Question Paper Code: 57502 ## B.E./B. Tech. DEGREE EXAMINATION, MAY/JUNE 2016 ## **Third Semester** Civil Engineering ## MA 6351 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS (Common to all branches except Environmental Engineering, Textile Chemistry, Textile Technology, Fashion Technology and Pharmaceutical Technology) (Regulations 2013) Time: Three Hours Maximum: 100 Marks Answer ALL questions. $PART - A (10 \times 2 = 20 Marks)$ - 1. Form the partial differential equation by eliminating the arbitrary functions from $f(x^2 + y^2, z xy) = 0.$ - 2. Find the complete solution of the partial differential equation $p^3 q^3 = 0$. - 3. Find the value of the Fourier series of $f(x) = \begin{cases} 0 & \text{in } (-c, 0) \\ 1 & \text{in } (0, c) \end{cases}$ at the point of discontinuity x = 0. - 4. Find the value of b_n in the Fourier series expansion of $f(x) = \begin{cases} x + \pi & \text{in } (-\pi, 0) \\ -x + \pi & \text{in } (0, \pi) \end{cases}$ 09-06 57502 - 5. Classify the partial differential equation $u_{xx} + u_{xy} = f(x, y)$. - 6. Write down all the possible solutions of one dimensional heat equation. - 7. State Fourier integral theorem. - 8. Find the Fourier transform of a derivative of the function f(x) if $f(x) \to 0$ as $x \to \pm \infty$. - 9. Find $Z\left\{\frac{1}{n!}\right\}$ - 10. Find $Z \{(\cos \theta + i \sin \theta)^n\}$. ## $PART - B (5 \times 16 = 80 Marks)$ 11. (a) (i) Solve the equation $$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$$. (8) (ii) Find the singular integral of the equation $$z = px + qy + \sqrt{1 + p^2 + q^2}$$. (8) OR (b) (i) Solve: $$(D^3 - 2D^2D')z = 2e^{2x} + 3x^2y$$. (8) (ii) Solve: $$(D^2 + 2DD' + D'^2 - 2D - 2D')z = \sin(x + 2y)$$ (8) 12. (a) (i) Find the Fourier series of $$f(x) = x$$ in $-\pi < x < \pi$. (6) (ii) Find the Fourier series expansion of $$f(x) = |\cos x| \text{ in } -\pi < x < \pi$$. (10) OR (b) (i) Find the half range sine series of $$f(x) = x \cos \pi x$$ in $(0, 1)$. (ii) Find the Fourier cosine series up to third harmonic to represent the function given by the following data: (8) x: 0 1 2 3 4 5 y: 4 8 15 7 6 2 13. (a) Find the displacement of a string stretched between two fixed points at a distance of 2*l* apart when the string is initially at rest in equilibrium position and points of the string are given initial velocities v where $v = \begin{cases} \frac{x}{l} & \text{in } (0, l) \\ \frac{2l - x}{l} & \text{in } (l, 2l) \end{cases}$, x being the distance measured from one end. (16) OR - (b) A long rectangular plate with insulated surface is l cm wide. If the temperature along one short edge is $u(x, 0) = k(lx x^2)$ for 0 < x < l, while the other two long edges x = 0 and x = 1 as well as the other short edge are kept at 0 °C, find the steady state temperature function u(x, y). (16) - 14. (a) Find the Fourier cosine and sine transform of $f(x) = e^{-ax}$ for $x \ge 0$, a > 0. Hence deduce the integrals $$\int_{0}^{\infty} \frac{\cos sx}{a^2 + s^2} ds$$ and $\int_{0}^{\infty} \frac{s \sin sx}{a^2 + s^2} ds$. (16) OR - (b) (i) Find the Fourier transform of $f(x) = e^{-\frac{x^2}{2}}$ in $(-\infty, \infty)$. (8) - (ii) Find the Fourier transform of f(x) = 1 |x| if |x| < 1 and hence find the value of $$\int_{0}^{\infty} \frac{\sin^4 t}{t^4} dt$$. (8) 57502 - 15. (a) (i) Find the Z-transforms of $\cos \frac{n\pi}{2}$ and $\frac{1}{n(n+1)}$. (8) - (ii) Using convolution theorem, evaluation $Z^{-1}\left\{\frac{z^2}{(z-a)^2}\right\}$. (8) OR - (b) (i) Find the inverse Z-transform of $\frac{z}{z^2 2z + 2}$ by residue method. (8) - (ii) Solve the difference equation $y_{n+2} + y_n = 2$, given that $y_0 = 0$ and $y_1 = 0$ by using Z-transforms. (8) 4