Notes Syllabus Question Papers Results and Many more... Available @

www.AllAbtEngg.com

	Reg. No. :			78187
Q	uestion I	Paper Code	e: 9178	85
	F Mech 52 – STATISTI	INATIONS, NOV Courth Semester nanical Engineeri ICS AND NUME degulations 2013)	ing RICAL ME	ECEMBER 2019 THODS
Time: Three Hours			I	Maximum: 100 Marks
		tistical tables is pe wer ALL question		
		PART – A		(10×2=20 Marks)
1. State the proced	ure followed in	testing of hypothes	sis.	
2. Define Type I er	ror and Type II	error in the sampl	ing distribut	tion.
3. State the princip	les of Design of	Experiments.		
4. Is 2 × 2 Latin Sq	uare Design pos	ssible ? Why ?		
5. Compare Gauss	elimination wit	h Gauss seidel.		South remail
6. Obtain the itera	tive formula to f	find $\frac{1}{N}$ using Newt	ton-Raphson	method.
 Given f(2) = 5, f(interpolation. 		**		
8. Construct the di	vided difference	table for the data		
x 0.5 F(x) 1.625	1.5 3.0 5.0 5.875 31 131			
9. Compute y(0.1) of Taylor's series m	correct to 4 deci		satisfies y' =	x + y, $y(0) = 1$, by
10. Write down the		formulae for y' = f	(x, y).	

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.AllAbtEngg.com

91785	-2-	
	PART – B (5×16=80 M	[arke
11 0)		lains
11. a)	 Test if the variances are significantly different for x₁ 24 27 26 21 25 	(8
	x ₂ 27 30 32 36 28 23	
i	i) The number of automobile accidents in a certain locality was 12, 8, 20,	2,
	14, 10, 15, 6, 9, 4. Are these frequencies in agreement with the belief the	at
	accident conditions were the same during this 10 week period.	(8)
ы :	(OR)	
b) 1	A certain pesticide is packed into bags by a machine. A random sample of 1 bags in chosen and the contents of the bags is found to have the following weights (in kgs) 50, 49, 52, 44, 45, 48, 46, 45, 49 and 45. Test if the	.0 .g
	average quantity packed be taken as 50 kg.	(8)
11	Given $\overline{X}_1 = 72, \overline{X}_2 = 74$	
	$s_1 = 8, s_2 = 6$ $n_1 = 32, n_2 = 36$	
	Test if the means are significant.	(0)
19 0) :)		(8)
12. a) 1)	The accompanying data resulted from an experiment comparing the	
	degree of soiling for fabric copolymerized with the 3 different mixtures of methacrylic acid. Analyse the classification.	
	Minture 1 0.50 110 000	(6)
	Mixture 1 0.56 1.12 0.90 1.07 0.94 Mixture 2 0.72 0.69 0.87 0.78 0.91	
	Mixture 3 0.62 1.08 1.07 0.99 0.93	
ii)	A variable trial was conducted on wheat with 4 varieties in a Latin square	
	design. The plan of the experiment is given below. Analyse data and	2.2
	interpret the result.	(10)
	C 25 B 23 A 20 D 20	
	A 19 D 19 C 21 B 18	
	B 19 A 14 D 17 C 20	
	(OR)	

Notes Syllabus Question Papers Results and Many more...

Available @ www.AllAbtEngg.com

91785 MHAMMIN . -3b) i) A set of data involving 4 tropical food stuffs A, B, C, D tried on 20 chicks is given below. All the 20 chicks are treated alike in all respects except the feeding treatments and each feeding treatment is given to 5 chicks. (7) Analyse the data: 49 42 21 52 55 30 89 63 112 C 81 95 169 137 169 85 154 D (9) ii) Perform a 2-way ANOVA on the data given below. Treatment 1 2 3 26 38 Treatment 2 1 30 29 28 2 24 3 33 24 35 30 4 36 31 5 27 35 33 Use the coding method subtracting 30 from the given number. (8) a) i) Solve the following equations by Gauss elimination method. 2x + y + 4z = 12, 8x - 3y + 2z = 20, 4x + 11y - z = 33, ii) Using power method find the dominant eigenvalue of the matrix. 25 1 2 1 3 0 $2 \quad 0 \quad -4$ (OR) (4 1 b) i) If $A = \begin{bmatrix} 2 & 3 & -1 \end{bmatrix}$, Find A^{-1} by Gauss-Jordan method. (8) 1 -2 2(8)ii) Solve the following equations by Gauss-Seidel method. x + y + 9z = 15, x + 17y - 2z = 4830x - 2y + 3z = 75

Notes Syllabus Question Papers Results and Many more...

www.AllAbtEngg.com

Available @

91785	• -4-	
14. a) i	Use Lagrange's interpolation formula to find f (10) from the following	,
	The second reserved to	(8)
	x: 5 6 9 11 f(x) 12 13 14 16	
ii)	Find the value of cos (1.74) using suitable formula from the following data:	
	x: 1.7 1.74 1.78 1.82 1.86	(8)
	sin x: 0.9916 0.9857 0.9781 0.9691 0.9584	
	(OR)	
b) i)	Use Newton's backward difference formula to fit a third degree	
	polynomial for the following data:	(8)
	x: -0.75 -0.5 -0.25 0	(0)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
;:)		
(11)	Evaluate $\int_0^1 \frac{1}{1+x} dx$, using	
	1) Trapezoidal rule and	(4)
	2) Simpson's $\frac{1}{3}$ rule with h = 0.125 and compare the values with example value.	ot (-)
		(4)
5. a) i)	Solve the equation $y^u = x + y$ with the boundary values $y(0) = y(1) = 0$	
	with $h = \frac{1}{4}$ using finite difference method.	(8)
	Apply Taylor's method to obtain approximate value of y at $x = 0.2$ for t differential equation $y' = 2y + 3e^x$, $y(0) = 0$. Compare the numerical solution with its exact solution.	he
		(8)
	ing R.K. fourth order method to find y at $x = 0.1, 0.2, 0.3$ given that $= xy + y^2, y(0) = 1$. Continue the solution at $y = 4$	
P-0	method.	(16)
	35 - 17 A	
		- Non-