
CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  1 
 
 
 
 

 

 
PONJESLY COLLEGE OF ENGINEERING 

NAGERCOIL. 
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

 
 

 

SEMESTER III 

CS8391- DATA STRUCTURES 

UNIT II 

LINEAR DATASTRUCTURES  STACKS,QUEUES 

Stack ADT  Operations - Applications - Evaluating arithmetic expressions- 

Conversion of Infix to postfix expression - Queue ADT  Operations - 

Circular Queue  Priority Queue - deQueue  applications of queues. 

 
 
 
 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  2 
 
 
 
 

 
 

 

 

TABLE OF CONTENTS 

LINEAR DATASTRUCTURES  STACKS,QUEUES 

2.1Stack ADT         1 

   Operations          1 

2.2 Applications         10 

 Conversion of Infix to postfix expression   11 

  Evaluating arithmetic expressions    13 

    Balancing the symbols      14 

Towers of Hanoi        16 

Function call        18 

2.3Queue ADT          19 

 Operations         19 

  2.4 Circular Queue        25 

  2.5 Double Ended Queue        29  

         2.6 Priority Queue         35 

2.7 applications of queues.        43 

 Two Marks Questions & Answers      44 
 
 
 
 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  3 
 
 
 
 

2.1 THE STACK ADT 
Q1)a) Define stack and its operations. Explain its operations with array and linked list 
implementation.(15) 

Or 
Q1) b) Briefly explain different ways of stack implementation with example.(15) 
ANSWER: 

 A stack is a linear data structure used to store similar data items which follows Last In First 
Out (LIFO) principle, in which both insertion and deletion occur at only one end of the list 
known as TOP.TOP value of the empty stack is initialized as -1. 
Example: A stack of 4 books 

 
OPERATIONS ON STACK 

 The fundamentals operations performed on a stack are  
1. Push( insert) 
2. Pop-(delete) 

PUSH (INSERT) 
 The process of inserting a element to the top of the stack . For every push operation the top is 

incremented by 1. 
POP (DELETE) 

 The process of deleting an element from the top of stack is called pop operation. 
After every pop operation the top pointer is decremented by 1. 
 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  4 
 
 
 
 

 
Exceptional conditions : 

 Overflow :Attempt to insert an element ,when the stack is full is said as overflow 
 Underflow :Attempt to delete an element ,when the stack is empty is known as underflow. 

 IMPLEMENTATION OF STACK 
 Stack can be implemented as 

1. Arrays 
2. Pointers (or) Linked List 

ARRAY IMPLEMENTATION 
 In this implementation each stack is associated with a pop pointer, Which is -1 for empty 

stack 

 To push an element  X on to the stack ,Top pointer is incremented and then set 

stack[Top]=X. 

 To pop an element ,the stack [top] value is returned and the top pointer is decremented 

 Po on an empty stack or push on a full stack will exceed the array bounds. 

 The size of the array must be declared first which is not a overhead .Initially the top is 0 to 

denote the stack is empty. 

 A stack can be declared as a structure containing two objects. 

               1. An array to hold the elements of the stack  
               2. An integer to indicate the position of the current stack top element within the array  
Stack declaration 

 #define size10 
struct stack  
{ 
  int s[size]; 
  int top; 
}st; 
 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  5 
 
 
 
 

Routine for empty operation: 
int  stempty() 
{ 
   if (st.top==-1) 
    return1; 
else 
    return 0; 
} 

Routine for stack is full 
int  stfull() 
{ 
   if (st.top>==size -1) 
    return1; 
else 
    return 0;   } 

Routine To Return Top Element Of The Stack 
int TopElement (Stack S) 
{ 
if (! IsEmpty (S)) 
return s[Top]; 
else 

 
return 0;  } 

Routine To Push An Element Onto A Stack 
void push (int item) 
{ 
St.top++; 
St.S[St.top]= item; 
} 

Routine To Pop An Element From A Stack 
 

int pop() 
{ 
int item; 
item = St.s[St.top]; 
st.top--; 
return (item); 
} 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  6 
 
 
 
 

Example: Insert elements 5,10,24,12  into a stack of size 3 and delete all elements to make empty 
stack.  

 

 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  7 
 
 
 
 

 

 
LINKED LIST IMPLEMENTATION OF STACK: 

 A stack can also be implemented as a linked structure .In such an implementation the stack 
consists of a sequence of nodes. 

 Each node is a structure containing data item and a pointer to the next node if one exists. This 
pointer is called a link node. 

  The first node is considered to be the top of the stack and the pointer is called top. 
 The last node in the bottom of the stack and its pointer is set to NULL. 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  8 
 
 
 
 

 An empty stack will have top=NULL. 
 The memory for each node is dynamically allocated using malloc. 
 When an item is pushed, a node for it is created and when an item is popped its node is freed 

using free. 
Declaration 

Struct Stack 
{ 
int data; 
Struct Stack * next; 
} 
struct Stack *topptr; 

Routine To Check Whether The Stack Is Empty 
int IsEmpty(Stack S) 
{ 
if ( S  Next == NULL) 
return(1); 
} 

 Routine To Return Top Element In A Stack 
 

int Top (stack S) 
{ 
if (! Is Empty (S)) 
return S  Next  Element; 

 
return 0; 
} 

Routine To Push 
void push( int item) 

{ 

Struct stack *new; 

new = (struct stack *) malloc (sizeof (Struct stack)); 

new  data = item; 

new  next = topper; 

topper = new; 

} 

 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  9 
 
 
 
 

Routine  To  Pop 
int pop() 
{ 
int item; 
if(topper != NULL) 
{ 
item = topper  data; 
topper = tppper  next; 
return (item); 
} 
else 
{ 

 
} 
} 

Example: Insert elements 10,20,30,40  into a stack  and delete all elements to make empty stack.  

 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  10 
 
 
 
 

 
2.2 APPLICATIONS OF STACK 

Q2) a) What are the applications of stack?(2) 
Or 

Q2) b) Name some applications of stack.(2) 
ANSWER: 

 Some of the applications of stack are, 
1) Evaluating arithmetic expression  
2) Balancing the symbols  
3) Towers of Hanoi 
4) Function calls 
5) 8 Queen problem 

Q3) a) What are the different way of representing the algebraic expression(2) 
Or 

Q3) b) Define infix, postfix and prefix notation.(2)  
ANSWER: 

 There are 3 different way of representing the algebraic expression .They are  
 Infix Notation  
 Postfix Notation  
 Prefix Notation 

Infix Notation 
 In infix notation the arithmetic operator appears between the two operands to which it is 

being applied. 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  11 
 
 
 
 

 For eg : 
   A/B+C 

Postfix Notation 
 The arithmetic operator appears directly after the two operands to which it applie .Also called 

reverse polish notation. 
 For eg :  

   AB/C+ 
Prefix Notation 

 The arithmetic operator is placed before the two operands to which it applies. Also called as 
prefix notation. 

 For eg:  
+/ ABC 
 

CONVERSION OF INFIX TO POSTFIX 
Q4) a) Write down the steps to convert infix to postfix and evaluation of arithmetic expression 
with examples(15) 

Or 
Q4) b) Briefly explain about evaluating arithmetic expression(15)  
ANSWER: 
              To evaluate arithmetic expression first convert the given infix expression into postfix 
expression and then evaluate that postfix expression using stack. 
Steps For Conversion of Infix To Postfix: 

 Read the  infix expression one character at a time until it encounters the delimiter # 
Step 1:   If the character is an operand placed it on to the output 

Step 2:  If the character is an operator push it on to the stack .If the stack operator has a higher or 

equal priority than input operator then pop that operator from the stack and place it on to the 

output. 

Step 3: If the character is a left parenthesis push it on to the stack 

Step 4: If the character is right parenthesis pop all the operator from the stack till it encounters left 

parenthesis, discard both the parenthesis in the output. 

Example 1: Infix Expression :A*B +(C-D/E)# 
Read Character               Stack                                       output 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  12 
 
 
 
 

                                                   
 

 
 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  13 
 
 
 
 

 
EVALUATING ARITHMETIC EXPRESSION 
 Convert infix to postfix expression and Read the postfix expression one character at a time 
until it encounters the delimiter # and the follow the below steps. 
Step1:      If the character is an operand pus its associated value on to the stack 

Step 2:      If the character is an operator POP two values from the stack, apply the operator to them 

and push the result on to the stack 

Let us consider the symbols A,B,C,D,E  has the associated values and evaluate AB*CDE/ -+ as 
A=4,B=5,C=5,D=8,E=2. 

                                                  



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  14 
 
 
 
 

 

 
Q5) a) Briefly explain some applications of stack.(13) 

Or 
Q5) b) Explain the following 

i) Balancing the symbols(5) 
ii) Towers of Hanoi (8) 
iii) Function calls(2) 

ANSWER: 
i) BALANCING THE SYMBOLS: 
 Read one character at a time until it encounters the delimiter # 

Step 1: If the character is an opening symbol push it on to the stack. 

Step 2:  If the character is a closing symbol and if the stack is empty report an error as 

missing opening symbol 

Step 3:  If it is a closing symbol and if it has corresponding opening symbol in the stack pop it 

from the stack.Otherwise report an error as mismatched symbols  

Step 4:  At the end of file. if the stack is not empty ,report an error as missing closing symbol 

.Otherwise ,report as Balanced symbols 

Eg: Let us consider the expression as (a+b)# 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  15 
 
 
 
 

  Read Character                          Stack 

                                  
 

                                   
     
 Eg.2:  Consider the expression ((a + b)# 
  Read character                        Stack 

                              



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  16 
 
 
 
 

                             
 

ii) TOWERS OF  HANOI: 
  It is one of the example illustrate the recursion technique.   The problem is moving a 
collection of N disks of decreasing size from one pillar to another pillar .The movement of the disk is 
restricted by following rule 
Rule 1: Only one disk could be moved at a time 
Rule 2: No large disk could ever reside on a pillar on top of a smaller disk;  
Rule 3: A 3rd pillar could  be used as an intermediate to store one or more disks, while they were 
being moved  from source to destination 

 
Recursive Solution: 
 N- represents the number of disks. 
Step1: If N=1 move the disks from A to c 
Step2: If N=2 move the 1st disk from A to B .Then move the 2nd disk from A to C. Then move the 1st 
disk from B   to C 
Step 3: If N=3 .Repeat the step 2 to move the first 2 disks from A to B using intermediate .Then the 
3rd disk is moved from A to C .Then repeat the step 2 to move 2 disks from B to C using A 
intermediate  
 In general, to move N disks. Apply the recursive technique to move N-1 disks from A to B 
using C as an intermediate. Then move the Nth disk from A to C .Then again apply the recursive 
technique to move N-1 disks from B to C using A as an intermediate  



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  17 
 
 
 
 

Recursive Routine For Towers Of Hanoi 
void Hanoi ( int n, char s,char d, char i) 
{ 
/*n = no of disks,s= source,d= destination, i= intermediate*/ 
if(n = = 1) 
{ 
print (s,d); 
return; 
else 
{ 
hanoi(n-1,s); 
print (s,d); 
Hanoi(n-1, I,d,s); 
return; 
} 
} 

 

 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  18 
 
 
 
 

 

 
 

FUNCTIONS CALLS 
  When a call is made to a new function all the variables local to the calling routine need to be 
saved, otherwise the new function will overwrite the calling routine variables. 
           Similarly the current location address in the routine must be saved so that the new function 
knows where to go after it is completed. 

 
 
 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  19 
 
 
 
 

2.3THE QUEUE ADT 
Q6)a) Define Queue and its operations. Explain its operations with array and linked list 
implementation.(15) 

Or 
Q6) b) Briefly explain different ways of Queue implementation with example.(15) 
ANSWER: 
Queue Model: 

 A Queue is a linear data structures which follows First In First Out (FIFO) principle  in which 
insertion is performed at rear end and deletion is performed  front end. 

Example: Waiting line in Reservation counter 

 
OPERATIONS ON QUEUE: 

 The fundamentals operations performed on queue are  
1. Enqueue  
2. Dequeue  

Enqueue: 
  The process of inserting element 
 
Dequeue: 
  The process of deleting  an element 

 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  20 
 
 
 
 

Exception Conditions: 
Overflow : 
         Attempt to insert  an element, the queue is full is said to be overflow condition. 
 
Underflow: 
        Attempt to delete an element from the queue, when the queue is empty is said to be 
overflow.  
IMPLEMENTATION OF QUEUE: 
 Queue can be implemented using  

1. Arrays 
2. Pointers (or) Linked List 

Array Implementation: 
           Here queue Q is associated with two ends 

1. Rear end 
2. Frond end 

Insertion or Enqueue:  
     To insert an element X into the queue Q ,the rear end is incremented by 1 and then set 
queue [Rear]=X 
Routine To Enqueue 
 

void enqueue(int X) 
{ 
if(rear > = max_ArraySize) 

 
else 
{ 
Rear = Rear +1; 
Queue [Rear] = X; 
} 
} 

Deletion (or) Dequeue: 
           To  delete an element, the queue [Front ] is returned and the Front end is incremented by 1 
 
Routine For Dequeue 

void delete() 
{ 
if (Front < 0) 
{ 

 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  21 
 
 
 
 

else 
{ 
X= Queue[Front]; 
if (Front = = Rear) 
{ 
Front =0; 
Rear = -1; 
} 
else 
Front = Front +1; 
} 
} 

Example: Insert elements 5,10,24,12  into a Queue of size 3 and delete all elements to make empty 
stack.  

 

 
 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  22 
 
 
 
 

 
 

 In Dequeue operation, if Front = Rear, then reset both the ends to the initial values (ie, F = 0, 
R = -1) 

Linked List Implementation: 
         Enqueue  operation is performed at the end of the list. 
         Dequeue operation is performed at the front of the list. 
Declaration 

Struct node 
{ 
int Element; 
Struct Node * Next; 
}* Front = NULL, * Rear + NULL; 

Routine To Check Whether The Queue Is Empty 
int IsEmpty (Queue Q) 
{ 
if(Q  Next = = NULL) 
return (1); 
} 

Routine To Check An Empty Queue 
Struct CreateQueue() 
{ 
Queue Q; 
Q = Malloc (Sizeof (Struct Node)); 
if(Q = = NULL) 

 
MakeEmpty (Q); 
return Q; 
} 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  23 
 
 
 
 

void MakeEmpty (Queue Q) 
{ 
if (Q = = NULL) 
{ 

 
else 
while(! IsEmpty (Q) 
Dequeue(Q); 
} 
} 

Routine To Enqueue An Element In Queue 
void Enqueue(int X) 
{ 
Struct node * newnode;newnode = malloc (Sizeof (Struct node)); 
if(Rear = = NULL) 
{ 
newnode  data = X; 
newnode  Next = NULL: 
Front = newnode; 
Rear = newnode; 
} 
else 
{ 
newnode  data = X; 
newnode  Next = NULL: 
Rear --. Next = newnode; 
Rear = newnode; 
} 
} 

 
Routine To Dequeue An Element From Queue 
 

void Dequeue 
{ 
struct node * temp; 
if (front = = NULL) 

 
else 
{ 
temp = front; 
if(front = = rear) 
{ 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  24 
 
 
 
 

front  NULL; 
Rear = NULL; 
} 
else 
Front = Front  next; 
print (temp)  
free (temp); 
} 
} 

 
Example:Insert 10,20 into queue and perform delete operation to make a empty queue. 

 

 
 
 
 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  25 
 
 
 
 

2.4 CIRCULAR QUEUE  
Q7)a) Define Circular Queue and its advantages. Explain its operations with array 
implementation.(15) 

Or 
Q7) b) Briefly explain Ring Buffer implementation with example.(15) 
ANSWER: 
           Circular Queue is a linear data structure in which the operations are performed based on 
FIFO (First In First Out) principle and the last position is connected back to the first position to make 
a circle. It is al  

 
Need of Circular Queue 

As we have seen, in case of linear queue the elements get deleted logically as shown below, 

 
 We have deleted the elements 10, 20 and 30 means simply the front pointer is shifted ahead. 

We will consider a queue from front to rear always.  
 And now if we try to insert any more element then it won't be possible as it is going to give 

"queue full !" message.  
 Although there is a space of elements 10, 20 and 30 (these are deleted elements), we cannot 

utilize them because queue is nothing but a linear array. 
 Hence there is a concept called circular queue. The main advantage of circular queue is we 

can utilize the space of the queue fully.  
  

Insertion 
To perform the insertion , the position of the rear end is calculated by the relation  



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  26 
 
 
 
 

    rear=(Rear+1)%maxsize 
     Queue[Rear]=item 
 
Routine To Insert An Element In  Circular Queue 
 

void CEnqueue (int X) 
{ 
if( Front = = (rear +1) % MaxSize) 

 
else 
{ 
if(front = = -1; 
front = rear = 0; 
else 
rear =  (rear +1)% MaxSize; 
CQueue[rear]=X; 
} 
} 

Deletion:  
 To perform the deletion, the position of the front end is calculated by the relation  

  Value=(Queue [front]) 
  Front=(Front+1)%maxsize 
  
Routine To Delete  An Element From Circular Queue 
 

void CDequeue ( ) 
{ 
if( Front = = -1) 

 
else 
{ 
X = CQueue [Front]; 
if(front = = Rear ; 
front = rear = -1; 
else 
Front =  (Front +1)% MaxSize; 
} 
return(X); 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  27 
 
 
 
 

} 
} 

Example: Insert elements 10,20,30 into circular queue of size 4 and perform delete operation and 
again insert elements 40 and 50 . 

 

 

 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  28 
 
 
 
 

 

 

 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  29 
 
 
 
 

 
Applications of A Circular Queue 
Memory management: circular queue is used in memory management. 
Process Scheduling: A CPU uses a queue to schedule processes. 
Traffic Systems: Queues are also used in traffic systems. 
2.5 DOUBLE ENDED QUEUE 
Q8a) Define Double Ended Queue and its types. Explain its operations with array 
implementation.(15) 

Or 
Q8) b) Briefly explain Different operations of dequeue with example.(15) 
 
ANSWER: 
Double Ended Queue 
Double ended queue is a more generalized form of queue data structure which allows insertion and 
removal of elements from both the ends, i.e , front and back. It is also often called a head-tail 
linked list. 

 
Types of Double Ended Queue 

Double Ended Queue can be represented in TWO ways, those are as follows... 
1) Input Restricted Double Ended Queue 
2) Output Restricted Double Ended Queue 
Input Restricted Double Ended Queue 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  30 
 
 
 
 

In input restricted double-ended queue, the insertion operation is performed at only one end and 
deletion operation is performed at both the ends. 

 
Output Restricted Double Ended Queue 
In output restricted double ended queue, the deletion operation is performed at only one end and 
insertion operation is performed at both the ends.

 
Operations on Deque: 
Mainly the following four basic operations are performed on queue: 
 
insertFront(): Adds an item at the front of Deque. 
insertRear(): Adds an item at the back of Deque. 
deleteFront(): Deletes an item from front of Deque. 
deleteRear(): Deletes an item from back of Deque. 
Insertion at Rear(Back) 
Example: 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  31 
 
 
 
 

 
 
InsertRear(int item) 
{ 
if(rear==MAX)   
       
else   
{ 
     rear=rear+1;   
    deq[rear]=item;       
  
} 
if rear=0   
    rear=1;   
 if front=0   
    front=1;   
return; 
} 

 
 
Insertion at Front 
Example 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  32 
 
 
 
 

 
InsertFront(int item)   
{ 
if(front<=1)   
          
  
else   
{ 
       front=front-1;   
       deq[front]=item;   
}  
   return; 
} 

 
 
 
 
 
 
 
 
 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  33 
 
 
 
 

 
Deletion From Front 
Example: 

 
 

DeleteFront() 
{ 
if front=0   
        
else 
{   
    item=deq[front];   
     
}    
if front=rear   
{ 
   front=0;   
   rear=0;   
} 
else   
     front=front+1;   
return; 
} 
 

 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  34 
 
 
 
 

 
 
 
 
Deletion from Rear(Back) 
Example 

 
DeleteRear() 
{ 
if rear=0   
     
else   
    item=deq[rear];   
if front= rear   
{ 
   front=0;   
   rear=0;   
} 
else   
   rear=rear-1;   
return; 
} 

 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  35 
 
 
 
 

2.6 PRIORITY QUEUE: 
Q9) a) Define Priority Queue and Explain its implementation with examples. 

Or 
Q9) b) What is the efficient way of implementing priority queue.Explain it with all operations. 

Or 
Q9) c)  Define Binary Heap and its propertie.Explain its operation with examples. 
ANSWER: 

 The priority queue is a data structure having a collection of elements which are associated 
with specific ordering.  

BINARY HEAPS 
The efficient way of implenting priority queue is Binary heap. Binary heap is merely referred 

as Heaps. Heap have two properties namely, 
1) Structure Property 
2) Heap Order  Property    
1) Structure Property  

A heap should be complete binary tree ,which is a completely filled binary tree with the 
possible exception of the bottom level,which is filled  from left to right. 
A complete binary tree of height H has between  2H and 2H+1 -1 nodes.This implies that the 
height of a complete binary tree is [log n ] (ie) O(log n) 
Eg: 

  
2) Heap Order Property 
 The property that allows the operation  to be performrd quickly   is the heap order property.   
There are two types of Heap 
Min Heap 

Every parent should have minimum value.To find the minimum element quickly it makes  
sense that the smallest element  should be at the root. 
Max Heap 

Every parent should have maximum value.To find the maximum element quickly it makes  
sense that the smallest element  should be at the root. 

 Declaration of Heap 

Struct Heapstruct 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  36 
 
 
 
 

{ 
 int capacity; 
 int size; 
 int * elements; 
}; 

 3) Basic Heap Operations 
                        To perform the insert  and Deletemin opeartions ensure, that the heap order 
property is  maintained. 
 
 
(i) Insert  
           To insert an element X into the heap. Create the hole in the next available location.If X can 
be placed in the hole without violating  heap order, then place the element X there itself. 

 into the hole, thus bubbling 
the  hole up toward the root. This process continues until X can be placed in the hole. This general 
strategy is known as percolate up. In which  the new element is percolated up the heap until the 
correct location is found. 
Example : 
Insert element 14 in this Heap 

 
Solution : 
Step1: Create Hole in the next available position and insert 14.But 14 is smaller than 31.So 
percolate up 14. 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  37 
 
 
 
 

 
Step 2: 
Again 14 is smaller than 21.So percolate up 14. 

 
 a Final Heap. 

Routine to perform INSERT operation 
Void insert ( int X, Priority Queue H) 
{ 
 int  I; 
 if( IsFull(H)) 
 {   
      
     Return; 
 } 
 for(i=++ H  size; H Elements[i/2]>X;i/=2) 
      H  Elements [i] = H  Elements [i/2] 
      H  Elements [i] = X; 
 } 

ii) DeleteMin  



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  38 
 
 
 
 

                       DeleteMin  operation is deleting the minimum element from the heap.  In binary 
heap the minimum element is found in the root. When this minimum is removed a hole is created 
at the root. Since the heap becomes one smaller makes the last element X in the heap is to move 
somewhere in the heap. 
                      If  X can be placed in hole without violating  heap order property  place it.  Otherwise 

 
                     We repeat until X can be placed in the hole. This general strategy is known as 
percolate down. 
Example:Perform Deletemin Operation in this Heap 

 
Solution: 
Step1:13 is the smallest number.So delete it. 

 
 Step2:Rplace the hole by the smallest no 14. 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  39 
 
 
 
 

 
Step 3: Replace the hole by the smallest no 19. 

 
Step4:eplace the hole by the smallest no 26. 

 
Step 5: Replace the hole by the last element 31. 

 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  40 
 
 
 
 

Routine to perform DELETEMIN 
 
int Deletemin ( Priority Queue H) 
{ 
int I, child; 
int MinElement, LastElement; 
if(IsEmpty(H)) 
{ 

 
Return H  Elements [0]; 
} 
MinElement = H  Elements[i]; 
LastElement = H  Elements [ H  Size --]; 
for(i=1; i*2<=H size;i= child) 
{ 
child=i*2; 
if(child!= H size && H Elements[child +1]< H Elements [child]) 
child++; 
if(LastElement > H  Elements [child]) 
H  Elements [i] = H  Elements [child]; 
else 
break; 
} 
H . Elements [i]= LastElement; 
Return MinElement; 
} 

OTHER HEAP OPERATIONS 
The other heap operations are  

 Decrease key 
 Increase Key 
 Delete 
 Bulid Heap 

1)Decrease Key 
                    The decrease key(p,   ,H). Operation decreases the value of the key at position p by a 
positive amount   .This may violates the heap order property which can be fixed by percolate up. 
Example : 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  41 
 
 
 
 

 
Solution: 

 
  Element at position 2 is 15.decrease that element by 7.Now the position  2 has the value 8.which 
violates the heap order property . 
                      This can be fixed by percolating up strategy.(Fig A) 
2) Increase key 
                      The increase key (p,  , H), operation increases the value of the key at position p by a 
positive amount. This may violate order property. 
Example: 

 
  Solution: 

 
Here the element at position 2 is 15.Increase that value by 7.Now the position 2 has the value 
22,which violates the heap order property.This can be fixed by percolate down. 
3)Delete: 
                  The delete(p,H) operation removes the node at the position p from the heap. 
                  This can be done by, 
(i) Perform the decrease key operation 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  42 
 
 
 
 

Decrease key(p,   ,H) 
(ii) Perform DeleteMin operation 

DeleteMin(H) 
Example: 
 Delete 22 from this heap 

 
(i) Decreasing by Infinity 

                                              
                                  
After decreasing the value at position   .The value  changes to   which is the least element in heap. 

 
                                   
Since  occupies the root  position,apply DeleteMin opration. 
(ii) DeleteMin  
    After deleting  the minimumelement ,the last element will occupy the hole.Then 
rearrange the heap till it satisfies heap order property. 

 
                             
 
 
 



CS8391  Data Structures 
 
 
 

CSE/Ponjesly College of Engineering  43 
 
 
 
 

Build  Heap 
The BuildHeap(H) operations takes an input N keys and places them into an empty heap by 

maintaining structure property and heap order property. This can be done with N successive 
insertion, since each insert will take O(1) average and o(log N) worst case time. 

Application of Priority Queue 
 The typical example of priority queue is scheduling the jobs in operating system. Typically 

operating system allocates priority to jobs.  
 The jobs are placed in the queue and position of the job in priority queue determines their 

priority. In operating system there are three kinds of jobs.  
 These are real time jobs, foreground jobs and background jobs. The operating system always 

schedules the real time jobs first.  
 If there is no real time job pending then it schedules foreground jobs. Lastly if no real time or 

foreground jobs are pending then operating system schedules the background jobs. 
 In network communication, to manage limited bandwidth for transmission the priority queue 

is used. 
 In simulation modeling, to manage the discrete events the priority queue is used. 

2.8 APPLICATIONS OF QUEUES 
Q10)a) What are the applications of Queue. 

Or 
Q10) b) Name some areas where we can use Queue Data Strcuture. 
ANSWER: 

1. Batch processing in an operating system. 
2. To implement priority queues.  
3. Priority queues can be used to sort the elements using sort.  
4. Simulation. 
5. Mathematics user queuing theory.  
6. Complete networks where the server takes the job of the client as per the queue strategy. 
7. When jobs are submitted to a printer they are arranged in order of arrival .Thus jobs sent to 

a line printer are placed to a queue. 
8.  Virtually every lifeline is a queue. For instance lines at ticket counter are queue because 

service is FCFS.  
9. In computer networks there are many network setup of personal .Computers in which the 

disk is attached to    one machine known as the file services .Users on other machines are 
given access to files on FCFS Basis. So the data structures is queue.  

10. The large universities where resources are limited. Students must sign a waiting list if all 
terminals are occupied. The student who has off first and the student who has been waiting 
the longest is the next user to be allowed on.  

11. Calls to large companies are generally placed on a queue when all operation. 
 


