5}^{-1} = P_{4'}P_{6}^{-1} = P_{6}.$ Thus inverse exists
for every element. Hence inverse axiom is verified.

$$\therefore (S_{3}, °) \text{ is a group.}$$

(v)Commutative: From the table; $P_3 \circ P_4 = P_6$ and $P_4 \circ P_3 = P_2$. $\therefore P_3 \circ P_4 \neq P_4 \circ P_3$. Hence (S₃, °) is not commutative.

x.....x

Topic 5: SUBGROUP

1) **Define SUBGROUP with Example:**

Definition: Let G, * be a group. Let e be the identity element in G and let $H \subseteq G$. If H itself is a group with the same operation * and the same identity element e. (or)

Let , * be a group and $H \subseteq G$. H, * is called a subgroup of G, * , if H itself is a group with respect to *.

Example: (Q, +) is a subgroup of (R, +).

2) Define TRIVIAL SUBGROUP OR IMPROPER SUBGROUP

Solution: For any group G, *, { e, *} and G, * are subgroups, called trivial subgroups.

3) Define NON TRIVIAL SUBGROUP OR PROPER SUBGROUP

Solution: All other subgroups other than $\{, *\}$ and (G, *) are called non trivial subgroup.

4)What is the CONDITION FOR A NON-EMPTY SUBSET H to be subgroup of G

H,* is said to be a subgroup of G,* if

- (i). *H* is closed for the operation *, $\forall a, b \in H$, $a * b \in H$.
- (ii). *H* contains the identity element e(i.e) $e \in H$ where e is the identity of *G*.
- (iii). For any $a \in H$, $a^{-1} \in H$.

Topic 6 : Theorems on Subgroups

1)Theorem 1: State and Prove NECESSARY AND SUFFICIENT CONDITION For a subgroup :

Statement: A non-empty subset *H* of a group *G*, * is a subgroup of *G* if and only if $a * b^{-1} \in H$ for all $a, b \in H$.

PROOF: Necessary Condition:

Let *H* be a subgroup of a group *G* and *a*, *b* \in *H*. To prove: $a * b^{-1} \in H$. Since *H* is a subgroup and $b \in H$, b^{-1} must exist and $b^{-1} \in H$. Now, $a \in H$, $b^{-1} \in H \Rightarrow a * b^{-1} \in H$. [By closure property]

Sufficient Condition:

Assume $a \in H$, $b \in H \Rightarrow a * b^{-1} \in H$. To prove: *H* be a subgroup of a group *G*.

(i). **IDENTITY**:

Now, $a \in H$, $a^{-1} \in H \Rightarrow a * a^{-1} \in H \Rightarrow e \in H$. Hence the identity element, $e \in H$.

(ii). INVERSE:

 $e \in H$, $a \in H \Rightarrow e * a^{-1} \in H \Rightarrow a^{-1} \in H$.

⇒ Every element 'a' of H has its inverse a^{-1} is in H.

(iii). CLOSURE:

If $b \in H$ then $b^{-1} \in H$. $a \in H$, $b^{-1} \in H \Rightarrow a * (b^{-1})^{-1} \in H \Rightarrow a * b \in H$.

(iv). ASSOCIATIVE:

Now $H \subseteq G$ and the associative law hold good for G, as G is a group. Hence it is true for the element of H.

Thus all axioms for a group are satisfied for *H*.

Hence H is subgroup of G.

2)Prove: The intersection of two subgroups of a group G, * is also a subgroup of (G, *) & The Union need not be a Subgroup.

PROOF:

Let *H* and *K* are subgroups of (G, *)To prove that: $H \cap K$ is subgroup of (G, *).

We have $H \cap K \neq \emptyset$. [: atleast identity element is common to both *H* and *K*].

Let $a, b \in H \cap K \Rightarrow a \in H \cap K$ and $b \in H \cap K$ $a \in H \cap K \Rightarrow a \in H$ and $a \in$ $b \in H \cap K \Rightarrow b \in H$ and $b \in$

Now, $a \in H$, $b \in H \Rightarrow a * b^{-1} \in H$ [*H* is a subgroup , Theorem 1], $a \in K$, $b \in K \Rightarrow a * b^{-1} \in K$ [*K* is a subgroup , Theorem 1]. Therefore, $a * b^{-1} \in H \cap K$.

Thus $a \in H \cap K$ and $b \in H \cap K \Rightarrow a * b^{-1} \in H \cap K$. $H \cap K$ is a subgroup of *G*. [By Theorem 1]

ALSO, The union of two subgroups need not be a subgroup.

Example:

Let (Z, +) is a group. Let *H* and *K* are subgroup of (Z, +)

where $H = \{ \dots, -4, -2, 0, 2, 4, 6 \dots \} = \{0, \pm 2, \pm 4, \pm 6, .\}$ $K = \{ \dots, -6, -3, 0, 3, 6, 9 \dots \} = \{0, \pm 3, \pm 6, \pm 9, .\}$

 $H \cup K = \{0, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 9..\}$

3, $8 \in H \cup K$ but $3 + 8 = 11 \notin H \cup K$.

Therefore, $H \cup K$ is not closed with respect to addition.

Therefore, $H \cup K$ is not a subgroup of G.

3)Prove: The union of two subgroups of a group *G* iff one is contained in the other.

PROOF:

Assume *H* and *K* are subgroups of *G* and $H \subseteq K$ or $K \subseteq H$. To prove that. $H \cup K$ is a subgroup.

 \therefore *H* and *K* are subgroups and *H* ⊆ *K* \implies *H* ∪ *K* = *K*. (or) *H* and *K* are subgroups and *K* ⊆ *H* \implies *H* ∪ *K* =*H*. Therefore, *H* ∪ *K* is a subgroup.

Conversely,

Suppose $H \cup K$ is a subgroup. To prove that, one is contained in the other (i.e) $H \subseteq K$ or $K \subseteq H$.

Suppose, $H \not\subseteq K$ or $K \not\subseteq H$. Then, \exists elements a, such that $a \in H$ and $a \notin K$ ------(1) $b \in K$ and $b \notin H$ ------(2)

Clearly, $a, b \in H \cup K$. Since, $H \cup K$ is a subgroup of G, $ab \in H \cup K$. Hence, $ab \in H$ or $ab \in K$.

Case 1: Let $ab \in H$. \therefore $a \in H$, $a^{-1} \in H$. Hence, $a^{-1} ab = b \in H$, which is a contradiction (2).

Case 2: Let $ab \in K$. $\because b \in K$, $b^{-1} \in K$. Hence, $b^{-1} ab = a \in K$, which is a contradiction (1).

Therefore, Our assumption is wrong. Thus, $H \subseteq K$ or $K \subseteq H$.

PROBLEMS: WWW.AllAbtEngg.com

1. Find all the non-trivial subgroup of $(Z_{6}, +_{6})$.

Solution: $Z_6 = \{0, 1, 2, 3, 4, 5\}$ of *H* is a subgroup of Z_6 Hence, O(H) = 1,2,3, or 6.

Subgroups are

$$\Rightarrow H = [0]$$
$$\Rightarrow H = [0], [3]$$
$$\Rightarrow H = [0], [2], [4]$$

2. Find all the subgroups of $(Z_{9}, +_{9})$.

Solution:

 $Z_9 = \{0,1,2,3,4,5,6,7,8\}$ Here, O(H) = 1, 3.

Subgroups are	
\Rightarrow $H = \{0\}$	
\Rightarrow $H = \{0, 3, 6\}$	

+9	0	3	6
0	0	3	6
3	3	6	0
6	6	0	3

			3	4	5
0	1	2	3	4	5
1	2	3	4	5	0
2	3	4	5	0	1
3	4	5	0	1	2
4	5	0	1	2	3
5	0	1	2	3	4
	1 2 3 4	1 2 2 3 3 4 4 5	1 2 3 2 3 4 3 4 5 4 5 0	1 2 3 4 2 3 4 5 3 4 5 0 4 5 0 1	1 2 3 4 5 2 3 4 5 0 3 4 5 0 1 4 5 0 1 2

X9	0	1	2	3	4	5	6	7	8
0	0	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8	0
2	2	3	4	5	6	7	8	0	1
3	3	4	5	6	7	8	0	1	2
4	4	5	6	7	8	0	1	2	З
5	5	6	7	8	0	1	2	3	4
6	6	7	8	0	1	2	3	4	5
7	7	8	0	1	2	3	4	5	6
8	8	0	1	2	3	4	5	6	7

3.. Check whether $H_1 = \{0, 5, 10\}$ and $H_2 = \{0, 4, 8, 12\}$ are subgroups of Z_{15} with respect to $+_{15}$.

Solution: $H_1 = \{0, 5, 10\}$

 $H_1 = \{0, 5, 10\}$

+15	0	5	10			
0	0	5	10			
5	5	10	0			
10 10 0 5						
(<i>H</i> ₁ , + ₁₅)						

 $H_2 = \{0, 4, 8, 12\}$

+15	0	4	8	12		
0	0	4	8	12		
4	4	8	12	1		
8	8	12	1	5		
12 12 1 5 9						
$(H_{2}, +_{15})$						

Table 1:

 $(H_1, +_{15})$: All the entries in the addition table for H_1 are the elements of H_1 .

Therefore, H_1 is a subgroup of Z_{15} .

Table 2:

(H_2 , $+_{15}$): All the entries in the addition table for H_2 are not the elements of H_2 .

Therefore, H_2 is a subgroup of Z_{15} .

х.....Х

Topic 7: NORMAL SUBGROUPS

1) Define NORMAL SUBGROUPS with Example.

Definition: A subgroup (H, *) of (G, *) is called normal subgroup of G

 $if \ aH = Ha \ , \forall \ a \in G.$

2) Theorem: Every subgroup of an abelian group is normal

Proof: Let (G,*) be a abelian group and (H,*) be a subgroup of G.

Let $a \in G$ be any element.

Then $aH = \{a * h / h \in \}$

 $= \{h * a / h \in H\}$ (since G is abelian) = Ha

Since *a* is arbitrary, $aH = Ha \forall a \in G$

Therefore H is a normal subgroup of G.

3) Theorem: (*N*,*) is a normal subgroup of (*G*,*) iff $a * n * a^{-1} \in N$

 $\forall n \in N \text{ and } \forall a \in G.$

Proof: Let (N,*) is a normal subgroup of (G,*). Therefore $aN = Na \quad \forall a \in G$

 $\Rightarrow a * N * a^{-1} = N * a * a^{-1} = N * e = N$

Therefore for any $n \in N$, $a * N * a^{-1} \in N$

Conversely, if $a * N * a^{-1} \in N$, $n \in N$, $\forall a \in G$,

To prove a * N = N * a

Let $x \in a * N \Rightarrow x = a * n$ for some $n \in N$

 $x = a * n * e \Rightarrow x = a * n * (a^{-1} * a)$

4)Theorem: prove that intersection of two normal subgroup of (G, *) is a normal subgroup of (G, *).

Proof: Let $(N_1, *)$ and $(N_2, *)$ be two normal subgroups of (G, *).

To Prove $(N_1 \cap N_2, *)$ is a normal subgroup of (G, *).

 $a * n * a^{-1} \in N_1 \cap N_2$ (by previous theorem)

Since N_1 and N_2 are normal subgroup of G, they are basically subgroups.

We know $_1 \cap N_2$ is a subgroup of G.

Now we shall prove it is a normal subgroup of G.

Let $n \in N_1 \cap N_2$ be any element and $a \in G$ be any element

Then $n \in N_1$ and $n \in N_2$, Since N_1 and N_2 are normal, $a * n * a^{-1} \in N_1$ and

 $a * n * a^{-1} \in N_2$, Therefore $a * n * a^{-1} \in N_1 \cap N_2$.

Hence $N_1 \cap N_2$ is normal.

х.....х

Topic 8: Group Homomorphism:

1) Define Group Homomorphism.

Let G_* and G_1 , \circ be two groups. A mapping $g: G \to G_1$ is called group homomorphism if $g \ a * b = g \ a \circ g \ b$ for all $a, b \in G$.

2) Properties of group homomorphism:

A group homomorphism preserves identities, inverses and sub groups.

Theorem 1: Homomorphism preserves identities.

(or) If () = e_1 where e and e_1 are the identity elements of G and G_1 respectively.

Proof: Let $a \in G$, If e is the identity element G, then a * e = e * a = a $\Rightarrow f (a * e) = f a$ $\Rightarrow f (a) \circ f(e) = f (a) \quad \because f$ is homomorphism $\Rightarrow f (e) = e_1$ $\therefore f$ preserves identities.

Theorem 2: Homomorphism preserves inverse (or) $f(a^{-1}) = [f(a)]^{-1}$

Proof:

Let $a \in G$, $a^{-1} \in G \Rightarrow a * a^{-1} = a^{-1} * a = e$

Since $a * a^{-1} = e$ $\Rightarrow f(a * a^{-1}) = f(e)$ $\Rightarrow f(a) \circ f(a^{-1}) = f(e_1) \quad \because f \text{ is homomorphism}$ $\therefore f(a^{-1}) = [f(a)]^{-1}$.

 $\therefore f$ preserves inverse

Theorem 3: Homomorphism preserves subgroup (or) If *H* is a subgroup of ,then *f* (*H*) is a subgroup of *G*₁.

Proof:

Let H be a subgroup of G \Rightarrow for $a, b \in H, a * b^{-1} \in H$ [:: H is a subgroup] Let $f(a) \in f(H)$ and $f(b) \in f(H)$.

To prove $f(a) \circ f(b^{-1}) \in f(\mathbf{H})$ Consider $f(a) \circ f(b^{-1}) = f(a * b^{-1}) \in f(H)$ [$\because a * b^{-1} \in H$] $\Rightarrow f(a) \circ f(b^{-1}) \in f(H) \quad \forall f(a) \in f(H) \text{ and } f(b) \in f(H)$.

 $\therefore f$ (H) $\subseteq G_1$ is a subgroup of G_1 .

Theorem 4: Let $f: G \to G'$ be a group homomorphism and H is a subgroup of G'. Then $f^{-1}()$ is a subgroup of G.

Proof:

Clearly $f^{-1}(H)$ is a non empty subset of G [:: H is a subgroup of G.] Now let us consider $a = f^{-1}(c) \in f^{-1}(H)$ and $b = f^{-1}(d) \in f^{-1}(H)$.

For $c, d \in H$ with f(a) = c and f(b) = d.

Let
$$a, b \in f^{-1}(H) \Rightarrow f(a), f(b) \in H$$
 [: *H* is a subgroup.]
 $\Rightarrow f(a) * f(b^{-1}) \in H$
 $\Rightarrow f(a * b^{-1}) \in H$ [: *f* is homomorphism.]
 $\Rightarrow a * b^{-1} \in f^{-1}(H)$

 $\therefore a, b \in f^{-1} (H) \implies a * b^{-1} \in f^{-1} (H)$

Hence $f^{-1}(H)$ is a subgroup of G^1 .

x.....x

TOPIC 9: KERNEVOW HOMOMORPHUSHENgg.com

1)Define **KERNEL OF A HOMOMORPHISM** with Example:

Let $f: G \to G'$ be a group homomorphism. The set of elements of G which are mapped into e' (identity element in G') is called the kernel of f and it is denoted by ker f.

ker $f = \{x \in G/f(x) = e'\}$, e' is identity of G'.

then ker $f = \{a, b, c\}$

Example: 1. $f: (Z, +) \to (Z, +)$ defined by f(x) = 2x then ker $f = \{0\}$ 2. $: (R^*, \cdot) \to (R^+, \cdot)$ defined by f(x) = |x|, then ker $f = \{1, -1\}$.

2) If $f: G \to G'$ is a homomorphism then ker $f = \{e\}$ iff f is 1-1.

Proof:

Assume *f* is one to one Then f (e) = e' \therefore ker $f = \{e\}$ Conversely, Assume ker $f = \{e\}$ Now f(x) = f() $\Rightarrow f(x)^* f(y^{-1}) = f(y)^* f(y^{-1})$ $\Rightarrow f(xy^{-1}) = e'$ $\Rightarrow xy^{-1} \in \ker f$ $\Rightarrow xy^{-1} = e$ $\Rightarrow x = y$ $\therefore f(x) = f(y) \Rightarrow x = y$ Hence f is one to one.

3) Prove that Kernel of a homomorphism is a normal subgroup of G.

Proof:

Let (G,*) and (G',\cdot) be the groups and $f: G \to G'$ is a group homomorphism.

By the definition of homomorphism, $f(a * b) = f(a) \cdot f(b) \forall a, b \in G$. By the definition of kernel, $K = \{a \in G / f(a) = e'\}$ i.e., $f(\cdot) = e' \forall a \in K$ and e' is the identity element of H.

To prove that K' is a normal subgroup of G.

i.e., To prove

- i) *K* is nonempty
- ii) $a * b^{-1} \in K$, $\forall a, b \in K$
- iii) $x * h * x^{-1} \in K$, $\forall h \in K$, $x \in G$

i) Identity element 'e' of G is mapped to identity element of e' of G'.
i.e., f (e) = e'
∴ e ∈ K ⇒ K is non-empty.

ii) Let
$$a, b \in K \subseteq G$$

 $\Rightarrow f(a) = f(b) = e'$
 $f(a * b^{-1}) = f(a) \cdot f(b^{-1}) \{\because f \text{ is homomorphism}\}$
 $= e' \cdot (e')^{-1}$
 $= e' \cdot e' = e'$
 $\therefore a * b^{-1} \in K.$
Hence K = ker f is a subgroup

```
iii) Let x \in G and h \in K be any element.

\Rightarrow f(h) = e'
f(x * h * x^{-1}) = f(x) \cdot f(h) \cdot f(x^{-1})
= f(x) \cdot e' \cdot f(x^{-1}) = f(x) \cdot f(x^{-1}) = e'
\therefore x * h * x^{-1} \in K
Hence K = \ker f is a normal subgroup of G.

x....x
```

WWW.AllAbtEngg.com Topic : 10 Fundamental Theorem Of Group Homomorphism

State and prove the Fundamental Theorem Of Group Homomorphism.

Statement: Let (G,*) and (G', \cdot) be two groups. Let $f: G \to G'$ be a homomorphism of groups with kernel K, then G/K is isomorphic to (G). i.e., $G/K \cong G'$

Proof: Given that $f: G \rightarrow G'$ be a homomorphism of groups with kernel K.

Define the map \emptyset (K * a) =f (a) , $\forall a \in G$

i) ø is well defined:

ii) Ø is one to one:

To prove that \emptyset (K * a) = \emptyset (K *) \Rightarrow K * a = K * bWe know that \emptyset (K * a) = \emptyset (K * b) \Rightarrow f (a) = f(b) \Rightarrow f (a) * $f(b^{-1}) = f$ (b) * $f(b^{-1})$ = f ($b * b^{-1}$) = f (e) \Rightarrow f (a) * $f(b^{-1}) = e'$ \Rightarrow f ($a * b^{-1}$) = e' \Rightarrow $a * b^{-1} \in K$ \Rightarrow K * a = K * b \therefore \emptyset is one to one.

iii) <u>Ø is onto:</u>

Let $y \in G'$ Since *f* is onto, there exists $a \in G$ such that f(a) = y

 $\Rightarrow \emptyset (K * a) = y \qquad \{: f (a) = \emptyset(K * a) \}$ Thus every element of *G'* has preimage in *G/K* $\therefore \emptyset$ is onto.

i) Ø is a homomorphism:

 $\therefore \phi$ is a homomorphism.

Since ϕ is one to one, onto and homomorphism, ϕ is isomorphism between G/K and G'.

2) State and prove the Cayley's representation theorem.

(or)

Prove that every finite group of order `n' is isomorphic to a permutation group of order `n'.

Proof:

To prove the theorem, we have to show the following.

- a. To form a set *G* of permutation
- b. To prove G' is a group
- c. Exhibit an Isomorphism $\emptyset: G \to G'$.

To Win Wee Wor Land bt Engg.com

Let *G* be a finite group of order 'n' and $a \in G$ be any element. Corresponding to 'a' we define a map $f_a(x) = a * x$, $\forall x \in G$ then *f* is one to one. $\therefore f_a(x) = f_a(y)$ $\Rightarrow a * x = a * y$ $\Rightarrow x = y$ (by left cancellation law)

Now $y \in G$ (Co-domain), then $a^{-1} * y \in G$ such that $f_a (a^{-1} * y) = a * (a^{-1} * y) = (a * a^{-1}) * y = e * y = y$ $\therefore f_a$ is onto. Thus f_a is a one to one and onto function from $G \rightarrow G$ and so it is a permutation on G.

b. To prove G' is a group:

a.

Let , $f_b \in G'$ be any two elements, then $(f_a \circ f_b) x = f_a(f_b(x)) = f_a(b * x) = a * (b * x) = (a * b) * x = f_{a*b}$ $\therefore G'$ is closed.

Composition mapping is also associative.

Since 'e' is the identity element of G, $f_e \in G'$ is identity mapping.

Let $a \in G \Longrightarrow a^{-1} \in G$

 $f_{a^{-1}}f_a(x) = f_{a^{-1}}(a * x) = (a^{-1} * a) * x = e * x = f_e(x)$ $\therefore f_{a^{-1}} \in G'$

Hence G' is a group.

c.Isomorphism $\emptyset: G \to G'$:

To prove G and G' are isomorphic.

Let $\emptyset: G \to G'$ be defined by $\emptyset(a) = f_a$, $\forall a \in G$

Now for any $a, b \in G$, $\emptyset(a * b) = f_{a*b} = f_a * f_b = \emptyset(a) \emptyset(b)$

 \therefore Ø is a homomorphism.

Suppose \emptyset (*a*) = \emptyset (*b*) then

 $f_{a} = f_{b} \Longrightarrow f_{a}(x) = f_{b}(x) \quad , \forall x \in G \Longrightarrow a * x = b * x \Longrightarrow a = b \{ \text{Right Cancellation law} \}$ $\therefore \phi \text{ is one to one}$ Since f_{a} is onto, ϕ is onto. Thus $G \cong G'$

Topic 11: COSETS and LAGRANGE'S THEOREM:

1)Define cosets with Example:

Definition: Let (H,*) be a subgroup of (G,*). Let $a \in G$ be any element. Then

 $aH = \{a * h / h \in \}$ is called the left coset of H in G determined by *a*.

Sometimes aH can be written as a * H.

The set $Ha = \{h * a / h \in H\}$ is called the right coset of H in G determined by a.

Points to remember:

- 1. Since $e \in H$, $a * e \in aH \Rightarrow a \in aH$ and $e * a = a \in Ha$
- 2. Also $eH = e * h/h \in H = h/h \in H = H$ and $He = h * e/h \in H = h/h \in H = H$

So H itself is a left coset as well as right coset.

3. In general, $aH \neq Ha$.

But if G is abelian, then aH = Ha That is every left coset is a right coset.

Problems:

1. Find the left cosets of H = (5Z, +) which is a subgroup of (Z, +)

Solution: If H = 5Z then (H, +) is a subgroup of (Z, +).

Then the distinct left cosets of H in Z are

- 0 + H = H = 0 + 5x where $\in Z$
- 1 + H = 1 + 5x where $x \in Z$
- 2 + H = 2 + 5x where $x \in Z$
- 3 + H = 3 + 5x where $x \in Z$
- 4 + H = 4 + 5x where $x \in Z$

5 + H = 5 + 5x where $x \in Z$ www.AllAbtEngg.com study materials for Anna University, Polytechnic & School

WWW.AllAbtEngg.com

 $6 + H = 6 + 5x/x \in Z = 1 + 5(1 + x)$ where $x \in Z = 1 + H$ and so

on. Therefore number of different left cosets of H in G is 5.

2)Theorem: Let (H,*) be a subgroup of (G,*). Then the set of all left cosets of H in G form a partition of G.

Proof: Let aH and bH be any two left cosets.

We shall prove either aH = bH

(or)
$$aH \cap bH = \emptyset$$
.

Suppose $aH \cap bH \neq \emptyset$, then there exists an element

If x is any element in aH, then x = a * h $\Rightarrow x = b * (h_2 * h_1^{-1}) * h$

 \Rightarrow x = b * ($h_2 * h^{-1}$) * h \in bH

Therefore $x \in aH \Rightarrow x \in bH$ therefore $aH \subseteq bH$ (2)

Similarly we can prove $bH \subseteq aH$ (3)

From (2) and (3) we get aH = aH.

Thus any two left cosets are either equal or disjoint. Further ${}_{a\in G} aH \subseteq \mathbf{G}$ since union of subsets is a subset. If x is any element in \mathbf{G} , then $x = x * e \in xH$

Therefore *x* is a left coset and hence $x \in {}_{a \in G} {}^{\cup}aH$. *Hence* $\Rightarrow x \in G \Rightarrow x \in {}_{a \in G} {}^{\cup}aH \Rightarrow G \subseteq {}_{a \in G} {}^{\cup}aH$. Thus all the left cosets forms partition of G.

3) State and prove Lagrange's theorem:

Statement: The order of a subgroup H of a finite group G divides the order of the group. (i.e) order of H divides order of G.

Proof: Let (G,*) be a group of order *n* and (H,*) be a subgroup of order *m*.

Since *G* is a finite group, the number of left cosets of *H* in *G* is finite.

Let r be the number of left cosets of H in G

Let the *r* cosets be a_1H , a_2H $a_r H$.

We know that the left cosets of *G* forms a partition of *G*. (by previous theorem)

Therefore $G = a_1 H \cup a_2 H \cup ... \cup a_r H$

Therefore $o(G) = o(a_1H \cup a_2H \cup ... \cup a_r H)$

$$= o(a_1H) + o(a_2H) + \cdots o(a_rH)$$

But $o(a_iH) = o(H)$ (by previous theorem)

Therefore $o(G) = o(H) + o(H) + \cdots \dots o(H)$

r times

 $\Rightarrow o(G) = r o(H)$

Thus O(H) divides o(G)

Topic 12: RINGS AND FIELDS

1)Define Ring with Example:

Definition: A non-empty set R with two binary operations + and . called addition and multiplication is called ring if the following axioms are satisfied.

- (i) (R, +) is an abelian group with 0 as identity
- (ii) (*R*, .) is a semigroup
- (iii) The operation . is distributive over + (i.e) a. b + c = a. b + a. c and

b + c, a = b, a + c, $a \forall a, b, c \in R$

2)Define commutative ring.

Definition: A ring (R, +, .) is said to be commutative if $a. b = b. a \forall a, b \in R$

3)Define Ring with Identity.

Definition: A ring (R, +, .) is said to be a ring with identity if there exists an element $1 \in R$ such that 1. a = a. 1 = a $\forall \in R$

4)Define Ring with zero divisor.

Definition: If R, +, . is a commutative ring, then $a \neq 0 \in R$ is said to be a zero- divisor if there exists a non-zero $b \in R$ such that ab = 0.

5)Define Ring without zero divisors

Definition: If in a commutative ring (R, +, .), for any $a, b \in R$ such that $a \neq 0, b \neq 0 \Rightarrow ab \neq 0$ then the ring is without zero divisors.

In a ring without zero divisors, $a. b = 0 \Rightarrow a = 0$ or b = 0.

6)Define Integral domain:

Definition: Integral domain: A commutative ring (R, +, .) with identity and without zero divisors is called an integral domain.

7)Define Field.

Definition: Field: A commutative ring (R, +, .) which has more than one element such that every non zero element of R has a multiplicative inverse in R is called a field.

Problems:

1. Show that $Z_5 = \{0, 1, 2, 3, 4\}$ is an integral domain under $+_5$ and \times_5 .

Solution:

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

\times_5	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

We can easily verify (Z_5 , $+_5$, \times_5) is a commutative ring with identity 1. From the table for \times_5 , we see product of non zero elements is non zero and so (Z_5 , $+_5$, \times_5) ring without zero divisors is an integral domain.

2. Prove the set $Z_4 = \{0, 1, 2, 3\}$ is a commutative ring with respect to $+_4$ and \times_4 .

Solution:

$+_{4}$	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

X_4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

- (i) All entries in both the tables $+_4$, \times_4 , belongs to Z_4 . Therefore Z_4 is closed under $+_4$, \times_4 .
- (ii) The entries of the first row is same as those of first column.
- (iii) Hence Z_4 is commutative with respect to $+_4$, \times_4

(iv) If $a, b, c \in Z_4$ we can verify

 $a+_4b+_4c = a+_4b+_4c$ $a \times_4 b \times_4 c = a \times_4 b \times_4 c$

Also the law is true for $+_4$, \times_4 .

(iv) $0+_4a = a+_40 = a \forall \in Z_4$ $1\times_4 = a \times_4 1 = a \in A$ 0 is the additive identity and 1 is the multiplicative identity of Z_4 with respect to $+_4$, \times_4 .

- (v) From the table +4 additive inverse of 0,1,2,3 are 0,3,2,1 respectively. And multiplicative inverse of non zero element 1,2,3 are 1,2,3 respectively.
- (vi) Also we can verify distributive law
- (vii) $a \times_4 (b+_4c) = a \times_4 b +_4(a \times_4 c)$ $b+_4 \times_4 a = b \times_4 a + (c \times_4 a)$ Hence $(Z_4, +_4, \times_4)$ is a commutative ring with unity.
- 3. Prove that every field is an integral domain.

Proof: Let F be a field.

(i.e) (F,+,.) is a commutative ring with identity and non zero element has a multiplicative inverse.

To prove F is an integral domain we have to show it has no zero divisors.

Suppose $a, b \in F$ with a, b = 0 let $a \neq 0$, since a is a non zero element, its multiplicative invese exists (i.e) a^{-1} exists.

Therefore a^{-1} . a. $b = a^{-1}$. $0 \Rightarrow a^{-1}$. a. $b = 0 \Rightarrow 1$. b = 0

Thus $a. b = 0 \Rightarrow a \neq 0 \Rightarrow b = 0$. Therefore F has no zero divisors.

Hence (F,+, .) is an integral domain.

4) Show that (z, +, .) is an integral domain where Z is set of all integers.

Proof: We know commutative ring with identity and without zero divisors is called integral domain.

If Z is set of all integers, then

- (i) (Z, +) is an abelian group.
- (ii) (Z, \times) is a semi ring.
- (iii) $a \times b = b \times a \forall a, b, c \in Z$
- (iv) $a \times b + c = a \times b + a \times c \quad \forall a, b, c \in Z$

Hence (z, +, .) is a commutative ring with identity.

If $a \neq 0$, $b \neq 0 \in Z$ then we know $ab \neq 0$. So Z is without zero divisors.

Hence (z, +, .) is an integral domain.

X.....X