
UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 1

CS 8392 OBJECT ORIENTED PROGRAMMING

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING

Differences between multi-threading and multitasking, thread life cycle, creating threads,

synchronizing threads, Inter-thread communication, daemon threads, thread groups.

Generic Programming Generic classes generic methods Bounded Types Restrictions

and Limitations.

Answer:

A thread is a single sequential flow of control within a program. Sometimes it is called an

execution context or light weight process.

Multithreading

 Multithreading in java is a process of executing multiple threads simultaneously.

 Thread is basically a lightweight sub-process, a smallest unit of processing.

Multiprocessing and multithreading, both are used to achieve multitasking.

 But we use multithreading than multiprocessing because threads share a common

memory area. They don't allocate separate memory area so saves memory, and context-

switching between the threads takes less time than process.

 Java Multithreading is mostly used in games, animation etc.

Advantages of Java Multithreading

 It doesn't block the user because threads are independent and you can perform multiple

operations at same time.

 You can perform many operations together so it saves time.

 Threads are independent so it doesn't affect other threads if exception occur in a single

thread.

Multitasking

Multitasking is a process of executing multiple tasks simultaneously. We use

multitasking to utilize the CPU. Multitasking can be achieved by two ways:

 Process-based Multitasking(Multiprocessing)

 Thread-based Multitasking(Multithreading)

Question: 1 a) What is a thread? Explain multithreading and multitasking in detail.(8)
Or

 1 b) Define thread. Write about multithreading and multitasking in detail.(8)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 2

CS 8392 OBJECT ORIENTED PROGRAMMING

1) Process-based Multitasking (Multiprocessing)

 Each process have its own address in memory i.e. each process allocates separate

memory area.

 Process is heavyweight.

 Cost of communication between the process is high.

 Switching from one process to another require some time for saving and loading

registers, memory maps, updating lists etc.

2) Thread-based Multitasking (Multithreading)

 Threads share the same address space.

 Thread is lightweight.

 Cost of communication between the thread is low

Answer:

BASIS FOR

COMPARISON
MULTITASKING MULTITHREADING

Basic Multithreading is to execute

multiple threads in a process

concurrently.

Multitasking is to run multiple processes

on a computer

concurrently

Switching In Multithreading, the CPU

switches between multiple

threads in the same process.

In Multitasking, the CPU switches

between multiple processes to complete

the execution.

Memory and

Resource

In multitasking system has to

allocate separate memory and

resources to each program

that CPU is executing.

In multithreading system has to allocate

memory to a process, multiple threads of

that process shares the same memory and

resources allocated to the process.

Question: 2 a) What are the difference between multithreading and multitasking.(4)
Or

 2 b) Differentiate multithreading and multitasking in detail.(4)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 3

CS 8392 OBJECT ORIENTED PROGRAMMING

Answer:

A thread is a single sequential (separate) flow of control within program. Sometimes, it is

called an execution context or light weight process.

A thread can be in one of the five states. According to sun, there is only 4 states in thread

life cycle in java new, runnable, non-runnable and terminated. There is no running state.

The life cycle of the thread in java is controlled by JVM. The java thread states are as follows:

1. New

2. Runnable

3. Running

4. Non-Runnable (Blocked)

5. Terminated

Complexity Multithreading is light-weight

and easy to create

Multitasking is heavy-weight and harder

to create

Question: 3 a) Explain in detail about different states of a thread.(13)
Or

 3 b) Label the different states of a thread and explain it. (13)
Or

 3 c) What is a thread? Describe the complete lifecycle of thread.(13)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 4

CS 8392 OBJECT ORIENTED PROGRAMMING

Follow

 New A new thread begins its life cycle in the new state. It remains in this state until the

program starts the thread. It is also referred to as a born thread.

 Runnable After a newly born thread is started, the thread becomes runnable. A thread

in this state is considered to be executing its task.

 Waiting Sometimes, a thread transitions to the waiting state while the thread waits for

another thread to perform a task. A thread transitions back to the runnable state only

when another thread signals the waiting thread to continue executing.

 Timed Waiting A runnable thread can enter the timed waiting state for a specified

interval of time. A thread in this state transitions back to the runnable state when that

time interval expires or when the event it is waiting for occurs.

 Terminated (Dead) A runnable thread enters the terminated state when it completes its

task or otherwise terminates.

Answer:

Creating a thread

Java defines two ways by which a thread can be created.

 By implementing the Runnable interface.

 By extending the Thread class.

Implementing the Runnable Interface

The easiest way to create a thread is to create a class that implements the runnable

interface. After implementing runnable interface, the class needs to implement the run() method,

which is of form,

 public void run()

 run() method introduces a concurrent thread into your program. This thread will end

when run() method terminates.

 specify the code that your thread will execute inside run() method.

Question: 4 a) List the two ways of implementing threads with an example program. (13)
Or

 4 b) What are the two ways to implement thread?(13)
Or

 4 c) How threads are created in java.(13)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 5

CS 8392 OBJECT ORIENTED PROGRAMMING

 run() method can call other methods, can use other classes and declare variables just like

any other normal method.

class MyThread implements Runnable

{

 public void run()

 {

 System.out.println("concurrent thread started running..");

 }

}

class MyThreadDemo

{

 public static void main(String args[])

 {

 MyThread mt = new MyThread();

 Thread t = new Thread(mt);

 t.start();

 }

}

Output

 Concurrent thread started running..

To call the run() method, start() method is used. On calling start(), a new stack is provided to the

thread and run() method is called to introduce the new thread into the program.

If you are implementing Runnable interface in your class, then you need to explicitly

create a Thread class object and need to pass the Runnable interface implemented class object as

a parameter in its constructor.

Extending Thread class

This is another way to create a thread by a new class that extends Thread class and create

an instance of that class. The extending class must override run() method which is the entry point

of new thread.

class MyThread extends Thread

{

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 6

CS 8392 OBJECT ORIENTED PROGRAMMING

 public void run()

 {

 System.out.println("concurrent thread started running..");

 }

}

classMyThreadDemo

{

 public static void main(String args[])

 {

 MyThread mt = new MyThread();

 mt.start();

 }

}

Output

 Concurrent thread started running..

In this case also, we must override the run() and then use the start() method to run the

thread. Also, when you create MyThread class object, Thread class constructor will also be

invoked, as it is the super class, hence MyThread class object acts as Thread class object.

Answer:

 Many threads can be created. Multiple threads can be created by extending thread class

and by implementing the Runnable interface.

Example(Print even and odd numbers using Threads)

class Even extends Thread //Thread1-even

{

public void run()

{

for(int i=0;i<=10;i+=2)

Question: 5 a) Describe the creation of a multiple thread with an example.(6)
Or

 5 b) Explain multiple thread with an example.(6)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 7

CS 8392 OBJECT ORIENTED PROGRAMMING

{

}

}

}

class Odd extends Thread //Thread2-odd

{

public void run()

{

for(int i=0;i<=10;i+=2)

{

 Odd

}

}

}

class EvenOdd

{

public static void main(String args[])

{

 Even e=new Even();

 Odd o=new Odd();

 e.start();

 o.start();

}

}

Output:

Even number=0

Odd number=1

Even number=2

Odd number=3

Even number=4

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 8

CS 8392 OBJECT ORIENTED PROGRAMMING

Odd number=5

Even number=6

Odd number=7

Even number=8

Odd number=9

Even number=10

Explanation Steps:

During program execution, at first even thread starts its execution

Along with that, odd thread also executes

Both threads will get executed alternatively and finally terminated

Answer:

Priority of a Thread (Thread Priority):

Each thread have a priority. Priorities are represented by a number between 1 and 10. In

most cases, thread schedular schedules the threads according to their priority (known as

preemptive scheduling). But it is not guaranteed because it depends on JVM specification that

which scheduling it chooses.

3 constants defined in Thread class:

1. public static int MIN_PRIORITY

2. public static int NORM_PRIORITY

3. public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and

the value of MAX_PRIORITY is 10.

Example of priority of a Thread:

class TestMultiPriority1 extends Thread

{

 public void run()

{

Question: 6 a) Discuss about thread priority.(6)
Or

 6 b) Explain thread priority with an example.(6)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 9

CS 8392 OBJECT ORIENTED PROGRAMMING

 System.out.println("running thread name is:"+Thread.currentThread().getName());

 System.out.println("running thread priority is:"+Thread.currentThread().getPriority());

 }

 public static void main(String args[])

{

 TestMultiPriority1 m1=new TestMultiPriority1();

 TestMultiPriority1 m2=new TestMultiPriority1();

 m1.setPriority(Thread.MIN_PRIORITY);

 m2.setPriority(Thread.MAX_PRIORITY);

 m1.start();

 m2.start();

}

}

Output:

 running thread name is:Thread-0

 running thread priority is:10

 running thread name is:Thread-1

 running thread priority is:1

Answer:

 Synchronization in java is the capability to control the access of multiple threads to any shared

resource.

Java Synchronization is better option where we want to allow only one thread to access the

shared resource.

Why use Synchronization

The synchronization is mainly used to

1. To prevent thread interference.

Question: 7 a) What is Synchronization? Explain the different types of synchronization in
 java(13)

Or
 7 b) Summarize briefly about thread synchronization with an example. (13)

Or
 7 c) Explain in detail about thread synchronization in java.(13)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 10

CS 8392 OBJECT ORIENTED PROGRAMMING

2. To prevent consistency problem.

Types of Synchronization

There are two types of synchronization

1. Process Synchronization

2. Thread Synchronization

Thread Synchronization

There are two types of thread synchronization mutual exclusive and inter-thread

communication.

1. Mutual Exclusive

2. Synchronized method.

Understanding the problem without Synchronization

In this example, there is no synchronization, so output is inconsistent.

class Table

{

void printTable(int n)

{//method not synchronized

 for(int i=1;i<=5;i++)

{

System.out.println(n*i);

try

{

 Thread.sleep(400);

 }

catch(Exception e)

{

System.out.println(e);}

 }

 }

}

class MyThread1 extends Thread

{

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 11

CS 8392 OBJECT ORIENTED PROGRAMMING

Table t;

MyThread1(Table t)

{

this.t=t;

}

public void run()

{

t.printTable(5);

}

 }

class MyThread2 extends Thread

{

Table t;

MyThread2(Table t)

{

this.t=t;

}

public void run()

{

t.printTable(100);

 }

}

 class TestSynchronization1

{

public static void main(String args[])

{

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 12

CS 8392 OBJECT ORIENTED PROGRAMMING

}

}

Output: 5

 100

 10

 200

 15

 300

 20

 400

 25

 500

Java synchronized method

If you declare any method as synchronized, it is known as synchronized method.

Synchronized method is used to lock an object for any shared resource. When a thread invokes a

synchronized method, it automatically acquires the lock for that object and releases it when the

thread completes its task.

//example of java synchronized method

class Table

{

synchronized void printTable(int n)

{//synchronized method

for(int i=1;i<=5;i++)

{

 System.out.println(n*i);

 try

{

 Thread.sleep(400);

 }

catch(Exception e)

{

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 13

CS 8392 OBJECT ORIENTED PROGRAMMING

System.out.println(e);

}

 }

 }

}

class MyThread1 extends Thread

{

Table t;

MyThread1(Table t)

{

this.t=t;

}

public void run()

{

t.printTable(5);

}

 }

class MyThread2 extends Thread

{

Table t;

MyThread2(Table t)

{

this.t=t;

}

public void run()

{

t.printTable(100);

}

}

public class TestSynchronization2

{

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 14

CS 8392 OBJECT ORIENTED PROGRAMMING

public static void main(String args[])

{

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

Output : 5

 10

 15

 20

 25

 100

 200

 300

 400

 500

Synchronized block in java

Synchronized block can be used to perform synchronization on any specific resource of

the method. Suppose you have 50 lines of code in your method, but you want to synchronize

only 5 lines, you can use synchronized block.

If you put all the codes of the method in the synchronized block, it will work same as the

synchronized method.

o Synchronized block is used to lock an object for any shared resource.

o Scope of synchronized block is smaller than the method.

Syntax to use synchronized block

synchronized (object reference expression)

{

 //code block

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 15

CS 8392 OBJECT ORIENTED PROGRAMMING

}

Program of synchronized block

class Table

{

void printTable(int n)

{

synchronized(this)

{//synchronized block

for(int i=1;i<=5;i++)

{

System.out.println(n*i);

try

{

Thread.sleep(400);

}

catch(Exception e)

{

System.out.println(e);

}

}

}

}//end of the method

}

class MyThread1 extends Thread

{

Table t;

MyThread1(Table t)

{

this.t=t;

}

public void run()

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 16

CS 8392 OBJECT ORIENTED PROGRAMMING

{

t.printTable(5);

}

}

class MyThread2 extends Thread

{

Table t;

MyThread2(Table t)

{

this.t=t;

}

public void run()

{

t.printTable(100);

}

}

public class TestSynchronizedBlock1

{

public static void main(String args[])

{

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 17

CS 8392 OBJECT ORIENTED PROGRAMMING

Output:

 5

 10

 15

 20

 25

 100

 200

 300

 400

 500

Static synchronization

If you make any static method as synchronized, the lock will be on the class not on

object.

Problem without static synchronization

Suppose there are two objects of a shared class(e.g. Table) named object1 and object2.In

case of synchronized method and synchronized block there cannot be interference between t1

and t2 or t3 and t4 because t1 and t2 both refers to a common object that have a single lock.But

there can be interference between t1 and t3 or t2 and t4 because t1 acquires another lock and t3

acquires another lock.I want no interference between t1 and t3 or t2 and t4.Static synchronization

solves this problem.

Example of static synchronization

In this example we are applying synchronized keyword on the static method to perform

static synchronization.

class Table

{

 synchronized static void printTable(int n)

{

for(int i=1;i<=10;i++)

{

System.out.println(n*i);

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 18

CS 8392 OBJECT ORIENTED PROGRAMMING

try

{

 Thread.sleep(400);

 }

catch(Exception e)

{

System.out.println(e);

}

 }

 }

}

class MyThread1 extends Thread

{

 public void run()

 {

Table.printTable(1);

 }

}

class MyThread2 extends Thread

{

 public void run()

 {

Table.printTable(10);

 }

}

class MyThread3 extends Thread

{

public void run()

{

Table.printTable(100);

}

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 19

CS 8392 OBJECT ORIENTED PROGRAMMING

}

class MyThread4 extends Thread

{

public void run()

{

Table.printTable(1000);

}

}

public class TestSynchronization4

{

public static void main(String t[])

{

MyThread1 t1=new MyThread1();

MyThread2 t2=new MyThread2();

MyThread3 t3=new MyThread3();

MyThread4 t4=new MyThread4();

t1.start();

t2.start();

t3.start();

t4.start();

}

}

Output:

 1

 2

 3

 4

 5

 6

 7

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 20

CS 8392 OBJECT ORIENTED PROGRAMMING

 8

 9

 10

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 21

CS 8392 OBJECT ORIENTED PROGRAMMING

 9000

 10000

Answer:

 Deadlock in java

Deadlock in java is a part of multithreading. Deadlock can occur in a situation when a

thread is waiting for an object lock, that is acquired by another thread and second thread is

waiting for an object lock that is acquired by first thread. Since, both threads are waiting for each

other to release the lock, the condition is called deadlock.

Example of Deadlock in java

public class TestDeadlockExample1

{

public static void main(String[] args)

{

 final String resource1 = "ratan jaiswal";

 final String resource2 = "vimal jaiswal";

 // t1 tries to lock resource1 then resource2

 Thread t1 = new Thread()

{

 public void run()

{

 synchronized (resource1)

 {

 System.out.println("Thread 1: locked resource 1");

 try

 {

Thread.sleep(100);

 }

Question: 8 a) Discuss about Deadlock in java.(13)
Or

 8 b) Explain Deadlock with an example.(13)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 22

CS 8392 OBJECT ORIENTED PROGRAMMING

 catch (Exception e)

 {

 System.out.println(e);

 }

 synchronized (resource2)

 {

 System.out.println("Thread 1: locked resource 2");

 }

 }

 }

 };

 // t2 tries to lock resource2 then resource1

 Thread t2 = new Thread()

{

 public void run()

{

synchronized (resource2)

{

 System.out.println("Thread 2: locked resource 2");

 try

{

 Thread.sleep(100);

}

 catch (Exception e)

{

 System.out.println(e);

}

 synchronized (resource1)

 {

 System.out.println("Thread 2: locked resource 1");

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 23

CS 8392 OBJECT ORIENTED PROGRAMMING

 }

 }

 }

 };

 t1.start();

 t2.start();

 }

}

Output: Thread 1: locked resource 1

 Thread 2: locked resource 2

Answer:

Inter-Thread Communication

Inter-thread communication or Co-operation is all about allowing synchronized threads to

communicate with each other. Cooperation (Inter-thread communication) is a mechanism in

which a thread is paused running in its critical section and another thread is allowed to enter (or

lock) in the same critical section to be executed. It is implemented by following methods

of Object class:

 wait()

 notify()

 notifyAll()

1) wait() method

Causes current thread to release the lock and wait until either another thread invokes the

notify() method or the notifyAll() method for this object, or a specified amount of time has

elapsed.

Question: 9 a) Examine Inter thread Communication. Why this feature is required and
 how it is achieved? (13)

Or
 9 b) Demonstrate Inter thread Communication.(13)

Or
 9 c) Using an example, explain inter thread communication in detail.(13)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 24

CS 8392 OBJECT ORIENTED PROGRAMMING

The current thread must own this object's monitor, so it must be called from the

synchronized method only otherwise it will throw exception.

Method Description

public final void wait()throws

InterruptedException

waits until object is notified.

public final void wait(long timeout)throws

InterruptedException

waits for the specified

amount of time.

2) notify() method

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on

this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the

discretion of the implementation.

Syntax:

public final void notify()

3) notifyAll() method

Wakes up all threads that are waiting on this object's monitor.

Syntax:

public final void notifyAll()

Example of inter thread communication in java

class Customer

{

int amount=10000;

synchronized void withdraw(int wamount)

{

System.out.println("going to withdraw...");

 if(amount<wamount)

{

System.out.println("Less balance; waiting for deposit...");

try

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 25

CS 8392 OBJECT ORIENTED PROGRAMMING

{

wait();

}

catch(Exception e)

{

 System.out.println(e);

}

}

amount=amount-wamount;

System.out.println("withdraw completed...");

}

synchronized void deposit(int damount)

{

System.out.println("going to deposit...");

amount=amount+damount;

System.out.println("deposit completed... ");

notify();

}

}

class Test

{

public static void main(String args[])

{

Customer c=new Customer();

new Thread()

{

public void run()

{

 c.withdraw(15000);

}

}.start();

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 26

CS 8392 OBJECT ORIENTED PROGRAMMING

new Thread()

{

public void run()

{

c.deposit(10000);

}

}.start();

 }

}

Output:

 going to withdraw...

 Less balance; waiting for deposit...

 going to deposit...

 deposit completed...

 withdraw completed

 Answer:

Daemon Threads

Daemon thread in java is a service provider thread that provides services to the user

thread for background supporting tasks. Its life depend on the mercy of user threads i.e. when all

the user threads dies, JVM terminates this thread automatically. It is a low priority thread.

There are many java daemon threads running automatically e.g. gc, finalizer etc. The

jconsole tool provides information about the loaded classes, memory usage, running threads etc.

Why JVM terminates the daemon thread if there is no user thread?

The sole purpose of the daemon thread is that it provides services to user thread for

background supporting task. If there is no user thread, JVM terminates the daemon thread if

there is no user thread.

Question: 10 a) What is daemon thread explain with an example?(8)
Or

 10 b) Discuss about daemon thread in java.(8)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 27

CS 8392 OBJECT ORIENTED PROGRAMMING

Methods for Java Daemon thread by Thread class

The java.lang.Thread class provides two methods for java daemon thread.

S.No. Method Description

1) Public void setDaemon(boolean status) is used to mark the current thread as daemon

thread or user thread.

2) public boolean isDaemon() is used to check that current thread is daemon.

Simple example of Daemon thread in java

File: MyThread.java

public class TestDaemonThread1 extends Thread

{

public void run()

{

if(Thread.currentThread().isDaemon()) // checking for daemon thread

{

System.out.println("daemon thread work");

}

else

{

System.out.println("user thread work");

}

}

public static void main(String[] args)

{

TestDaemonThread1 t1=new TestDaemonThread1();//creating thread

TestDaemonThread1 t2=new TestDaemonThread1();

TestDaemonThread1 t3=new TestDaemonThread1();

t1.setDaemon(true);//now t1 is daemon thread

t1.start();//starting threads

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 28

CS 8392 OBJECT ORIENTED PROGRAMMING

t2.start();

t3.start();

}

}

Output

daemon thread work

user thread work

user thread work

 Answer:

ThreadGroup

Java provides a convenient way to group multiple threads in a single object. All threads

can be started or suspended within a group with a single method call.

Java thread group is implemented by java.lang.ThreadGroup class.

Constructors of ThreadGroup class

There are only two constructors of ThreadGroup class.

S.No. Constructor Description

1) ThreadGroup(String name) creates a thread group with given

name.

2) ThreadGroup(ThreadGroup parent,

String name)

creates a thread group with given

parent group and name.

S.No. Method Description

Question: 11 a) Explain thread group with an example?(8)
Or

 11 b) Discuss about thread group in java.(8)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 29

CS 8392 OBJECT ORIENTED PROGRAMMING

Methods of ThreadGroup class

There are many methods in ThreadGroup class. A list of important methods are given

below.

Code to group multiple threads.

ThreadGroup tg1 = new ThreadGroup("Group A");

Thread t1 = new Thread(tg1,new MyRunnable(),"one");

Thread t2 = new Thread(tg1,new MyRunnable(),"two");

Thread t3 = new Thread(tg1,new MyRunnable(),"three");

Now all 3 threads belong to one group. Here, tg1 is the thread group name, MyRunnable is the

class that implements Runnable interface and "one", "two" and "three" are the thread names.

Now we can interrupt all threads by a single line of code only.

Thread.currentThread().getThreadGroup().interrupt();

ThreadGroup Example

File: ThreadGroupDemo.java

public class ThreadGroupDemo implements Runnable

{

1) int activeCount() returns number of threads running in

current group.

2) int activeGroupCount() returns a number of active group in this

thread group.

3) void destroy() destroys this thread group and all its sub

groups.

4) String getName() returns the name of this group.

5) ThreadGroup getParent() returns the parent of this group.

6) void interrupt() interrupts all threads of this group.

7) void list() prints information of this group to

standard console.

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 30

CS 8392 OBJECT ORIENTED PROGRAMMING

public void run()

{

 System.out.println(Thread.currentThread().getName());

 }

public static void main(String[] args)

{

ThreadGroupDemo runnable = new ThreadGroupDemo();

ThreadGroup tg1 = new ThreadGroup("Parent ThreadGroup");

 Thread t1 = new Thread(tg1, runnable,"one");

 t1.start();

 Thread t2 = new Thread(tg1, runnable,"two");

 t2.start();

 Thread t3 = new Thread(tg1, runnable,"three");

 t3.start();

 System.out.println("Thread Group Name: "+tg1.getName());

 tg1.list();

 }

 }

Output:

one

two

three

Thread Group Name: Parent ThreadGroup

java.lang.ThreadGroup[name=Parent ThreadGroup,maxpri=10]

 Thread[one,5,Parent ThreadGroup]

 Thread[two,5,Parent ThreadGroup]

 Thread[three,5,Parent ThreadGroup]

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 31

CS 8392 OBJECT ORIENTED PROGRAMMING

Answer:

 Generic programming enables the programmer to create classes, interfaces and methods

that automatically works with all types of data(Integer, String, Float etc). It has expanded the

ability to reuse the code safely and easily..

Before generics, we can store any type of objects in collection i.e. non-generic. Now generics,

forces the java programmer to store specific type of objects.

Advantages of Java Generics

There are mainly 3 advantages of generics. They are as follows:

1) Type-safety :

other objects.

2) Type casting is not required: There is no need to typecast the object.

Before Generics, we need to type cast.

List list = new ArrayList();

list.add("hello");

String s = (String) list.get(0);//typecasting

After Generics, we don't need to typecast the object.

List<String> list = new ArrayList<String>();

list.add("hello");

String s = list.get(0);

3) Compile-Time Checking: It is checked at compile time so problem will not occur at runtime.

The good programming strategy says it is far better to handle the problem at compile time than

runtime.

List<String> list = new ArrayList<String>();

list.add("hello");

list.add(32);//Compile Time Error

Syntax to use generic collection

Class Or Interface<Type>

Example to use Generics in java

Question: 12 a) What is generic programming? Explain with an example.(8)
Or

 12 b) Discuss about generic programming.(8)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 32

CS 8392 OBJECT ORIENTED PROGRAMMING

ArrayList<String>

Example of Generics in Java

Here, we are using the ArrayList class, but you can use any collection class such as

ArrayList, LinkedList, HashSet, TreeSet, HashMap, Comparator etc.

import java.util.*;

class TestGenerics1

{

public static void main(String args[])

{

ArrayList<String> list=new ArrayList<String>();

list.add("rahul");

list.add("jai");

//list.add(32);//compile time error

String s=list.get(1);//type casting is not required

System.out.println("element is: "+s);

Iterator<String> itr=list.iterator();

while(itr.hasNext())

{

System.out.println(itr.next());

}

}

}

Output:element is: jai

 rahul

 jai

 Answer:

Generic Class

Question: 13 a) What is generic class? Explain with an example.(8)
Or

 13 b) Discuss about generic class in Java.(8)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 33

CS 8392 OBJECT ORIENTED PROGRAMMING

A class that can refer to any type is known as generic class. Here, we are using T type

parameter to create the generic class of specific type.

Simple example to create and use the generic class.

public class Pair<T>

{

 public Pair()

{

 first=null;

 second=null;

}

public Pair(T first, T second)

{

 this.first=first;

 this.second=second;

}

public T getFirst()

{

 return first;

}

public T getSecond()

{

 return second;

}

class Test

{

public static void main(String args[])

{

 Pair<Integer> p1=new Pair(1,2);

 Pair<Float> p2=new Pair(1.1,2.2);

));

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 34

CS 8392 OBJECT ORIENTED PROGRAMMING

}

}

Output:

 P1: 1 2

 P2: 1.1 2.2

 P3: SUNIL KUMAR

The T type indicates that it can refer to any type (like String, Integer, Employee etc.). The

type you specify for the class, will be used to store and retrieve the data.

 Answer:

Generic Method

Like generic class, we can create generic method that can accept any type of argument.

Single method can be defined with type parameters. This method is defined inside ordinary class.

Syntax:

{

 Action Block;

}

Example:

public class GenericDemo

{

 public static < T > void print_val (T val)

 {

 System.out.println();

 }

}

Question: 14 a) What is generic method? Explain with an example.(8)
Or

 14 b) Discuss about generic method in Java.(8)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 35

CS 8392 OBJECT ORIENTED PROGRAMMING

class Maindemo

{

public static void main(String args[])

{

 GenericDemo g=new GenericDemo();

 g.print_val(10);

 \nFloating

 g.print_val(5.5f);

 \

}

}

Output:

 Integer

 Value:10

 Floating point

 Value:5.5f

 String

 welcome

Answer:

Wildcard in Java Generics

The ? (question mark) symbol represents wildcard element. It represents an unknown

type. The wildcard can be used in a variety of situations such as the type of a parameter, field, or

local variable; sometimes as a return type. If we write <? extends Number>, it means any child

class of Number e.g. Integer, Float, double etc. Now we can call the method of Number class

through any child class object.

Question: 15 a) What is Wildcard in Java Generics? Explain with an example.(8)
Or

 15 b) Discuss about Wildcard in Java Generics.(8)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 36

CS 8392 OBJECT ORIENTED PROGRAMMING

import java.util.*;

abstract class Shape

{

abstract void draw();

}

class Rectangle extends Shape

{

void draw()

{

System.out.println("drawing rectangle");

}

}

class Circle extends Shape

{

void draw()

{

System.out.println("drawing circle");

}

}

 class GenericTest

{

//creating a method that accepts only child class of Shape

public static void drawShapes(List<? extends Shape> lists)

{

for(Shape s:lists)

{

s.draw();//calling method of Shape class by child class instance

}

}

public static void main(String args[])

{

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 37

CS 8392 OBJECT ORIENTED PROGRAMMING

List<Rectangle> list1=new ArrayList<Rectangle>();

list1.add(new Rectangle());

List<Circle> list2=new ArrayList<Circle>();

list2.add(new Circle());

list2.add(new Circle());

 drawShapes(list1);

drawShapes(list2);

}

}

Output

drawing rectangle

drawing circle

drawing circle

Answer:

Bounded Type Parameters

 A class or a method needs to place restrictions on type variables.

 While creating objects to generic classes we can pass any derived type as type parameters

 To limit the types that can be passed to type parameters. For that purpose, bounded types

are introduced in generics.

 For example, if we want a generic class that works only with numbers(like int, double,

float, then declare type parameter of that class as a bounded type to number

class.

 Then while creating objects to that class you have to pass only number types or

subclass type as type parameters.

 For example in a method that compares two objects and we want to make sure that the

accepted objects are Comparables.

Question: 16 a) What is bounded types in java? Explain with an example.(13)
Or

 16 b) Discuss about bounded types in java.(13)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 38

CS 8392 OBJECT ORIENTED PROGRAMMING

 The invocation of these methods is similar to unbounded method except that if we will
try to use any class that is not Comparable, it will throw compile time error.

Declare a bounded type parameter

1. List the ty

2. Along by the extends keyword

3. And by its upper bound

Syntax

<T extends superClassName>

This specifies that T can only be replaced by superClassName, or subclasses of superClassName.

Thus, superclass defines an inclusive, upper limit.

Example:

class Test<T extends Number>

{

 T t;

 public Test(T t)

 {

 this.t=t;

 }

public T get()

{

 return t;

}

}

public class BoundedTypeDemo

{

public static void main(String args[])

{

//creating obj by passing integer as a type parameter

Test<Integer> obj=new Test<Integer>(123);

//creating obj by passing double as a type parameter

Test<Double> obj1=new Test<Double>(12.3);

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 39

CS 8392 OBJECT ORIENTED PROGRAMMING

 Double 1.getT());

//creating obj by passing String as a type parameter

//It gives compile time error

//Test<String> obj2=new Test<String>();

// String 2.getT());

}

}

Output:

 The Integer is: 123

 The Double is : 12.3

 Java provides bounded types when specifying a type parameter, an upper bound must be

created that declares the super class from which all type arguments must be derived.

 Type parameter can be specified using an extends clause.

 Bounding of T prevents non-numeric objects from being created. In this example, if the

comments from the lines are removed, it shows compile time error. Because String is not

a subclass of Number.

 In addition to class type, interface type can also be used as a bound.

Example:

class Gen<T extends MyClass & MyInterface>

{

 //

}

T is bounded by a class called MyClass and an interface called MyInterface.

Any argument passed to T must be a subclass of MyClass and implement MyInterface.

Multiple Bounds

Bounded type parameters can be used with methods as well as classes and interfaces.

Java Generics supports multiple bounds also, i.e . In this case A can be an interface or class. If A

bounds.

Syntax

<T extends superClassName & Interface>

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 40

CS 8392 OBJECT ORIENTED PROGRAMMING

Example:

class Bound<T extends A & B>

{

 private T objRef;

 public Bound(T obj)

 {

 this.objRef = obj;

 }

 public void doRunTest()

{

 this.objRef.displayClass();

}

}

 interface B

{

 public void displayClass();

}

 class A implements B

{

 public void displayClass()

 {

 System.out.println("Inside super class A");

 }

}

public class BoundedClass

{

 public static void main(String a[])

 {

 //Creating object of sub class A and

 //passing it to Bound as a type parameter.

 Bound<A> bea = new Bound<A>(new A());

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 41

CS 8392 OBJECT ORIENTED PROGRAMMING

 bea.doRunTest();

 }

}

Output :

Inside super class A

A number of restrictions need to consider when working with Java generics.
i)Type Parameters cannot be Instantiated with primitive Types
 It is not possible to create an instance of a type parameter.
Example:

class Gen<T>
{

T ob;
Gen()
{
 ob=new T(); //Illegal
}

}
ii) Restrictions on Static Members:
 No static member can use a type parameter declared by the enclosing class.
Example:
 All of the static members of this class are Illegal.
class Wrong<T>
{
 //wrong, no static variables of Type T
 static T ob;
 //wrong, no static method can use T
 static T getob()
 {
 return ob;
 }
 //wrong, no static method can access object of type T
 static void showob()
 {
 System.out.println(ob);
 }

Question: 17 a) What are the restrictions and limitations to be considered in generic programming?(8)
Or

 17 b) Discuss the various restrictions and limitations to be considered in generic
 programming.(8)

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 42

CS 8392 OBJECT ORIENTED PROGRAMMING

}

iii) Arrays of Parameterized Types are not legal
 Cannot declare arrays of parameterized type such as
Example:
 Pair<String>[] table=new Pair<String>[10]; //Error
In the above line Pair[] can convert it to object[]
 Object[] objarray=table;

 //error component type is Pair

Example:
public Pair()
{
 first=new T(); //Error
 second=new T(); //Error
}

v) Generic Array Restrictions:
There are two important generic restrictions that apply to arrays

i) Cannot Instantiate an array whose base type is a type parameter
ii) Cannot create an array of type-specific generic references.

Example:
1) Vals=new T[10];
2) Gen<Integer> gen[]=new Gen<Integer>[10]; -

specific generic references
vi) Generic Exception Restriction:
 A generic class cannot extend throwable (ie) Generic exception classes cannot be created.
vii) Cannot Throw or catch Instances of a Generic Class
 Generic class can neither throw nor catch objects.
Example:
public static<T extends throwable>
void doWork(class <T> t)
{
 try
 {

 }
 catch(T e) //Error, can
 {

 }
}

